340

Summary—A large, extremely fast digital adder with sum selec-
tion and multiple-radix carry is described. Boolean expressions for
the operation are included. The amount of hardware and the logical
delay for a 100-bit ripple-carry adder and a carry-select adder are
compared.

The adder system described increases the speed of the addition
process by reducing the carry-propagation time to the minimum com-
mensurate with economical circuit design. The problem of carry-
propagation delay is overcome by independently generating multiple-
radix carries and using these carries to select between simultane-
ously generated sums.

In this adder system, the addend and augend are divided into
subaddend and subaugend sections that are added twice to produce
two subsums. One addition is done with a carry digit forced into
each section, and the other addition combines the operands without
the forced carry digit. The selection of the correct, or true, subsum
from each of the adder sections depends upon whether or not there
actually is a carry into that adder section.

INTRODUCTION

O INCREASE the speed of a digital computer, a
Tdesigner may either develop faster electronic

components and circuitry or organize slower
components into faster, more efficient over-all sys-
tems. In the latter method, increased speed is obtained
by combinating available electronic components into
more complex logical structures. These structures, un-
less used with more subtle algorithms for executing
basic operations, often require large amounts of addi-
tional equipment. '

In digital adders, the speed of the addition is limited
by the time required to propagate a carry through the
adder. The sum for each bit position in an elementary
adder is generated sequentially (starting at the lowest
order bit position) only after the previous bit position
has been summed and a carry (if generated) propagated
into the next position.

Improved adders generate carries simultaneously
[1, 2]. These adders employ the principle that the carry
from each bit position may be generated independently
as an explicit function of all the less significant addend
and augend bits. However, because of the inherent
limitations in available components, the construction
of simultaneous carry-generation adders is not always
practical. This paper describes a fast digital adder that
derives its speed from a complex logical structure with-
out requiring an excessive amount of additional hard-
ware.

* Received September 21, 1961; revised manuscript received
March 26, 1962.
1 Development Laboratories, Data Systems Division, IBM Cor-

poration, Poughkeepsie, N. Y.

- assumptions:

IRE TRANSACTIONS ON ELECTRONIC COMPUTERS ' Juné$

Carry-Select Adder”

0. J. BEDRIJ}, MEMBER, IRE

NOTATION

To facilitate an understanding of the system, Booleaﬁ_ ’_t_"
notation of the sort described by R. K. Richards [3]%
will be used. Note, however, the functional symbols:

¥ =EXCLUSIVE OR
@ =Either EXCLUSIVE or INCLUSIVE OR.

Addend, augend and true sum digits are designated
by 4, B, and S, respectively, followed by a subscript to'®
indicate a digital position. Carries are indicated by C}
and a subscript to indicate the digital position from
which the carry is generated. An S or C followed by
¥ or n subscript indicates that the sum or carry. 'i8
provisional and is generated under one of the l'ollowm

y—There was a carry into the lowest-order bit pom-
tion of the section. Y
n—There was no carry into the lowest-order bit poal-
tion of the section. {

The absence of an » or y subscript indicates a true sum
or a true carry.

Basic THEORY

To illustrate the principles involved in reducing the
delay caused by carry propagation, assume that a 25-bit™s
addend and a 25-bit augend are to be combined to form’
a 25-bit sum. The adder is first divided into five 5-bit
adder sections, Each adder section is in duplicate‘;' _
that simultaneous additions of the addend and augend}
may be made, one with a carry and one without: a®
carry (Fig. 1). Two sums are produced by adding the
addend and augend digits in each section and by
propagating the carries for sum generation sequentially®
from the lowest to the highest-order bit position of
section. Note, however, that:

‘
80
(

1) Five of the adder sections have a carry forced into}
their lowest-order bit position and five do not. %
2) All adder sections operate simultaneously to pr
duce their respective sum and carry bits. ’
3) Complete circuit duplication is not required (Figs
2) since the primary functions, 4 ¥ B, and"" B
are used in producing both sums.

In Fig. 1, the circuits labeled K «and K, represe
5-bit adder sections operating' with and without ' the
forced carry digit, respectively. The OG circuits'(in
sert, Fig. 2) gate out the true sum digits of the addef}
section. The blocks labeled EQ (Fig. 1) contain"th

341

Carry-Select Adder

Bedrij

- 6l 03 ‘I)mNU \

e ®

8103

Xe1 O e

.,chomu_
- ———

Sey-_I2y

S2g-lig

AGZ

AS2g_ AlZg

$2g-I2g

S2y=I2y

IE

"dnous Jappe nq-g7—1 3]

02g-9lg

\rﬂU

O2g~9ig

02y —9ly

Sig~llg Siy=lly

O_m|wm

Oly—9y

“Zx | 6103 |
Le—102, ust _som wor b
.l.llxrm_nv p—AGI °
B [—ACI, 0 [e—A0l 4 — p— AOI 5
[AG f— AG 4 8 [AS
+— 05 +— 0> _ «— 051 | €103
us,
) L 0 4I_ _ o
Slg 4 [e] —
< o1 fe— S
8 |10z, 8 le—1si, _ ° 8 %m_o 2 8
=
I 18 J
Olew_m ONdlw_q m_ml:m m_dl__d O_mlwm O-le(
>ONU >n_U >O_U
ASlg_ Allg AOlg . A9g
m_ml__m Olg_9g
uglg_uUilg uOlg_U9g
vz, ugiy uol,

342

IRE TRANSACTIONS ON ELECTRONIC COMPUTERS

Siv

Sin

S2n

S3n

San

Ssn "

As
Bs

[

Say

A4 Bg

A5 ¥ Bg

A3 B3

Ag ¥ Bg
Ag ¥ Bs

Ao By

A3 ¥B3y |
Ay ¥y
Ag ¥ Bg

Cn

Sin~Ssn

Say

Ssy

_Siy—Ssy

0G

S-S

i

Al By

Ay ¥ Bp
A3 ¥B3
Aq ¥ By
Ag ¥ Bg

Jal BT

A3 VB3
Aq ¥ By
Ag ¥ Bg

Fig. 2—5-bit adder section.

uitry necessary to implement the equation identified
by the included number.

A detailed drawing of a typical duplicated adder
%ction is shown in Fig. 2. This adder section, which
grates five S, and five S, sum digits, is a conven-
"';'. adder with sequential carry propagation. Each
adder section produces sums and carries according to
the following Boolean equations.

with

b Sy, =A% B (1)
b S5, = AsvBivCiy = Ay By (L4 B), ()
=A,+B..
E Sy = A Ba Cyy
= A3 By [(A1+ Bi) (A2 Ba) + A:2Bs, (3)
where Cay=Cy(A2®Bs)+A4:B..
= Ay By¢Cay
Aut Big [(Ar+ By)(Az Bs)(Aa s By)

+ A3Bi(Agt By) + A3By], (4)

'.-where Cay=Cay(A:® B;3)+A1Bs.

-
I

As¥ B Cyy

Agst Bywy [(A) + By) (A2 Bo)(As ¢ By)
-(Aux Bo) + AsBa(Asx Bs)(A(¥-.B)
3 + A3By(As By) + AuBi), (5)
{ where Ciy=Cy,(4.®By) +4.B..
T Chy = (A1 + Bi) (A2 @ B2)(As © B)(44 @ BY)
(As @ Bs). (6)

I

Il

. Sums and Carries Produced in Adder Sections Withou!
L Forced Carry Input

Sin = A1 ¥ By (7)
Sap = Ast Bag C1a = AgN Byt (A41By), (8)
¢ where Cin=4.B1. '

Sin = A3 Bay Cra
= Az By [41Bi(A2y By) + A:B.], (9)
| where Can=Cia(A:®B;)+A:B:.
b Si = 444 By < Can
. = Auy Bog [41Bi(Aay B2)(As v B)

+ A1Bay(As ¢ By) + AsBs], (10)
& where Cyy=Can(A:®Bs)+43Bs.

Bedrij: Carry-Select Adder

343

Sﬁn

At By Cuy

Ass Bt [(A1By)(Asg Bo)(Asxt Bs)(Ay By)
+ (A2B2) (A3 By)(As v By)

+ (43Bs) (A By) + AuBd,

where Cyn= Csn(4:® Bi)+A4Bs.

Csn = A41B1(A42 ® B:)(As ® By)(A4 ® B))(As © Bs)

+ A:By(A3 © B;)(A4 ® By)(4s @ By)

+ A3B3s(A4 ® By)(As @ Bs) + A4By(As @ Bs)

+ AsBs.

I

(11)

(12)

Eqgs. (13)-(16) represent the logical expressions [or
the circuits that select the true subsums for the adder
sections. Eq. (17) represents the end-around carry.

Cs = CeCsy + Cin (13)
C1o = CoCs,Croy + CsuCioy + Cron (14)
Cis = CoCsyC10yCrsy + C.C10yC15y + C10aCsy + Cusn (15)
Cap = CoCsC104C154C20y + CoaCr0yC154C o0y

+ C104C18,C20y + C152C20y + Caon (16)
Cis = CoCsyC10yC18yC204Ca8y + CsuCr0yC155C205Casy

+ C104C154C20,C26y + C151C20,Casy

+ C20.Casy + Cosn. (7)

The lowest-order adder section has as its true sub-
sum A, plus B,_s (without a forced carry) unless an
end-around carry exists or a carry [rom a previous
addition has been stored.

Within a carry select adder, the subsum generation
path and the carry select path should be approximately
equal. No speed advantage is realized by producing
subsums before carries are available to select true
sums. Therefore, to save components short ripple-
carry paths can be used within sections. In the adder
discussed above, these paths are not equal because the
25-bit adder was designed as a portion of 100-bit adder.

100-BiT ADDER

Theoretically the basic adder shown in Fig. 1 could
be extended to include any number of adder sections.
However, as the number of adder sections increases, the
carry-selection circuits become more costly and com-
plex. In large adders, to retain the advantage of a sim-
ple system and to permit the use of carry-select tech-
nique, the multiple-radix carry is extended to include
higher order radices.

‘A multilevel adder operates on the same principle as
a single-level adder. For example, the first level of a
100-bit multilevel adder consists of a series of 5-bit
adders, such as the one shown in Fig. 2. The second
level consists of groups of 5-bit adders, such as the 25-
bit adder group shown in Fig. 1. Successive levels con-
sist of combinations of two or more groups (Fig. 3).

i
‘1
{
1
i

344

2 o]
Zh— A —»C7s
c

—»C25

IRE TRANSACTIONS ON ELECTRONIC COMPUTERS

Ci00

Fig. 3—Combining of group carries.

The multiple-radix carry technique determines:

1) Whether a carry-out will be generated internally
within a section or group.

2) Whether a carry-out will be produced by a sec-
tion or group as a result of a carry being sent into
the section or group.

in effect, this technique permits a carry to bypass a
section or group.

The several radices are developed by the carries from
the sections and groups of an adder. The radix of a
carry section is defined by

R, = 2¢
where b =number of bits in a section.

Therefore, if an adder section performs an addition
that produces a result of 2% a carry is produced. The
carry radix is 32.

The carry radix from a group (five 5-bit sections) is
defined by ‘

Rw — 2').1

where b=number of bits in a section, s=number of
sections in a group.

Group carries X and Z are defined by the following
equations (subscript numbers refer to bit position
within an adder group):

X = C5C104C155C204C 264 + C10nC15yC200C28y
4+ C15:C20yCasy + C20nC28y + Cagan
Z = C5yC10yC155C205Casy.

(18)
(19)

The X and Z carries from each 25-bit group are
combined with Cy to produce Cis, Cso, C1s and Cioe ac-
cording to the following equations. (The subscripts a,
b, ¢ and d identify the 25-bit groups.)

Cas = CoZa + Xa (20)
Cro = CoZaZy + XaZbv + X (21)
Crs = CoZalsZe + XoZiZo + XoZo+ X, (22)
Cioo = CoZaZvlola + XoZWZoZa + XoZ 24

+ XoZa+ Xa. (23)

The carries Cy;, Csy, Crs and Crgp (represented as Cp in

Fig. 1) are returned to the appropriate group where
they are used to gate the true subsum from each 5-bit =

adder section. The formation of carries for a 100-bit
adder is shown in Fig. 4. To save hardware during the
production of carries Cs, Cso, Czs and Cioo, the internally

generated carry of a group may be ripplied serially

(Fig. 1, Eqs. 14-16).

A 100-bit carry-select adder operates in a 6-step se-

quelnce:

1) Carries C, and C, are generated in each 5-bit"

adder section,

2) Sums S, and S, are produced in each adder section

during carry propagation time.
3) Carries X and Z are formed for each 25-bit group

by combining carries C, and C, within the group. !

4) Carries Ca, Cso, Crs and Cio are formed by com-
bining X and Z carries.

5} The appropriate carry is returned to each 25-bit
group.

6) The true subsum is selected for each 5-bit adder
section. '

i}
Y
4

.

,,,,,,,

DB NS UR -

ISR

To o @|0,00 @0 e reol oo ®D

!

i »I P mlple >

T

L

TSI S S T R S e

e e 20 30 20 20 2% Tt IR .St 4

Ipip >

TP ip B P Pl ipib e

L

S T S S S e S I P EIEIE

[Fisieinl»

Bedrij: Carry-Select Adder

P @D @R DIDmeT IBEIEYES IR

E I O L I EC R I R R o R i

e AT

o

TR T |O® o 0,00 0 EC oidm

[cioie cio@eloo

Fig. 4—Carry formation path.

346

Table I gives a comparison of the speed and the
number of components required for a carry-select adder
and a simple ripple-carry adder. Hence a speed im-
provement by a factor of 20 may be achieved with ap-
proximately twice the hardware. The breakdown of an
adder into the specific scction-group arrangement

TABLE 1
T, . Logical Time in
Adder Type Bits (Elements Logical levels
Ripple-carry 100 500 202
100 1122 It

Carry-seleet

Load-Sharing COfe Switches Based on Block Designs*

RICHARD C. SINGLETONY, senior MEMBER, IRE

Summary-—Designs for load-sharing zero-noise core switches
have been proposed by Constantine, Marcus, and Chien. Blachman
has proposed a core memory wiring plan which with modification can
be converted to a load-sharing zero-noise switch. An examination of
these switch plans shows that they have a common relationship to a
class of mathematical structures known to mathematicjans and sta-
tisticians as balanced incomplete block designs. This relationship is
formulated, and it is then shown that all balanced incomplete block
designs lead to load-sharing zero-noise switches. Three methods of
forming the winding matrix for a switch are given, and expressions
for the load-sharing factor, set bias, and reset bias in terms of the
balanced incomplete block design parameters are derived for each
switch type. Similarly, partially balanced incomplete block designs
are shown to lead to low-noise load-sharing switches. Switch opera-
tion under fault conditions is briefly discussed.

Most of the known load-sharing core switch types can be viewed
as based on either balanced or partially balanced incomplete block
designs. A review of the available block designs indicates that a num-
ber of new switches can be based on these designs.

A modification of a distributed memory model proposed by C.
Rosen is discussed. With wiring plans based on block designs, it ap-
pears possible to construct very-large-capacity memory units which
are relatively insensitive to wiring errors,

INTRODUCTION

ALANCED and partially balanced incomplete
B block designs have long been a subject for study
by mathematicians and statisticians, and this
research continues at present. The purpose of this
paper is to show the relationship between these designs
and load-sharing core switches, so as to make the re-
sults on block designs more readily available to de-
signers of core switches and memories.
* Received November 20, 1961. This work was supported in part
by the Rome Air Force Development Center, United States Air
Force.

t Engineering Division, Mathematical Sciences Department,
Stanford Research Institute, Menlo Park, Calif.

IRE TRANSACTIONS ON ELECTRONIC COMPUTERS

| |
June

b

cussed was intended merely to help describe the generakL
carry-select principle. Modifications of this arrange{__
ment may readily be realized. —

REFERENCES

[t] A. Weinberger and J. L. Smith, “A one microsecond adder usin
megacycle circuitry,” IRE TRANsS. ON ELECTRONIC CoMPUTERS,
vol. EC-§, pp. 67-73: June, 1956. ;

(2] A. Weinberger and J. L. Smith, “A Logic for High Speed Add
tion,” National Bureau of Standards, Washington, D. C., Circu
lar 591, sec. 1: February, 1958,

[3] R. K. Richards, “Arithmetic Operations in Digital Computers, "}
D. Van Nostrand Co., Inc., New York, N. Y.; 1955.

[4] O. L. Mac Sorley, “High-speed arithmetic in binary computers,
I’roc. TRI, vol. 49, pp. 67-91; January, 196%.

(51 J. Sklansky, “Conditional sum addition logic,” IRE Trans. o
ELecrroNic CoMPUTERS, vol. EC-9, pp. 226-231; June, 1960.

Balanced incomplete block designs lead to a large (&
class of zero-noise switches; most of the known zero-
noise load-sharing switches fall into this class. Similarly, £
partially balanced incomplete block designs lead to |
low-noise load-sharing switches. Several examples are |
given to illustrate these relationships. The application
of block designs to distributed memory design is briefly |
discussed. :

It is assumed that the reader is generally familiar
with magnetic core access switches and memories;
however, the reader may wish to refer to the paper by .
Minnick and Haynes! for additional background.

CoRrE SwitcH NOTATION

A magnetic core switch will be regarded here as
specified by its core winding plan and a listing of the
input patterns to be used for set and reset. From this
information, the set and reset excitations received by
a selected core can be calculated.? The core winding plan
of a switch with v cores, (i.e., outputs) and b regular
inputs is given by a v-by-(b+1) “winding matrix”
W= (w,), where w,; gives the number and direction
(positive or negative) of turns on the ith core from the
Jth input; the (b+1)st input is assumed to be used for
both set and reset bias. If the input patterns (of ones |
and zeros) used to set the switch are arranged -as the’
columns of a (b+1)-by-v “selection matrix” C., with
the entries in the final row equal to the set bias level,* |
then the v-by-v set excitation matrix Xo=(x,;) is given

'R, C. Minnick and J. L.
switches,” this issue, p. 352.

* This representation of a magnetic core switch is due to Minnick, .’
1bid. i

Haynes, “Magnetic core ,access

