mmmmm

Rt P o e Yo o,
Tnstiute, of Electrical sed Hlectronics Engineers, Inc. All rights

A Regular Layout for Parallel Adders

RICHARD P. BRENT, MEMBER, IEEE, AND H. T. KUNG, MEMBER, IEEE

Abstract—With VLSI architecture, the chip area and design reg-
ularity represent a better measure of cost than the conventional gate
count. We show that addition of #-bit binary numbers can be per-
formed on a chip with a regular layout in time proportional to log #
and with area proportional to n.

Index Terms—Addition, area-time complexity, carry lookahead,
circuit design, combinational logic, models of computation, paraliel
addition, parallel polynomial evaluation, prefix computation, VLSI,

Manuscript received May 12, 1980; revised February 3, 1981 and October
1, 1981. This work was supported in part by the National Science Foundation
under Grant MCS78-236-76 and the Office of Naval Research under Con-
tracts N000014-76-C-0370, NR 044-422 and N00014-80-C-0236, NR
048-659.

R. P. Brent is with the Department of Computer Science, Australian Na-
tional University, Canberra, Australia.

H. T. Kung is with the Department of Computer Science, Carnegic-Mellon
University, Pittsburgh, PA 15213.

I. INTRODUCTION

E are interested in the design of parallel “carry look-

ahead” adders suitable for implementation in VLSI
architecture. The addition problem has been considered by
many other authors. See, for example, [1], [4], [6], [7], [11],
[13], and [14]. Much attention has been paid to the tradeoff
between time and the number of gates, but little attention has
been paid to the problem of connecting the gates in an eco-
nomical and regular way to minimize chip area and design
costs. In this paper we show that a simple and regular design
for a parallel adder is possible.

In Section II we briefly describe our computational model.
Section III contains a description of the addition problem and
shows how it reduces to a carry computation problem. The
basis of our method, the reduction of carry computation to a
“prefix” computation, is described in Section 1V, Although
the same idea was used by Ladner and Fischer [8), their results
are not directly applicable because they ignored fan-out re-
strictions and used the gate count rather than area as a com-
plexity measure. :

In Section V we use the results of Section IV to give a simple
and regular layout for carry computation. Our construction
demonstrates that the addition of n-bit numbers can be per-
formed in time O(log n), using area O(n log n). The implied
constants are sufficiently small that the method is quite
practical, and it is especially suitable for a pipelined adder. In
Section VI we generalize the result of Section V, and show that
n-bit numbers can be added in time O(n/w + log w), using
area O(w log w + 1), if the input bits from each operand are
available w at a time (for 1 < w < n). Choosing w ~ n/log n
gives the result that n-bit addition can be performed in time
O(log n) and area O(n).

EHg945-5/90/0000/0144$01.0001982 IEEE

I1. THE COMPUTATIONAL MODEL

Our model is intended to be general, but at the same time
realistic enough to apply (at least approximately) to current
VLSI technology. We assume the existence of circuit elements
or “gates” which compute a logical function of two inputs in
constant time. An output signal can be divided (“fanned out™)
into two signals in constant time. Gates have constant area, and -
the wires connecting them have constant minimum width (or,
equivalently, must be separated by at least some minimal
spacing). At most two wires can cross at any point.)

We assume that a signal travels along a wire of any length
in constant time. This is realistic as propagation delays are
limited by line capacitances rather than the velocity of light.
A longer wire will gencrally have a larger capacitance, and thus
require a larger driver, but we can neglect the driver area as
it typically need not exceed a fixed percentage of the wire area
[10].

The computation is assumed to be performed in a convex
planar region, with inputs and outputs available on the
boundary of the region. Our measure of the cost of a design is
the area rather than the number of gates required. This is an
important difference between our model and earlier miodels
of Brent [1], Winograd [14), and others. For further details
of our model, see [3]; for motivation and discussion of models
similar to ours, see [9] and [12). A feature of our approach is
that we strive for regular layouts in order to reduce design and
implementation costs. For VLSI, regularity is one of the most
important design criteria; so we shall not compromise the
regularity of a design for the sake of efficiency. Since “regu-
larity” is difficult to quantize, we have not included it in our
theoretical cost measure, although this would be desirable.

HI. OUTLINE OF THE GENERAL APPROACH

Let axa,-) " - a) and b,b,— * + - b; be n-bit binary numbers
with sum s,45, * - * 5;. The usual method for addition com-
putes the 5;°s by

co=0,
ci=(a; Ab)V(ai Aci-y) Vv (b A ci-y),

5i=a;®b®ci—y, i=1-,n,

Snt) = Cn
where @ means the sum mod 2 and ¢; is the carry from bit
position /.
It is well known that the ¢;'s can be determined using the
following scheme:

144

Co-o,

=gV (piAc) n
where
' gi=a hb
and
pi=a®b

fori= 1,2, -+, n One can view the g; and p; as the carry
generate and carry propagate conditions at bit position i. The
relation (1) corresponds to the fact that the carry ¢; is either
generated by a; and b; or propagated from the previous carry
¢;-1. This is illustrated in Fig. 1.

In Section V we present a regular and area-efficient layout
design for computing all the carries in parallel assuming that
the g’s and p;’s are given. The design of a parallel adder is then
straightforward and is illustrated in Fig. 2. Notice that in Fig.
2(b) the bottom rectangle represents the combinational logic
that transforms the @;'s and b;’s into the g;’s and p;’s. For
computing the s;’s we use the fact that s; = p; @ ¢;~) for i =
I,ooe,n.

IV. REFORMULATION OF THE CARRY CHAIN
COMPUTATION

We define an operator “o” as follows:
(8, p)olg’.p)=(@ V(P AL)HPAP)

for any Boolean variables g, p, g/, and p’.
Lemma I: Let

(Gi, P)) = [(ghpl) - ifi=1,

(g Pi)o(Gi-y, Piny) if2<i=n

Then
o =G; fori=1,2,:--,n

Proof: We prove the lemma by induction on /. Since co
= (0, (1) above gives

a=gsivV(ei A0 =g =G,
so the result holds for i = 1. If i > 1 and ¢;~; = Gi—y, then
(Gi, P)) = (g1, pi)o(Gi-1, Pi-1)
= (g, pi)o(ci-1, Pi-1)
= (g V (i Aci-1),pi A Pi~y).

Thus
Gi =g V(pi hci-1)
and from (1) we have
G =c¢.

A3 N
The result now follows by induction. o

Pon $ons - fou B,

(a)

0. ' I.bl']
(b)
Fig. 2. (a) Abstraction of a parallel carry chain computation, and (b) ab-
straction of a parallel adder based on the design for the carry chain com-
putation.

Lemma 2: The operator “o™ is associative.
P"OO]:' For any (g.'!' PS)’ (32! Pz)’ (EI:PI), we have
((g3, P3)o(g2, p2)]o(g1, p1)
= [g3 V (p3 A £2), P3 A p2lo(g) 1)
=23V (P3Ag)V(PaAp2Ag)psAprhpi]

(&3 p3)ol(g2 p2)o(g1, P1))
= (g3, p3)olg2 V (P2 A 81), P2 A p1]

=[g3V(p3sA(82V (P2A81)))p3Ap2hpil

One can check that the right-hand sides of the above two ex-
pressions are equal using the distributivity of “ A™ over “v.”
(The dual distributive law is not required.) (a]
To compute the ¢;’s it suffices to compute all the (G, P;)’s, but
by Lemmas 1 and 2

(Gi, P;) = (gi, pi)o(gi-1, Pi-1)0 * - 0(g1, P1)

can be evaluated in any order from the given g;'s and p;'s. This
is the motivation for the introduction of the operator “o0.”
(Intuitively, G; may be regarded as a “block carry generate”
condition, and P; as a “block carry propagate” condition.)

~and

V. A LAYOUT FOR THE CARRY CHAIN COMPUTATION

Consider first the simpler problem of computing (G;, P;)
for i = n only. Since the operator “o" is associative, (G, Py)
can be computed in the order defined by a binary tree. This is
illustrated in Fig. 3 for the case n = 16. In the figure each black
processor performs the function defined by the dperator “o”™
and each white processor simply transmits data. The white and
black processors are depicted in Fig. 4. Note that for Fig. 3
each processor is required to produce only one of its two
identical outputs, and the units of time are such that one
computation by a black processor and propagation of the re-
sults takes unit time.

Consider now the general problem of computing the (G;, P;)
for all 1 £i < n. This computation can be performed by using
the tree structure of Fig. 3 once more, this time inverted (that
is, the root is visited first). We illustrate the computation, for

. - the case n = 16, in Fig. S. It is easy to check that at time T =

_En_q_ 4 '-a.,, 4 *0)
Op +Pp 'l'l : | o

Fig. 1. Carry chain.

7, all the (G, P;) are computed along the top boundary of the
network. As the final outputs, we only keep the G; which are
the carries ¢;. From the layout shown in Fig. 5, we have the
following results.

1435

(1‘ ,r.)

Te8

[}
]
:
)
1
|
'
'
1

AN
${11303

Fig. 3. Computation of (G1¢, P\¢) using a tree structure.

- -t e

800t Dot M fug P) LW ‘:uu
]

t
}p'-"w \:.--..«...m
Pous® P Pout* Pt Bin
]
(TN (..,.c'y) b

Fig. 4. (a) White processor, and (b) black processor.

Theorem 3: All the. carries in an n-bit addition can be
computed in time proportional to log # and in area proportional
tonlog n, n 2 2, and so can the addition.

V1. A PIPELINE SCHEME FOR ADDITION OF LONG
INTEGERS

We define the width w of a parallel adder to be the number
of bits it accepts at one time from each operand. For the par-
allel adder corresponding to the network in Fig. 5, w = 16, We
have hitherto assumed that the width of a network is equal to
the number 2 of bits in each operand. Here we consider the
case w < n. We show that this case can be handled efficiently
using a pipeline scheme on a network which is a modification
of the one depicted in Fig. 5.

For simplicity, assume that n is divisible by w. One can
partition an n-bit integer into n/w segments, each consisting
of w consecutive bits. To illustrate the idea; suppose that w =
16. Then the carry chain computation corresponding to each
segment can be done on the network in Fig. S, and the com-
putations for all the segments can be pipelined, starting from
the least significant segment. The results coming out from the
top of the network are not the final solutions, though. Results
corresponding to the ith least significant segment (¢ > 1) have
to be modified by applying (G- 1)w.P-1w) on the right using
the operator “0.” To facilitate this modification, we super-
impose another tree structure on the top half of the network,

as shown in Fig. 6. Using this additional tree, the contents of

the “square” processor (denoted by “@™) are sent to all the
leaves, which are black processors. The square processor,
shown in Fig. 7, is an accumulator which initially has value (s
P) = (0, 1), and successively has values & P) = (Gii-1w»
Py<ryw) for i = 2, 3, -+, At the time when a particular
(G~1)yws P(i—1)w) reaches the leaves, it is combined with the
results just coming out from the old network there. By this
pipeline scheme, we have the following result.

Theorem 4: Let 1 S w < n. Then all the carries in an #-bit
addition can be computed in time proportional to (n/w) +
log w and in area proportional to w log w + 1, and so can the ad-
dition. When w = 1, the method outlined in this section is es-

146

—O=e »

=

|
?
i
;
!
i
7
i
J

-0 = m—e O = - —

(2438)-e0-—>0"-

Fig. 5. Computation of all the carries for n = 16,

sentially the usual serial carry-chain computation. From -

Theorem 4 we have the following.

Corollary 1: The arca-time product for n-bit addition is
O(n log w + w log? w + 1), which is 0(n log2 n) when w = n, and
O(n log n) when w = n/log n, and 0(n) when w is a con-
stant.

One can similarly obtain an upper bound on 4 7= (where
A and T stand for area and time, respectively) for any a 2 0,
and for each a one can choose w to minimize the upper bound

[2].

VII. SUMMARY AND CONCLUSIONS

The preliminary and final stages of binary addition with our
scheme (generation of (g;, p;) and computation of 5; = p; @
¢i-) respectively) are straightforward. Figs. 4 and § illustrate

that the intermediate phase (fast carry computation) is con-

ceptually simple, and the layout illustrated in Fig. § is regular.
The design of the white processor is trivial, and the black
processor is about as complex as a one-bit adder. After these
two basic processors are designed, we can simply replicate
them and connect their copies in the regular way-illustrated
in Fig. 5. We conclude that using the approach of this paper,
parallel adders with carry lookahead are well-suited for VLSI
implementation.

Mead and Conway [10] considered several lookahead
schemes, but concluded that “they added a great deal of
complexity to the system without much gain in performance.”
To show that this comment does not apply to our scheme,
suppose that the operations “A™, * v" and “@® take unit time.
Table I gives the computation time for our scheme and for a
straightforward serial scheme, where the ¢; are computed from
(1) for various n. (n is the number of bits in each operand.) For
n = 2% the general formulas are 4k and 21 - 1, respectively.

TABLE 1
COMPARISON OF PARALLEL AND SERIAL ADDITION TIMES

[Time Time

(parallel) (scrial)
8 12 15
16 16 3
2 20 63
o4) 127

1
: \mm he some lef-most processcr ot level Ted
of the network os in Figure 5. '
Fig. 6. Additional tree structure to be superimposed on the top half of
the network in Fig. 5. '

Qout R (Oout Pout)
Sout® Oin v PnA9)
(9:p) Pout * AP
19,01 (95 Pou)
{Qin o)

Fig.7. The “square” processor that accumulates (Gii-1yws Pi-1)w)-

Based on our scheme, L. Guibas and J. Vuillemin (5] have -
designed a 32-bit parallel adder and implemented it on a chip
using NMOS. They estimate that with the particular tech-
nology they used, their 32-bit parallel adder is about 4 times
faster than a 32-bit straightforward serial adder.

In this paper we assumed a binary number system and re-
stricted our attention to two's complement arithmetic. Only
minor modifications of our results are required to deal with
one’s complement arithmetic or sign and magnitude repre-
sentations of signed integers.

Brent and Kung [3] consider the problem of multiplying
n-bit integers, and show that the area A and time T for any

method satisfy

AT 2 K\n¥/2
and

AT? 2 Kyn?

for certain constants K; > 0 (assuming the model of Section
11 with some mild additional restrictions). For binary addition
we can achieve

. AT = O(n)
by a trivial serial method, and
AT?2 = O(n log? n)

by the results in Section V1. Thus, asymptotically speaking,
implementing binary multiplication is harder than imple-
menting binary addition if either A7 or 472 is used as the
complexity measure. More discussions on the area-time
complexity of binary arithmetic can be found in {2], where a
general measure AT for any a 2 0 is used.

In deriving the layout of Fig. 5 we used only one distributive
law. Thus, the layout could be used to evaluate arithmetic
expressions of the form

gn + Pulgn—1 + Pa—i[- p3(82 + pagy) -l ()

where g;, p; are numbers and the black processor in Fig. 4(b)
NOW COMPULES out = Lin + Pingin AN Pour = PinPin. Note that
when py = -+ = p, = x expression (2) corresponds to the
polynomial

gnt gnoix+ o+ gxnh

REFERENCES

[1] R.P.Brent, “On the addition of binary numbers.” JEEE Trans. Com-
put., vol. C-19, pp. 758-759, 1970.

12] R.P. Brent and H. T. Kung, “The chip complexity of binary arithmetic,”
in Proc. 12th Annu. ACM Symp. Theory of Comput., Apr. 1980, pp.
190-200.

3] , “The area-time complexity of binary multiplication,” J. Ass.
Comput. Mach., vol. 28, pp. 521-534, July 1981.

[4] H. L. Garner, “A survey of some recent contributions to computer
arithmetic,” JEEE Trans. Compult., vol. C-25, pp. 1277-1282, 1976,

[5] L. Guibas and J. Vuillemin, private communication, Aug. 1980.

{6] K.Hwang, Computer Arithmetic: Principles, Architecture and Design:
New York: Wiley, 1979.

[7} D. 3. Kuck, The Structure of Computers and Computations. New
York: Wiley, 1978. :

(8] R.E.Ladnerand M. J. Fischer, *Parallel prefix computation,” J. Ass.
Comput. Mach., vol. 27, pp. 831-838, Oct. 1980.

[9) C.E. Leiserson, “Area-efficient VLSI computation,” Ph.D. disscrtation,
Dep. Comput. Sci., Carnegic-Mellon Univ.. Pittsburgh, PA, 1981.
[10) C. A. Mecad and L. A. Conway, /mroduction to VLSI Systems.
Reading, MA: Addison-Wesley, 1980.
nn J l’..6 Savage, The Complexity of Computing. New York: Wiley,
1976. .

{12] C.D. Thompson, “Area-time complexity for VLSL™ in Proc. / 1th Annu.
ACM Symp. Theory of Comput., May 1979, pp. 81-88.

[13] C.Tung, “Arithmetic,” in Computer Science, A. F. Cardenas, L. Press,
and M. A, Marin, Eds. New York: Wiley-Interscience, 1972.

[14] S. Winograd, “On the time required to perform addition.” J. Ass.
Comput. Mach., vol. 12, no. 2. pp. 277-285, 1965.

Richard P. Brent (M'72) was born in Melbourne,
Australia, on April 20, 1946. He received the
B.Sc. (hons) degree in mathematics from Monash
University, Australia, in 1968, and the M.S. and
Ph.D. degrees in computer science from Stanford
University, Stanford, CA, in 1970 and 1971, re-
spectively.

From 1971 to 1972 he was employed in the
Mathematical Sciences Department at the 1BM
T. J. Watson Research Center, Yorktown
Heights, NY. Since 1972 he has been at the
Australian National University, Canberra, Australia, where he is currently
Professor and Head of the Department of Computer Science. His rescarch
interests include VLSI design, computer arithmetic, analysis of algorithms,
and computational complexity.

H. T. Kung (M'78) graduated from National
Tsing-Hua University, Taiwan, in 1968 and re-
ceived the Ph.D. degrec from Carnegie-Mellon
University, Pittsburgh, PA, in 1974.

Currently, he is an Associate Professor of Com-
puter Science at Carnegic-Mellon University,
where he leads a research group in the design and
implementation of high-performance VLSI sys-
tems. From January to September 1981 he was an
Architecture Consultant to ESL, Inc., a subsidiary
of TRW. His research interests are in paradigms
of mapping algorithms and applications directly on chips and in theoretical
fundations of VLSI computations.

Dr. Kung serves on the editorial board of the Journal of Digital Systems
and is the author of over 50 technical papers in computer science.

147

