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Basic timing diagram in flip-flops

Definitions:
• Clock-to-Q Delay: tCQ low-to high= tCQ,LH high-to-low= tCQ,HL

• Setup time U

• Hold time H
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Setup and hold time behavior as a function of 
clock-to-output delay

Neither Setup nor Hold time are fixed constant parameters.
They are function of Data-to-Clock time “distance”.
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Setup time behavior as a function of data-to-output delay
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When D-to-Q delay is observed, we can see that data can come closer
to the triggering event than we thought.
Data-to-Q is the RELEVANT parameter – NOT Clock-to-Q as many think ! 
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D-Q and Clk-Q delay as a function of D-Clk offset

Determining the optimal setup Uopt and hold time Hopt.
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Setup time, hold time, sampling window and clock 
width in a flip-flop
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Latch: setup and hold time

Unlike Flip-Flop, Latch 
has two situations:

(a)Data is ready – waiting 
for the clock

(b)Latch is open – data 
arrives during the 
active clock signal

(a) early data D1 arrival; (b) late data D2 arrival
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Illustration of a data path
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Late Data Arrival and Time Borrowing in a 
pipelined design

Data-to-Output (Q) time window moves around the time axis; 
(becoming larger or smaller)
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Early Data Arrival and Internal Race Imunity

• The maximum clock skew that system can 
tolerate  is determined by the clock 
storage elements:
– If Clk-Q delay of CSE is shorter than H, race 

can occur if there is no logic inbetween.
– If Clk-Q is greater than H + possible skew – no 

problem:

tClk-Q> H+ tskew

• Internal race immunity:    
R = tClk-Q-H
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Impact of supply voltage on the sampling 
window
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Sampling window determines the minimum required duration of data signal
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Energy Parameters
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Components of Energy Consumption

• Switching Energy
• Short-Circuit Energy
• Leakage Energy
• Static Energy
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Components of Energy Consumption
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Switching Energy:

Energy consumed by CSE during one 
clock period T, where t is chosen to 
include all relevant transitions: arrival 
of new data, clock pulse, and output 
transition.

This energy has four components:

• N is the number of nodes 
• Ci is the capacitance of the node I
• α0-1(i) is the probability that a transition occurs at the 

node i
• Vswing(i) is voltage swing of the node I
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Short-circuit current in an inverter

(a) pull-up; (b) pull-down operation
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Projected leakage currents
Leakage power will soon become a significant portion of the total 
power consumption in modern microprocessors
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Assuming doubling of transistors / generation the leakage current will 
increase about 7.5 times corresponding to a 5 times increase in total 
leakage power
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Where does the Energy go in CSE ?

1. Internal clocked nodes in 
storage elements

2. Internal non-clocked nodes in 
storage elements

3. Data and clock input load
4. Output load. 
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Energy Breakdown

1. Internal clocking energy
2. Data and Clock Input Energy
3. Energy in Internal Non-clocked 

Nodes
4. Energy in Output Load
5. Energy per Transition
6. Glitching Energy
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Energy Breakdown in Clocked-Storage 
Elements during one of the possible input 

data transitions

E0-0 E0-1 E1-0 E1-1

EClk Y/N Y Y Y/N
Eint Y/N Y Y Y/N
Eext N Y/N Y/N N

Two cases:
• Storage elements without pre-charge nodes
• Storage elements with pre-charge nodes
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CSE characterization and Test setup
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• Clock Energy

• Internal Energy:

• Energy in Output Load
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Energy per transition
• The energy-per-transition is the total energy consumed in a CSE during 

one clock cycle for a specified input data transition: 0-0, 0-1, 1-0, or 1-1
• This metric is crucial in that it yields significant insight about circuit 

energy

• By inspection of the node activity in a CSE for different input data 
transitions, the energy-per-transition can be utilized to obtain the 
energy breakdown between clocked nodes, internal nodes, and the 
external output load.

• This forms a good basis for the study of alternative circuit techniques 
that deal with internal clock gating.

• The energy breakdown information also offers valuable information 
about the tradeoffs associated with reduced clocking energy and the 
energy penalty incurred by the clock-gating logic, thus providing a 
better understanding of the optimization goals for the overall design 
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Energy per transition

0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1averageE p E p E p E p E− − − − − − − −= ⋅ + ⋅ + ⋅ + ⋅
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Glitching Energy in CSEs

• Glitches are generated by the unintended transitions propagating 
from the fan-in gates, termed propagating glitches. 

• Glitches produced by non-glitch transitions at the inputs, called 
generated glitches
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Interface with Clock Network and 
Combinational Logic

• We assumed that the data and clock inputs 
were supplied by drivers with sufficient drive 
strength. 

• The input clock and data capacitances are 
important interface parameters for the clock 
network and logic design. 

• The clock network designer and logic designer 
need to be aware of these capacitances in 
order to design circuits that drive storage 
elements.
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Interface with Clock Network and 
Combinational Logic

Interface with Combinational Logic:

The relevant parameters to the combinational 
logic designer are: 

• CSE input data slope
• Input data capacitance

The data slope affects performance and 
energy consumption of both driving logic and 
storage elements. 

Clock and data slopes are generally not equal.
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Interface with Clock Network and 
Combinational Logic

Interface with Clock Network:
• CSEs are affected by clock skew and clock slope. 
• The total load of the clock distribution network is 

defined by the input capacitance of the clock node and 
number of CSEs on a chip.

• Increase in clock slope results in degradation of the 
CSE performance - the clock network designer has to 
know what slopes CSE can tolerate. 

• This is especially important if Flip-Flops are used. 
• The clock slope also affects energy consumption of the 

clock distribution network. 
– If larger clock drivers with smaller fanout are used, the clock 

edges are sharper and the storage element performance better, 
at the expense of an increase in energy consumption of the 
clock network.

– Optimal tradeoff is achieved with minimal energy consumption 
that delivers the desired storage element performance.
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Interface with Clock Network and 
Combinational Logic

• To evaluate the total clocking energy per clock cycle in 
the entire clock subsystem, one needs to add the energy 
consumed in the clock distribution network. 

• The energy consumed in the clock distribution network 
depends on the total switched capacitance which is 
determined by the total number of clocked storage 
elements on a chip and the input capacitance of their 
clock inputs, the total wiring capacitance, and the total 
switched capacitance of clock drivers as given by:

,distrib net FF in Clk FF wire sw buffC N C C C− − −= ⋅ + +

The last two terms depend on buffer insertion/placement 
strategy and should be minimized. 
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