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Abstract

In this paper, we study area-time tradeoffs in VLSI for prefix
computation using graph representations of this preblem. Since
the problem is intimately related to binary addition, the results
we obtain lead to the design of area-time efficient VLSI adders.
This is a major goal of our work: to design very low latency eddi-
tion circuitry that is also area efficient. To this end, we present
a new graph representation for prefix computation that leads to
the design of a fast, area-efficient binary adder. The new graph is
a combination of previously known graph representations for pre-
fix computation, and its area is close to known lower bounds on
the VLSI area of parallel prefix graphs. Using it, we are able to
design VLSI adders having area A = O(n log n) whose delay time
is the lowest possible value, i. e, the fastest possible area-efficient
VLSI adder.

1 Introduction

Addition circuitry is an important part of any computer architec-
re, since it is the major component of an ALU, floating point
“-~processor, or a special purpose chip ([Gr85], [FW85], [ST85), etc.).
Since the performance of the adder can dominate the performance
of the architecture, the design of low latency circuitry has been the
subject of a large amount of research. In this paper, we continue
these studies with the design of a fast area-efficient VLSI binary
adder. We start by deriving a new “hybrid” algorithm for prefix
computation (a combination of previously known algorithms for
prefix computation which are either the best case in area or time
complexity), and investigate the trade-off behavior between area
and time of this algorithm. Since graph representalions of pre-
fix algorithms map directly into circuitry for binary addition, our
hybrid prefix algorithm leads to the design of fast and area effi-
cient VLSI adders. One of the results of this research is that we
are able to design the fastest possible circuitry occupying a given
amount of area for both prefix computation and binary addition.
In VLSI design, there are three important factors that affect
the performance of a design. The first is area complexity, the
second is time/delay performance, and the third is regularity of
interconnection. Usually, a pattern rich in connections occupies a
lot of area, while a pattern with limited connections takes a long
time to compute. Because the cost of area is Very expensive, every
effort should be made to find the optimal area complexity for a
given value of time performance.

Area in VLSI is expressed as the total amount of silicon used.
Interconnection of wires can consume most of the area of a VLSI
circuit. Therefore, in this paper, we take the complexity of inter-
connection into consideration rather than just a count of “active
elements”, “gates”, or “registers”.
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In the methodology of finding a better VLSI circuit, we suggest
the following steps.

a Find a lower bound on the chosen metric.

b Devise algorithms that are close to the lower bound or
analyze known algorithms with respect to the chosen
metric.

¢ By investigating the trade-off behavior between area and
time complexity, find the optimal range of area-time com-
plexity.

d Discover corresponding layouts that are optimal in area-
time complexity for given values of computation time
(including minimum computation time).

Brent and Kung [BK82] found a regular layout for a graph rep-
resentation of prefix computation and used it to perform binary
addition. We apply the above steps on a combination of their al-
gorithm and an algorithm for solving linear recurrences developed
by Kogge and Stone [KS73]. We then substitute actual logic for
the nodes and wires for the edges of our graphs in order to im-
plement VLSI circuitry for binary addition that is both fast and
area-efficient.

This paper is organized as follows. In the next section, we
derive upper bounds on area for a graph representation of our
new prefix algorithm. In section 3, we design VLSI circuitry for
binary addition based on our hybrid prefix algorithm. In section
4, we compare our model and circuitry with others in terms of
area and delay time performance. We conclude this paper with
suggestions for future research in section 5.

2 Graph Representations of Algorithms for
Prefix Computation

A parallel prefix circuit is a combinational circuit that takes n in-
puts z1,%3,+: -z, and produces the n outputs z;,z;02;,--., 240
Z30-:-0Z,, where o represents an arbitrary associative binary oper-
ation. Parallel prefix computation has been used for many appli-
cations, for instance, in regular layouts of parallel adders [BK82),
generating consecutive terms of a linear recurrence [GLPGS82],and
fast addition of two binary numbers [0f63]. Therefore, it is of in-
terest to find area-time efficient VLSI implementations of prefix
computation. We are interested here in the design of the fastest
possible prefix circuitry occupying a given amount of VLSI area.

This section is organized as follows. In section 2.1, we review
past work on the subject of prefix computation. Section 2.2 de-
scribes a new algorithm for prefix computation that forms a basis
for the rest of the paper. In sections 2.2 and 2.3, we derive two
different VLSI layouts for the graph representation of our new
algorithm and discuss their properties. We obtain upper bounds
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on area for a given value of delay time for the layouts, and from
these upper bounds, we find the range of delay time for which area
is O(nlogn). In section 2.4, we discuss properties of the graph’s
layout when its nodes are interpreted to implement the circuitry
of a binary adder.

2.1 Review of Past Work

Past work on parallel algorithms for prefix computation is as fol-
lows. Ladner and Fischer [LF80] gave a general construction for
parallel prefix circuits when gates have unbounded fan-out and
Fich [Fi83] provided new lower and upper bounds for circuits with
gates having bounded fan-out. Brent and Kung {BK82] suggested
a regular layout for computing prefixes. Their algorithm is suit-
able for implementation in VLSI, and when it is combined with
pipelining, time O(log n) and area O(n) can be achieved. In the
early 70’s, Kogge and Stone [KS73] discovered the technique of
recursive doubling and gave an algorithm for solving a large class
of recurrence problems on parallel computers such as the Illiac
IV. Their algorithm can be applied to compute prefixes in paral-
lel and a graph representation can be developed which leads to a
possible VLSI layout. In papers by Carlson and Sugla [CS85] and
Sugla [Su85], a lower bound on the VLSI area of a prefix graph
was obtained using the minimum bisection width (MBW) of the
graph. Thompson [Th79,80] pioneered this approach to deriving
VLSI lower bounds. In [C$85] and [Su85), the lower bound on the
area of a parallel prefix graph is 4 = Q(n?230os; n-T) n) where
logn < T < 2logn. They indicated the possibility of designing
circuitry with minimum values of both area and time.

The work of Ladner and Fischer, and Fich, while interesting,
uses gate count rather than area as a complexity measure. This
ignores the wiring area complexity needed to interconnect circuit
elements. Brent and Kung [BK82] use area as a complexity mea-
sure, however, their techniques do not produce minimum depth
parallel prefix circuits. In the following section, we use methods
similar to those employed by Brent and Kung, and Carlson and
Sugla to find the minimum depth of an area efficient prefix circuit.
The result immediately suggests area-efficient VLSI implementa-
tions of high-speed binary addition.

2.2 The New Hybrid Prefix Algorithm, a Graph
Representation, and a VLSI Layout.

In this subsection, we discuss results on area-time tradeoffs for
prefix computation. Our discussions lead to a graph representa-
tion of a new algorithm for computing prefixes, which will form
the basis of the fast area-efficient VLSI adder designs presented
later in this paper. We obtain a straightforward VLSI layout of
the graph, and upper bound the area of the layout when it is
constructed to have a given value of delay time. From this upper
bound, we find the range of delay time for which area is eficient,
ie. 4 =0(nlogn).

The Brent-Kung (B-K) prefix graph [BK82) can be laid out
in area O(nlogn) with T = 2logn — 1, as shown in Figure 2.1.
A generalization of the Kogge-Stone (K-S) linear recurrence algo-
rithm [KS73] computes prefixes and has a graph representation
that can be laid out in area (n?) with T = logn (see Figure
2.2). The large area is mainly due to the large number of vertical
tracks required to embed wires in the upper stages of the graph.
The last stage requires n/2 vertical tracks, the stage before n/4,
etc., which adds to a total of n — 1 vertical tracks. Figure 2.2
illustrates this, eventhough some lines do not follow grid tracks.

Comparing these graph representations for prefix computa-
tion, we find extremes in area and time performance (K-S: high
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ares, low time; B-K: low area, high time), and we can see that
only a constant factor reduction in delay time from 2logn ~ 1 to
logn results in a significant increase in area from O(nlogn) to
0(n?). It becomes of interest to discover upper and lower bounds
on area-time tradeoffs for prefix computation when delay time is
restricted to lie in the range between logn and 2logn — 1.

Carlson and Sugla [CS85] obtained lower bounds on the area
of a prefix graph for delay time between logn and 2logn — 1.
Among other things, the lower bounds are matched by the B-K
and the K-S graphs at the extremes of the range. Thus, it is likely
that a proper combination of the B-K and K-S graphs will be both
area and time efficient.

By combining the B-K and K-§ graphs as shown in Figure 2.3,
we obtain a new hybrid prefix graph that achieves intermediate
values of area and time. The graph is easily observed to compute
prefixes correctly. We divide it into three separate blocks, the
outer of which are multiple B-K graphs and the inner of which
is the K-S graph. A straightforward VLSI layout of the graph
follows from Figure 2.3, which is drawn with the correct number
of vertical tracks between each stage.

If we define k as the extra depth of the hybrid prefix graph
and n as the number of inputs, then the area of the embedded
K-S graph will be n?/2. To see this, consider a hybrid pre-
fix graph of extra depth & composed of an embedded K-S graph
on n/2* inputs surrounded by B-K graphs each with 2* inputs.
The embedded K-S graph has n/2* inputs and thus requires n/2*
vertical tracks to layout in VLSI. However, since its inputs are
spread out with 2* tracks between each pair, it requires n hori-
zontal tracks. The area of the embedded B-K graphs in this model
will be 2kn (n horizontal tracks and 2k vertical tracks). There-
fore the total VLSI area of this layout of the hybrid prefix graph
will be A = 2kn + n?/2*, In the above expression for area, it
can be shown that A = O(nlogn) when k is the following range:
logn — loglogn < k < logn — 1. Thus, a small additive factor
in delay time performance is gained over the B-K graph with no
degradation in area consumption.

When the above upper bounds are compared with Carlson
and Sugla’s [C585] lower bound of 4 = (n?/2%%), it can be
seen that the layout does not achieve optimality. This is mainly
due to that area wasted in the middle K-S graph, whose inputs
and subsequent nodes are spread by 2* tracks. However, this
layout for the entire graph does have some desirable properties,
including a regular connection pattern, and all inputs and outputs
on the boundaries. As we will see later in this paper, efficient area
utilization can be made for small values of n by folding nodes of
the K-S graph into unused tracks.

2.3 An Area Optimal Layout for the Hybrid Prefix
Graph

In subsection 2.2, we derived a VLSI layout for prefix graphs
that achieves intermediate values of area and time performance.
The layout has some desirable properties, especially for small to
intermediate values of n, and we will use it as a basis for designing
fast area-efficient VLSI adders later in this paper. For large values
of n however, area is wasted in the middle of the graph that cannot
be used for the placement of other components.

In this subsection, we Present an alternative layout for the
hybrid prefix graph that is more suitable for large values of n. The
layout achieves area consumption that comes within a constant
factor of the lower bound of Carlson and Sugla{CS85], however it
loses the desirable property of having all inputs and outputs on
the boundary.

This asymptotically optimal layout is shown in Figure 2.4. It is




aresult mainly of laying out the embedded K-S graph in minimum
area. Inputs to the K-S graph are placed so that consecutive
inputs are separated by at most a constant distance of 3 tracks
(some separation is needed to route connecting wires between the
K-S and the B-K graphs). Below the K-S graph, subsets of B-K
graphs are laid out on top of each other. Each subset is formed
8o that the number of inputs/outputs to the subset matches the
number of inputs/outputs of the K-S graph. In this way, the
horizontal space spanned by the B-K graphs is the same as that
of the K-S graph.

Using the same steps as in subsection 2.2, we now derive an
upper bound on the VLSI area of the layout. The embedded K-S
graph occupies area O((n/2*)?), since its inputs are a constant
distance from each other, i.e. O(n/2*) horizontal tracks are used.
Each B-K graph is laid out in area O(k2*), so that the total area
of the B-K graphs in the layout is O(kn). Thus, the total area of
the layout is A = O(kn + (n/2%)3). Alternatively, the number of
horizontal tracks used by the layout is O(n/2*), and the number
of vertical tracks used is O(n/2*) by the K-S graph plus O(k22%)
by the multiple-B-K graphs. This yields the same expression for
the area of the layout.

From the above expression for area, it can be shown that 4 =
O(nlogn), when k is in the following range: 1(logn—log logn) <
k <logn — 1. Thus, a further improvement in delay time can be
made while maintaining area O(nlogn).

Our upper bound of 4 = 2kn + (n/2*)? matches the lower
bound of Carlson and Sugla [CS85] to within a constant factor
for almost all values of extra depth k. If an H-tree like layout
is used for each B-K graph, optimality is achieved for all values
of k. We also find that T = 3/2(logn) — 1/2(loglogn — 0(1))
is the lowest value of delay time for which area O(nlogn) can
simultaneously be achieved. In Table 2.1, we compare the area
and time performance of the layouts presented in this and the
previous subsection for different values of area, time, and extra
depth. We leave it as an open question whether the lower bound
of Carlson and Sugla [CS85) can be met under the more restrictive
condition that all inputs/outputs appear at the boundary of the
graph’s layout.

2.4 Accounting for the Area of Nodes of the Graph

When a prefix graph is used as a basis for designing binary addi-
tion circuitry in VLSI, each node of the graph represents a set of
logic equations that must be computed/implemented in the un-
derlying technology. Thus, each node can be thought of as a “leaf
cell” or “processing element” and will expand from being a point
in the grid to occupy a fixed amount of area in the layout. In this
subsection, we determine the effect that the area of the nodes has
on the area of the entire layout.

When the area of nodes/processing elements is accounted for,
the area of addition circuitry derived from a hybrid prefix graph
can be expressed as follows:

Area = Area of Processing Elements
+Area of Interconnection Layers
= ap(Depth Times Width of Layout)

+Area of Interconnection Layers
2
= afn(k +logn) + (2kn -+ {(211.)' or %—})

Here, a () is the ratio of the height (width) of one processing ele-
ment to one grid line of the interconnection layer. In our designs,
both  and 8 are approximately 4.
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When reducing the depth of the hybrid prefix graph, the total
area of the processing elements increases (more are required) and
interconnection layer area increases (the embedded K-S graph has
more inputs), vice versa with increasing the depth of the hybrid
prefix graph. When we take the constant factors a and B into con-
sideration, we find that the following facts are worthy of further
exposition. For small values of n, the area of processing elements
dominates the total area, and for large values of n, the area of
interconnection layers is the dominant factor. Furthermore, when
n < 64, the total area with k = 2 or 3 is almost identical to the
area with k = 1 due to the effect of the constant factors a and B.
When n is large, i.e. n > 64, extra depth k == logn — loglogn or
k = 1/2(logn ~ loglogn) should be used to obtain area-efficient
circuitry.

In addition to these facts, if we are allowed to use more than
one metal layer, or a folding method (explained further in the
next section), the total area may be even further reduced. When
using more than one metal layer, the area can be expressed as
follows:

Area = Area of the processing elements

1, n? n
H(2kn + —{oF or (35)7D)

where m is the number of metal layers. With the folding method,
the total area will be

Area = 1/f(Area of the processing elements)

+(Area of interconnections)

where f is the number of folds. Therefore with either or both of
the above two methods, we can decrease the depth by at least
one unit and still achieve the same area consumption. We note
that reducing the depth of the hybrid prefix graph to its absolute
minimum (k = 0, K-S case) results in the design of area inefficient
VLSI circuitry, because the folding method cannot be applied and
it is the worst case for the number of the transistor gates (see Table
2.2 for a comparison of upper bounds on the number of gates).

To summarize, for small values of n (n < 64), we have found
that the case when extra depth k is equal to 1 leads to VLSI
circuitry for binary addition that is both fast and area efficient
when compared to other VLSI designs of carry look-ahead adders.
Speed is obtained by using a small value of k, and area-efficiency is
obtained through the use of a folding method. The actual design
is explained in more detail in the following sections.

3 Detailed VLSI Design of a Fast Area-
Efficient Adder

As was mentioned in the previous subsection, our new hybrid
prefix algorithm can be applied to the problem of carry look-ahead
addition. By using this new method, we are able to overcome
the main difficulties of implementing a standard carry look-ahead
adder in VLSI: interconnection irregularity and fan-in, fan-out
limitations. Our method improves the performance of a standard
carry look-ahead adder in following ways.

i Simple leaf cells are used, each having one gate level delay.

ii The overall design is area-efficient, since it is based on the
new prefix algorithm and employs a folding technique.

iii The circuitry is fast, since it is based on a near minimum
depth prefix algorithm,

iv Fan-in, fan-out to leaf cells is bounded by 2 logical wires (4
physical wires).
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v Interconnection wires have reasonable lengths (linear in the
number of bits being added).

This section is organized as follows. First we introduce the general
formulation of carry look-ahead addition. Then, we explain our
method of implementing a carry look-ahead adder based on the
new hybrid prefix algorithm. We follow this with a method for
further reducing the area of our layouts, and a discussion of how
our circuitry compares with other designs.

3.1 The Carry Look-Ahead Adder.

Let apn_y,:+-,a0 and b,_,---, by be n-bit binary numbers with
sum ap,---,s0. The following equations can be used to compute
the s;’s:

cy =0
& = (@-b)+(ai+b) eia
8 = (-e)-(ai+ b+ eioq) + (i bi-eiy)
-

wherei = 0,1---,n—1

Note the alternative equation for the ¢th sum bit, which is usually
expressed as 8; = a; ® b; D ¢;_y.

It is well known that computing the ¢;’s quickly is the key to
high-speed addition, and that they can be determined using the
following scheme.

¢ =gi +(pi-cio1) (1)
where g; = a; - b; and p; = a; + b;

Here, we do not use exclusive-ors in the equations [BK82], so that
it is not necessary to invert the a’s and b’s to produce the p’s and
g's.

The recurrence relation in equation (1) can be applied repeat-
edly to obtain the following set of carry equations in terms of g;,
p; and ¢c_;.

[ [

=g+ (i( II »0)-9i)+ (TL Pa) - 1)

7=0 k=j+1 k=0

Also, when the operator o is defined on ordered pairs (p,g) by
(piy 9:) o (pss97) = (pi - PjyPj - 9 + 9;). It is easily verified that
(p1,91) 0 -+ -0 (pis gi) = (P1- - - Ps, &). Thus, computing the carries
can be performed using any valid algorithm for prefix computation
where o is implemented as given above.

3.2 VLSI Implementation

The hybrid prefix algorithm is straightforward to convert into cir-
cuitry for binary addition using techniques similar to those em-
ployed by Brent and Kung [BK82]. We use the same terminology
as [BK82]. Figure 3.1 diagrams a carry look-ahead adder derived
from the hybrid prefix algorithm. With this graph, we can reduce
the depth of the prefix algorithm from 7 (B-K case) to 5 (our way)
with n=16. We use only the standard layers of interconnection
available in NMOS VLSI (metal, silicides, polysilicon). If the de-
signer is allowed to use more than 2 metal interconnection layers,
then a further reduction in depth can be made while maintaining
the given area. We follow 4um NMOS topological design rules.

There are 4 different types of leaf cells in our circuitry: pggen,
black, white, and sum. All are illustrated in Figure 3.1b. As
shown in [NI85], we can employ the following strategy to eliminate
the use of inverter gates in each leaf cell.

If (level is even number)
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then take positive input; produce negative output
else take negative input; produce positive output

This is explained in Figure 3.1a. We now explain the internal
circuitry of each leaf cell. We use paired subscripts i,k in our

descriptions, where i denotes the input (output) number and &

the level number.

i) Pggen cell
This cell produces the initial p and g signals (carry propagation
and generation signals). Comparing our cell with an exclusive-or
scheme, the size can be reduced in half and delay time of only one
gate level can be achieved.

P = -(ai + k)

~gia = (& b)
ii) Black cell
A black cell implements the o operator on p and g signals. We
use two different types of black cells: bp.ca (positive input, nega-
tive output) and bn.ca (negative input, positive output). This is
explained in Figure 3.1b. Each cell is used alternatively in even
and odd levels (see Figure 3.1a).

bn.ca (negative input)

giak = ~(((~Pjan-1) + (~gi3x-1)) - (~gjax-1))
piak = -((-Piak-1) + (7Pj2e-1))

bp.ca (positive input)

“giak+r = (Pjzk - Giak + 9iak)
“Pj,3k+1 -(pi, 2k * Pjak)

iii) White cell
This cell is a simple inverter; notation is as follows.

Pik = "Pik
Gkl = TGik-1
iv) Sum cell

The equation for the ith sum bit in terms of the p, g variables and
negative logic is:

8 = =((ei + (~pi1) - (meic)) - ((mgi1) + (~ei-1)))

Using this equation allows us to avoid the use of exclusive ors,
which would require the input variables and their complements
(@i, -ai, bi, —b;) to be provided to the sum bit circuitry. Taking
into account that carries produced by the carry generation cir-
cuitry alternate between being positive and negative, we design
two types of sum cells. One takes its inputs “naturally” and the
other must invert its two carry inputs.

sumcelly, = F(ci,—¢i—1,Pi1, i)
sumcell; = F(-c¢i,¢-1, ~pi1, 79i1)

We note the following advantages of using leaf cells designed as
given above:

i Black cells are simple.
ii Pggen cells are simple.
iii Sum cells are half of a full adder cell.

iv. All cells combine speed (minimum number of gate delays)
with area efficient layouts.




In Figure 3.2, we show the leaf cell layouts, The leaf cells for the
sum circuitry contain super buffers in order to more easily drive
a large capacitance output pad. Since all leaf cells have good
layouts, the overall design is competitive in area with a standard
ripple carry adder. Area increases in our design only because of
the extra processing elements and interconnection area required
by basing the design on a hybrid prefix graph. To reduce the
charge time of the capacitance being driven by the leaf cells, we
used minimum sized pull up structures (2X x 22).

3.3 A Densely Packed Layout Using a Folding Method.

Our carry look-ahead adder based on the hybrid prefix algorithm
can be packed densely by using a folding method. With this
method, we can reduce in half the area of the overall design for
reasonable sized adders (n < 64). Equivalently we could decrease
the depth by one unit and still achjeve the same area consumption
by employing our folding method. For large sized adders, the
folding method is not as effective in reducing the depth, because
the interconnection area becomes dominant,.

Our folding scheme is shown in Figure 3.3, It works by placing
two levels of the hybrid prefix graph into one level of the layout,
since space is available to embed leaf cells. It should be obvious
from the figure that very efficient area consumption is realized,
especially for circuitry designed from a hybrid prefix graph with
extra depth k = 1,

In Figure 3.4, we introduce two ways of arranging the direction
of input and output to our carry look-ahead adder circuitry. In
Figure 3.4a, the inputs and outputs go through in the same direc-
tion (inputs and outputs both at the bottom). In Figure 3.4b, the
outputs come out the top, the opposite side of the inputs, which
come in the bottom. This gives the designer some flexibility in

attaching the circuitry to different styles of bus structures, or
different arrangements of I/0 pads. Other designs of carry look-
ahead adders in VLSI [NI85] [NIR86) have ignored the placement
of inputs and outputs, instead assuming that external inputs and
outputs are available wherever they are required. Such assump-
tions are impractical in a typical ALU where I/O and bussing
conventions are generally adapted in advance of the design of the
circuitry. We conclude this section by giving a diagram of the
entire chip including I/0 pads (Figure 3.5).

4 Comparison with Other VLSI Adder De-
signs

In this section,

we compare our VLSI circuitry for carry look-
ahead addition

with other designs. It is not accurate to compare
each design by counting only the number of gates because of the
differences in fan-in and fan-out, types of gates, and wiring capac-
itance effects. Accounting for these differences using the method
of (OB85), we compare our circuitry with the carry skip adder of
[OB85) and the commercial carry look-ahead adder presented in
(Cav84] for which fan-in and fan-out are bounded by at least 4
logical wires. Then, with the same fan-in and fan-out restriction,
We compare our circuitry with [BK82] [NI85] (NIRSS).

First, some general comparisons are in order. Although the
time performance of our circuitry is proportional to O(logn), it
still compares favorably to a standard carry look-ahead adder im-
plemented in VLSL This is because of the large fan-out of a carry
look-ahead adder, and the fact that fan-out proportional to n
requires delay time O(log n} to drive as a capacitive load under
realistic models of a VLSI circuit.

The area of our circuitry is very efficient when compared with
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other designs, and even is competitive with the area of a regular
ripple-carry adder for small values of n. When n < 64, the area
values of our circuitry and of a ripple carry adder are compared in
Table 4.1. The area of our circuitry is only a factor of 2 or 3 higher
than that of the ripple carry adder. For wire capacitance effects,
the speed of the circuitry is dependent on the length of the wires
(their capacitance) and the resistance of long wires. In Table 4.2,
we compare for each design the total interconnection wire length
from inputs to outputs. From this table, we can conclude that it
takes almost same amount of time for each design to charge and
pass signals along the interconnection wires. Therefore we can
ignore the delay time due to wire capacitance in comparing these
designs (but we do have to consider this wire capacitance when
measuring delay time in an actual implementation).

We now compare our circuitry with the carry skip adder of
[OB85], and the carry look-ahead adder of [Cav84] using the
method of [OB85]. They associate a time unit ¢ with one gate
propagation delay time (fan-in and fan-out bounded by at least
4). When we compare our leaf cells with their single gate, ours
is quite simple ( half the size; fan-in and fan-out bounded by 2).
Therefore, the propagation delay time of any of our leaf cells is
at most %t. As discussed in section 2.3, in our designs we have
fixed the value of extra depth to k = 1 when n < 64. The delay
time comparison of our designs with [OB85], [Cav84] is shown in
Table 4.3.

Next we compare our circuitry with the designs of [BK82]
[NI85] and [NIRS6] using the method outlined in [NI85]. Here,
we simply count the worst-case number of gates along any path
from inputs to outputs to measure the delay time. The fan-in
and fan-out restrictions are almost the same in all these designs
and thus are ignored. As we discussed previously, extra depth
E =1 is used in our designs with n < 64. For large values of

n (n > 64), we use the value k = logn - loglogn. The delay
time comparison between our design and {BK82}, [NI85), [NIR86)
is shown in Table 4.4. Using our hybrid prefix algorithm, delay
time is the lowest possible value with optimal area O(nlogn).
Furthermore, by adding various strategies {folding, simple leaf
cells and multiple metal layers), our designs are better than those
of [BK82), [NI85}, [NIR86] with respect to delay time, and almost
as area-efficient as a ripple carry adder.

5 Conclusion

We have presented a new prefix algorithm and have applied it to
obtain a fast area-efficient VLSI implementation of a binary adder.
With the other techniques presented here (folding, multiple metal
layers and the design of simple leaf cells), the area of this hybrid
adder becomes competitive with the area of a ripple carry adder.
Also, the time performance of this adder is better than any other
reported in the open literature.

The design strategy used here can be applied to various tech-
nologies including ECL, TTL, CMOS, NMOS, etc. Since speed
and power dissipation depend on the technology being used, and
the lamda scale factor becomes smaller in a new technology, it may
be desirable to extend our fan-out 2 algorithm to fan-out f (f > 2)
due to the reduced fan-out capacitances being driven [OA83). Our
current investigations are concentrating on this topic.
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Fig 3.4 Two different styles of HPA. (16 bit)
(Different arrangements of 1/O pads)
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Fig 3.3 Denscly Packed Layout using folding method (n=16)
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k {extra depth) T (time] Area
K-S k=0 logn {n?)
case
HPC 3(logn —loglogn) <k < | Elogn— Ofnlogn,
sec 2.2) | logn—1 > loglogn
HPC logn —loglogn <k < 2logn —loglogn | O(nlogn)
sec 2.3) | logn
B-K k=logn—-1 Zlogn ~ 1 O(nlogn
case

Table 2.1 Comparison of Area-Time Complexity
for each case of graph.

number of gates delay time k
B-K | 2.5 2logn—1 logn —1
K-§ [nlogn logn 0

Fich | 2.5n+3y/nlognlogn [ TTogn — Zloglogn | L(logn — loglogn

HPC | 2.5n+ /nlognlogn | Zlogn— Zloglogn | 2(logn — loglogn

Table 2.2 Comparison of Upper bounds by counting the number of gates

(fan-out bounded by 2)

Area of Area of
Ripple Carry Adder | Hybrid Prefix Adder
n =16 | 200 x700\% 350 x 70012

n = 32 | 200 x 140012
n = 64 | 200 x 2100)\%

500 x 140017
650 x 210017

Table 4.1 Area of Hybrid Prefix Adder and RCA

Total interconnection
wire length

RCA | O

KS [n

B-K | n

HPA | n

CSA | n

N-1 N

Table 4.2 Total wire length from input to output for each case

n | CLA | CSA | HPA
16 | 6¢ 5t 3.5t
32 | 8t Tt 4t

48 | 10t at
84 | 10t 10t 4.5¢

where CLA : Carry Look-Ahead Adder
(Fan-in, Fan-out bounded by 4)
CSA : Carry Skip Adder
(Fan-in, Fan-out bounded by 4)
HPA : Hybrid Prefix Adder
(Fan-in, Fan-out bounded by 2)

Table 4.3 Comparison in T using the method of [OB 85}

n RCA | B-K [ N-I [ HPA
8 18 15 7
9 20 8

16 [ 34 .| 19 8
27 | 56 12

32 | 68 9
64 | 130 27 10
108 | 218 16

256 | 514 35 17
432 | 866 20

512 39 19

Table 4.4 Comparison in T using the method of [NI 85)
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