
Huey Ling

High-speed Binary Adder

Based on the bit pair (a i , b i) truth table, the carry propagate p i and carry generate gi have dominated the carry-look-
ahead formation process for more than two decades. This paper presents a new scheme in which the new carry propa-
gation is examined by including the neighboring pairs (a i , bi; ai+,, b,+l). This scheme not only reduces the component
count in design, but also requires fewer logic levels in adder implementation. In addition, this new algorithm oflers an
astonishingly uniform loading in fan-in and fan-out nesting.

Introduction
The traditional recursive formula for carry propagation
has dominated the carry handling process in the computer
industry for more than two decades. Today, adder de-
signs based on a similar technique include Amdahl V6,
IBM 168, and IBM 3033.

The recursive formulation of carry is based on the bit
pair (ai, bi) truth table. By examining the local bit pair,
carry propagate p i and carry generate gi are formed. The
high-order carries are generated by nesting the p i and g,
together. By considering the adjacent bit pairs (a,, bi;
ai+l , bi+l), a new recursive formula is obtained for new
carry propagation. The comparison between this new
scheme and the existing scheme will be discussed in the
following sections. The detailed implementation, circuits,
and logic level count are also included. Surprisingly, this
method offers an astonishingly uniform loading in fan-in/
fan-out nesting.

The formation of new carry and sum
This paper introduces a new approach to represent
the new carry formation and propagation based on the
concept of the complementing signal which was intro-
duced in 1%5 [I]. To examine the impact of this com-
plementing signal in performing binary addition and com-
plementing signal look-ahead, one should evaluate the
formation of H i and Hi+, as a function of neighbor-
ing bit pairs (i , i + 1). Let us consider adding two binary
numbers A and B together, where

A = ao2" + al2"-' + a2Y-' + . . + a i P + . . .
+ a,2' ;

B = b02" + b,2"" + b,2"-' + . . . + bi2n-i + * * .

+ bn2' .
The relation among the new carry (Hi , Hi+,) and
the neighboring bit pairs (ai , b,; ai+l, bi+J can be ex-
pressed as in Table 1 [l]; all of these are generated by
ai, b, or transmitted through the low-order bits, i + 1, i +
2, . . ., with the transmitting-enable switch ON. This sig-
nal or new carry can only be terminated when the in-
hibitor is ON (ai+l + bi+, = 0). H , plays both regular
carry and complementing signal roles in performing
binary addition.

By grouping all the H i , we obtain

Hi = f (l , 2, 3 , 5, 6, 7, 9, 10, 1 1 , 12, 13, 14, 15)

= aibi + Hi+l(Gi+lbi+l + ai+,Li+, + ai+,bi+,)

= aibi + Hi+l(ai+l + bi+,) = ki + H,+,T,+, , (1)

where ki is the new complementing signal, Hi+, is the pre-
vious complementary signal, and Ti+, is the previous
carry enable switch or the previous stage propagate.

Equation (1) shows that new carry H i can be formed
locally by ki or produced remotely; Hi+, can be produced
with the remote stage carry inhibitor not ON (ai+l + bi+,

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.

156
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

HUEY LING IBM 1. RES DEVELOP. 0 VOL. 25 0 NO. 3 0 MAY 1981

= 1). The formation of sum Si can be expressed by a
similar process. The truth table for Si is shown in Table 2.

Table 1 The relation of new carry H i with H i + , and its neigh-
boring bit pairs (ai, bi; ai+,, bi+,).

By grouping all the Si, we obtain

Si = f (l , 2, 3 , 4, 5, 6, 8, 9, 10, 13, 14, 15) ;

1 , 2, 3 + a i 6 $ H i + , G i + , b i + , + ai+16i+, + ai+,bi+,)

= Q*Hi+l(ai+l + bi+J

= [Uibi + H i + , (U i + , + bi+1)3ai6i
= H i T ;

5 , 6, 9, 10 + (ai V bi)(ai+l V bi+JRi+,
= (ai v bi)(ui+l v bi+l)Ri+l ;

4, 8 + (a, V bi)(ii+,bi+J ;

4, 5, 6, 8, 9, 10 ”-* (ai V bi)[Ri+,(ai+, V bi+J + ~i+16i+, l
= (ai + bi)(Ci + Qmi+](ai+, v bi+J

= (ai + bi)(Ci + bi)(Ri+] + cii+16i+l) ;
+ iii+16i+lq+l + ai+16i+,l

Hi = Qibi + H,+,(a,+, + b,+J ;

q = (ai + 6J{Ri+, + ;

13, 14, 15 + aibi~i+,(ai+,bi+, + ai+,6,+, + ai+lbi+,)

4, 5, 6, 8, 9, 10 + (ai + bi)Ri = TiRi ;

= a , b i H i + & i +] + 4 + J

= kiHi+,Ti+, ;

Si = f (1 , 2, 3, 4, 5, 6, 8, 9, 10, 13, 14, 15)

= H i T + TiBi + kiHi+,Ti+,

= (Hi V Ti) + kiHi+,Ti+, . (2)

We have obtained a set of recursive formulae for both new
cany Hi and sum Si. They are different from the conven-
tional process. Before discovering the difference, let us
examine the carry-look-ahead process.

New carry-look-ahead
For ease of discussion. let us consider i = 31. We have

H31 = k.31 + H32T32 (3 4
By substituting i = 30, 29, and 28 in (3a), we obtain

= k20 + T2Sk2S + T2ST30k30 + T29T30T31k31

+ T2ST30T31T32k32 ’ (3b)
By following a similar process, we obtain

H24 = k24 + T25k25 + T2ST26k26 + T25T26T27k27

+ T25T26T27T20H28 ‘

i Hi = 1 ai bi bi+ 1

in relation
with Hi+,

0

1

2

3

4

5

6

I

8

9

10

11

12

13

14

15

Hi = 0

Hi+, = 1
Hi+, = 1

Hi+, = 1

Hi = 0

Hi+, = 1

Hi+, = 1

Hi+, = 1
Hi = 0

Hi+, = 1

Hi+, = 1

Hi+, = 1

Hi+, = X
Hi+, = X

Hi+, = X

Hi+, = X

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Table 2 Sum Si formation.

0 0

1 Hi+, = 1

2 Hi+, = 1

3 Hi+, = I

4 1

5 Hi+, = 0

6 Hi+, = 0

I 0

8 1

9 Hi+, = 0

10 Hi+, = 0

11 0

12 0

13 Hi+, = 1

14 Hi+, = 1

15 Hi+, = 1

0

0

0

0

0

0

0

0

1

I

1

1

1

I

I

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

I

1

0

0

I

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1
157

HUEY LING IBM J. RES. DEVELOP. VOL. 25 NO. 3 MAY 1981

= k20 + T21k21 + T21T22k22 + T21T22T23k23

+ T21T22T23T24H24 ;

H16 = k16 + T17k17 + T17T18k18 + T17T18T19k19

+ T17T18T19T20H20'

By substituting (3b) for (9 , we obtain

H]6 = H*16 + zT6H20,

where

H*16 = k16 + T17k17 + T17T18k18 + T17T18T19k19 ;

= T17T18T19T20 *

By substituting (3a) and (3b) for (5) , we obtain

H16 = H*16 + Z*16H;0 + Z*,,$*,,H*,, + ZT&oZ*,4H28

The asterisk of HT6 represents the fact that HT6 can be
implemented with one level of logic. Based on current
switching technology, both fan-in and fan-out are equal to
four with eight-emitter dotting; H,, can be implemented
with two levels of logic.

Comparison with the existing scheme
Based on the local bit pair (a,, b,), carry C, and sum Si can
be written in the form

', = g, + C,+,Pi, g, = a$, ; (10)

Si = a, tl b, V Ci+l, pi = a, + b, .
F o r i = 16, we have

'16 = g16 + c17p16 *

By substituting i = 17, 18, . . ., 19, C16 can be rewritten as

'16 = g16 + p16(g17 + p17g18 + p17p18g19 + p17pl@19c20)

= g16 + p16g17 + p1817g18 + p16p17plSg19

+ p1817p18p19c20

= G16P + p16Pc20 ' (1 1)
where GI, and are the grouping of the following
terms:

G16P = gl6 + p l 6 g 1 7 + p16p17g18 + p16p17plSg19 ; (12)

'16P = p16p17p18p19 * (13)
Similarly, C16 can be written in terms of CZ8:

'16 = + pl#3PG20P + P16PP20PG24P

+ p16Pp20~p24~G28P '

Equations (6), (7), and (8) are similar to (l l) , (12), and
(13); however, H*16 can be implemented with one level of
logic, whereas G,, cannot. By expanding (7) and (12) we

158 obtain

Equation (14) contains eight terms, whereas (15) contains
fifteen. With current available technology, the former can
be implemented with one level of logic (this is shown in
detail in the next section); the latter can only be imple-
mented with two levels of logic.

Let us further examine the ith-digit carry formation.
For (l) , the carry is generated by local complementing
signal k,, and the remote carry Hi+, is controlled by re-
mote bit pair (ai+l + 6i+1); whereas for (lo), the carry is
generated by local carry g,, and the remote carry C,+, is
controlled by local bit pair (a, + b,). From the carry-look-
ahead point of view, (1) offers faster resolution, whereas
the latter is one stage slower. That is why (14) contains
only eight terms, and (15), fifteen.

To illustrate the step-by-step operation, two examples
are given.

Example 1 Assume the contents of A and B registers to
be as shown and find their sum;

A register 000000OOO11010101111101100011001

B register oooO0000011011011101010101010111

The k, and Ti can be implemented with one level of logic:

k, 0 0 0 0 0 0 0 0 0 1 101OOO1101OOO1OOO10001

Ti 00000000011011111111111101011111

HUEY LING IBM J. RES. DEVELOP. VOL. 25 NO. 3 MAY 1981

The complementary signals can be implemented by
grouping ki and Ti together. This process requires one
level of logic:

Hi 00000000111111111111111100111111

The sum digit Si is implemented in parallel with Hi; the
result of Hi will force Si to select one value between Hi =
0 and Hi = 1:

S i 0000000011011000110100000111OOOO

This example demonstrates that it is possible to imple-
ment a 32-bit adder with three levels of logic with the
hardware constraints indicated in the previous section.
The detailed implementation of Si is discussed in the next
section.

Example 2 Assuming that the contents of index, base,
and displacement registers are as shown, compute the vir-
tual address. (To test the generality of this scheme, odd
contents are purposely chosen; in the normal mode of op-
eration, an EXCPN will occur.)

Index register 00oooOOOOOO111010111011101011011

Base register 00OOOOOOOOOOO1O11100lOOlllOlllOl

Displacement register 101111010111

To implement the carry-save adder (CSA) requires one
level of logic:

si OOOOOOOOOOO110001111010101010001

ci OOOOOOOOOO001O1OOOO1OllllOlllllO

Implementation of ki and Ti requires one additional level
of logic:

ki OOOOOOOOOOOO10000001OlOlOOO1OOOO

Ti 00000000000110101111011111111111

Implementation of the complementary signal requires one
level of logic to group ki and Ti together:

Hi 00000000001110011111111111110000

The address digit Si is implemented in parallel with Hi;
the result of Hi will force S, to select one value between
Hi = 0 and 1:

S i 00000000001000110000110100001111

This example demonstrates that the AGEN adder can be
implemented with four rather than six levels of logic, as is
the case in current machine organization. The detailed

implementation of Si (the address) is discussed in the next
section. The logic implementation of every fourth bit (i =

3 1,27,23, 19, 16, 15, 11,7,3,0) is shown in the Appendix
of this paper.

Implementation
The detailed implementation can be divided into two cate-
gories: binary addition and subtraction, and address gen-
eration.

e Addition and subtraction
Equation (3b) is a general representation of the new
carry-look-ahead process. For ADDITION, k3, = 0; there-
fore, the fifth term in (3b) is dropped and H z , can be
written as

H Z O = k28 + TZ9kZ9 + T29T30k30 + TZ9T30T31k31 * (44
For SUBTRACTION, there is a HOT ONE carry input from bit
31; thus Hz, can be written as

= kZO + T29kZ9 + TZ9T30k30 + T29T30T31k31

+ T29T30T31 ' (4b)

Equation (2) shows that Si is a function of Hi and Hi+,.
For ease of implementation, this equation is rewritten in
the form

Si = (Hi V Ti) + k,H,+,T,+,

= [(kt + q + , T , + ,) v Til + k,H,+,Ti+,

= Hi+,(TiTi+, + k,T,+,)

+ Ri+,EiTi + k i q + kTiTi+, . (16)

Equation (16) demonstrates that Si can be written in the
conditional form

S,(Hi+, = 0) = ki V Ti ;

S,(Hi+, = 1) = qT,+, + kiTi+, + kiF, + &TiTi+, .
The general expression of SUM Si can be written as

Si = Hi+,(ui+, + bi+,)(a, V b,) + Bi+,(ui V bi)

+ (ai+] + bi+& v bi) .
Fori = 31, we have

' 3 1 = H3Z(a32 + '32)('31 ' 3 ,) + n32(a3] b 3])

+ (a32 + b 3 2) (~ 3 1 V b31) .
For i = 0, we obtain

So = H,(a, + b,)(ao v bo) + q a 0 v bo)

+ (a, + b,)(ao v bo) ; (17)

H I = k, + T2kz + T2T3k3 + T2T3T4H4

= H*, + I;H, ; (18) 159

HUEY LING IBM J. RES. DEVELOP. VOL. 25 NO. 3 MAY 1981

H4 = k4 + T5k5 + T,T,k, + T5T,T7k7 + T5T,T7TnHn

= H*, + I*,H, ; (19)

H , = H*, + I*,H,, ; (20)

H,, = H*,, + I*,,H,, . (21)

By substituting (21) for (201, we have

H , = H*, + I*,H*,, + I*,I*,,H,, . (22)

Similarly, we obtain H4 and H,:

H, = H Z + I,*H,* + I ; I , * H ; ~ + I , * I ; I T ~ , , ; (23)

H , = H ; + I;H,* + C C H ; + ITI,*I,*HTz
* * * *

+ I1 I4 In IlzHm. (24)

By substituting Eqs. (22), (23), and (24) for Eqs. (18), (19),
(20), and (21), Eq. (17) can be written as

So = (H*, + I*,H*, + I*,I*,H*, + I*,I:I*,H*,,

+ I , I 4 I $ 12H1(3)(a] + b l) (a O
* * * *

+ (H*, + I ;H: + I*,I*,H*, + I*,I*,I*,H*,,

+ I ;I :I ,*I ;p , ,) (a , v bo) + (a, + b,)(ao v bo) ;

= (HT + I T g + IT I,* H,* + I T c I , * f Q (a 1 + b,)

x (‘0 bo) + z*,z~l*,z*,zH1,(al + b l) (a O

+ (H*, + I*,H*, + I*,I*,H*, + I*,I*,I*,H*,,)

X (I*,I*,I*,I*,, t B,,)(u, v bo)

+ (a1 + b,)(ao v bo) . (25)

By using the Sklansky conditional-sum method [2], (25).
can be written as

so = (H*, + I*,H; + I*,I*,H*, + I ,I 4 ~ n ~ : 2)
* * *

x (a, + b,)(ao v bo) + (a, + b,)(ao v bo)

+ (H*, + I*,H*, + I*,I*,H*, + I*,I*,I*,H*,,)

x (ao bo) = ‘1
+ I*,I~I*,I*, ,(u, + b,)(a0 V bo) [H, , = 11

+ (H*, + I*,H*, + I*,I*,H*, + I;I*,I*,H*,,)

X (I*,I*,I*,I:,)(u, V bo) [H,, = 11.

The hardware implementation of So is included in the Ap-
pendix.

160

HUEY LING

Equation (9) has indicated that H,, can be implemented
with two levels of logic. Let us examine the individual
terms of So. It is clearly pointed out that they also require
only two levels of logic to be implemented. That is to say,
when H, , is ready, So can be obtained by using one addi-
tional level of logic. We have proved, by using current
switching logic, that one can implement a 32-bit adder by
consuming only three levels of logic.

Address generat ion
In the address generation process, we are dealing with
positive numbers only. Therefore, k,, = 0. The output of
the (3, 2) carry-save adder provides the si and ci+, corre-
sponding to the ai and b, bit pairs. In addition, X i and B,
both are 32 bits in length. However, Di has only a 12-bit
width. For i = 0-18, the output of the carry-save adder
has a special pattern; si and ci+, will not have the form

111-101-1111-11

101-111-1111-11.

In general, the output of CSA will appear as

11 11-01-001- 101 10

0001-01-001-10010.

Therefore, for i = 19-31, St appears as usual:

St = (Hi V Ti) + kiHi+,Ti,, .
For i = 0-18, Si appears as

si = (Hi v Ti) .
The detailed implementations for i from 0,3,7, 11, 15, 16,
19, 23, 27, and 31 are shown in the Appendix.

Summary
It is intended in this paper to speed up the carry propaga-
tion for examining two bit pairs. The formulation of H*,,
contains eight terms as compared to that of the regular
carry-look-ahead process, where G,, contains fifteen
terms. It is possible to implement H*,, with one level of
logic, whereas it is not possible with G16p. The formula-
tion of sum Si in this new process will contain slightly
more terms; however, they are not in the critical path.

References
1. H. Ling, “High Speed Binary Parallel Adder,” IEEE Trans.

2. J. Sklansky, “Conditional-Sum Addition Logic,” IEEE
Electron. Computers EC-15, 799-802 (1%).

Trans. Electron. Computers EC-9, 226-231 (1960).

IBM J. RES. DEVELOP. VOL. 25 NO. 3 MAY 1981

Appendix

pr

Level 3

O X

IBM J. RES. DEVELOP. VOL. 25 NO. 3 MAY 1981

>

3- x

161

HUEY LING

i = 3

Level 1 Level 2 Level 3

-ox

i = 7

Level 1 Level 2 Level 3

162

i'll

Level 1 Level 2

R ; 2

I 0 -
X

T i 2 = l " - F i Ti 3

A I ., c I ..

q A

X-
Y

i = 16

Level 1 Level 2 Level 3

- H i 0

L - 4 4

IBM 1. RES. DEVELOP. VOL. 25 NO. 3 MAY 1981

163

HUEY LING

i = 15

Level I Level 2 Level 3

Level I

S28- 0
-
T28

c2- . T28

Level 2 Level 3

164

HUEY LING iBM 1. RES. DEVELOP. VOL. 25 NO. 3 0 MAY 1981

Level I Level 2 Level 3

3

165

IBM J. RES. DEVELOP. VOL. 25 NO. 3 MAY 1 9 8 1 HUEY LING

166

HUEY LING

i = 2 3

Level 1 Level 2 Level 3

Level 1 Level 2 Level 3

Received September 11,1980; revised November 26,1980 The author is located at the IBM Thomas J . Watson Re-
search Center, Yorktown Heights, New York 10598.

IBM J. RES. DEVELOP. VOL. 2s NO. 3 0 MAY lwl l

