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Absorbing Clock Uncertainties
• Clock uncertainties

– Clock skew
– Clock jitter

• Trends:
– Clock distribution becomes progressively difficult 

due to: 
• load mismatch
• Process, voltage, and temperature variations. 

– The clock uncertainties occupy increasing portion of 
the cycle time; typically 2 FO4. 

• The ability to reduce impact of these 
uncertainties is one of the most important 
properties of the high-performance system. 
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Clock Generation and Distribution Non-idealities

• Jitter
– Temporal variation of the clock signal manifested as 

uncertainty of consecutive edges of a periodic clock 
signal.

– It is caused by temporal noise events
– Manifested as:

- cycle-to-cycle or short-term jitter, tJS
- long-term jitter, tJL

– Mainly characteristic of clock generation system
• Skew

– Time difference between temporally-equivalent or 
concurrent edges of two periodic signals

– Caused by spatial variations in signal propagation 
– Manifests as CSE-to-CSE fluctuation of clock arrival at 

the same time instance
– Characteristic of clock distribution system
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Clock Uncertainties

Ref_Clock

Received Clock

T

skewt
skewt

jitt− jitt+

RCV_CLKt

DRV_CLKt

Clock
uncertainty:
jitter+skew



Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 5

Clock Uncertainty Absorption Using Soft 
Clock Edge 



Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 6

Output of a flip-flop in the presence of clock jitter: 
Partovi et al. 1996

A recent design of a Flip-Flop, controlled by a narrow, locally generated clock pulse, with 
negative Setup Time exhibits some degree of clock uncertainty absorption.

Smaller variation 
in Qb arrival

Large initial 
variation in Clk
arrival
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Data-to-output characteristics in the presence of 
clock uncertainty

Data-to-Output Delay versus Clock Arrival Time when the data arrival time is constant. When 
no clock uncertainties are present, the clock is scheduled to arrive so that D-Q delay (tDQm) 
is smallest, in order to minimize the CSE overhead.

Q

Soft clock edge: short transparency 
window ⇒ timing less dependent on clock
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Dependence of data-to-output delay on clock arrival

Clock uncertainty tCU
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The key role of a CSE is to minimize the propagation of clock uncertainty to 
the CSE output:

max [ ( )], [ / 2, / 2]DQM DQ Opt CU CUt
D D U t t t t= + ∈ −
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Timing Analysis with Clock 
Uncertainty Absorption
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Total delay versus clock uncertainty
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We formulate clock uncertainty absorption αCU of a storage element as 
the portion of the total clock uncertainty not reflected at the output:
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Critical race in the presence of clock uncertainty
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Idealized D-Q delay characteristic as a function of clock 
arrival
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Time Borrowing
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Time Borrowing

Classification:
• Dynamic time borrowing

– Scheduling data to arrive to CSE when CSE is transparent
• No “hard” boundaries between stages

– Occurs in latch-based level sensitive and soft-edge clocking. 
• Static time borrowing

– Inserting delay between clock inputs of the clocked storage 
elements. 

– Clocks are scheduled to arrive so that the slower paths obtain 
more time to evaluate, taking away the time from faster paths. 

– It can operate with conventional hard-edge Flip-Flops.  
– Also called opportunistic skew scheduling
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Dynamic Time Borrowing



Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 16

Timing of two-phase level-sensitive pipeline with time borrowing

a

 Borrowed time
of Stage2a

Φ1

a

b

c

d

e

f

g

h

d1

P/2

L1 + Stage1a  < P/2

Total borrowed
time at node f

Φ2

Φ1

Stage 1bStage 1a Stage 2a Stage 2b
L1

c

Φ2

L2

b e

Φ1

L3

d g

Φ2

L4

f h

Φ1

L5

Stage 1 Stage 2

P/2

d2

d1 d2

d1 d2

d1

L2 + Stage1b > P/2

d2

d1 d2

L3 + Stage2a > P/2

d1 d2

d2d1

d1 d2

L4 + Stage 2b delay < P/2

D Q D Q D Q D Q D Q



Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 17

Timing Analysis with Time Borrowing: 
Late Data Arrival

The minimum clock cycle time of the pipeline is not determined by the delay of 
the slowest stage in the pipeline. It is rather the average delay of the logic and 
latches through all stages. 

Assumptions: 
1) all logic blocks are used in time borrowing, 
2) after N stages, the pipeline produces data at the same point in the cycle 
at which the input data was acquired
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Fast-path hazard
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Time borrowing and signal loops
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The timing of signals in the loops, should be treated separately. 
If the overall propagation delay through the loop occur later with each cycle, it 
will result in a Setup Time violation. 
Any signal loop that borrows time from itself will eventually cause a timing 
violation.
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Static Time Borrowing 
(Opportunistic Skew Scheduling)
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Opportunistic skew scheduling
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Opportunistic skew scheduling
Advantages:
• It can operate with conventional Flip-Flops. 
• It places fewer constraints onto the circuit design, 

allowing additional time slack where necessary. 
⇒ useful in localized critical paths where every 

improvement directly increases the system clock 
rate

Disadvantages:
• It increases the complexity of the clock distribution 

system. 
• It is hard to control the inserted delays over process, 

supply and temperature variations. 
• The analysis of clock skew is also complicated in this 

asymmetric clock distribution network.
⇒ impractical on a large-scale level
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Time Borrowing and Clock Uncertainty 

Level sensitive clocking, 
Soft clock edge

Clock uncertainty 
absorption Time borrowing

Varying clock 
arrival

Varying data 
arrival

Clock uncertainty absorption and time borrowing exploit 
the same data transparency property of CSE 

Clocked storage elements
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Clock Uncertainty Absorption with 
Level-Sensitive Clocking 
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Clock uncertainty immunity in single stage
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Clock uncertainty immunity in multiple stages 
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Summary: Effects of clock uncertainties to a 
system with level-sensitive clocking

• Decreasing of the margins for time borrowing. 
• The pipeline absorbs the uncertainties for the 

data that arrives during the transparency 
period of the Latch.

• The effect of the uncertainties is reduced to an 
average uncertainty over all stages in the path.
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Soft-Edge Sensitive Clocking
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Time borrowing with uncertainty-absorbing 
clocked storage elements
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Conclusion

• High-performance CSE requirements: 
– Speed
– Clock uncertainty absorption ⇒ to accommodate 

increasing effect of clock skew and jitter
– Time borrowing ⇒ to eliminate effects of imbalanced 

stage delays
• Essential circuit technique: eliminate hard edges 

in critical paths
• Flip-flops with soft clock edge, level-sensitive 

latches become preferred choice of CSE
• Clock uncertainty absorption capability can be 

traded for time borrowing
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