
A Static Low-Power, High-Performance 32-bit Carry Skip Adder

Kai Chirca1,2, Michael Schulte1,3, John Glossner1,2, Haoran Wang1,
Suman Mamidi1,3, Pablo Balzola1, and Stamatis Vassiliadis2

 1Sandbridge Technologies, Inc.
White Plains, NY 10601 USA
jglossner@sandbridgetech.com

2Delft University of Technology
Electrical Engineering, Mathematics
and Computer Science Department

Delft, The Netherlands

3University of Wisconsin
Dept. of ECE

1415 Engineering Drive
Madison, WI, 53706, USA

Abstract

In this paper, we present a full-static carry-skip
adder designed to achieve low power dissipation and
high-performance operation. To reduce the adder’s
delay and power consumption, the adder is divided into
variable-sized blocks that balance the inputs to the
carry chain. The optimum block sizes for minimizing
the critical path delay with complementary carry
generation are achieved. Within blocks, highly
optimized carry look-ahead logic, which computes
block generate and block propagate signals, is used to
further decrease delay. The adder architecture
decreases power consumption by reducing the number
of logic levels, glitches, and transistors. To achieve
balanced delay, input bits are grouped unevenly in the
carry chain. This grouping reduces active power by
minimizing extraneous glitches and transitions. The
adder has been implemented in 130nm CMOS
technology. At 1.2V and 25C, typical performance is
1.086GHz and power dissipation normalized to
600MHz operation is 0.786mW.

1. Introduction

Adders are fundamental arithmetic components in
many computer systems, since addition is the most
common arithmetic operation in a wide variety of
important applications [1,2]. Consequently, several
adder implementations, including ripple carry,
Manchester carry chain, carry skip, carry look-ahead,
carry select, conditional sum, and various parallel
prefix adders are available to satisfy different area,
delay, and power requirements. Descriptions of each of
these adder architectures are given in [2]. Comparisons
between different types of adders in terms of area,
delay, and power dissipation are provided in [3-5]. As
noted in [2], Ripple carry and Manchester carry chain
adders are the simplest, but slowest adders with O(n)
area and O(n) delay, where n is the operand size in bits.

Carry look-ahead, conditional sum, and parallel prefix
adders have O(n·log(n)) area and O(log(n)) delay, but
typically suffer from irregular layout. Carry skip
adders, which have O(n) area and O(n1/2) delay provide
a good compromise in terms of area and delay, along
with a simple and regular layout [6] . Carry skip adders
also dissipate less power than other adders due to their
low transistor counts and short wire lengths [3,4].

Several studies have been performed to reduce the
delay of carry-skip adders [6-10]. Techniques presented
in [6,7] select variable block sizes to minimize the
delay of adders that use a single level of carry skip
logic. Techniques presented in [8-10] allow multiple
levels of skip logic, which further reduces delay at the
cost of an increase in area and less regular layout.
Although the techniques presented in [6-10] reduce the
delay of carry skip adders, they did not take into
account further delay optimizations that can achieved
by complementary carry generation and the use of carry
look-ahead techniques within the blocks. Furthermore,
these techniques were not designed to reduce the power
dissipation of carry skip adders.

This paper presents the design and implementation
of a full-static carry skip adder with low power
consumption and low critical path delay. The adder
reduces delay and power consumption by using
variable-sized blocks to balance the inputs to the carry
chain. Further reductions in delay are achieved by using
complementary carry logic in the carry chain and by
using highly optimized carry look-ahead logic to
compute block generate and block propagate signals.
The adder has just seven logic levels on the critical
delay path, where each logic level corresponds to one
complex CMOS gate. Efficient AndOrInverters (AOIs)
and OrAndInverters (OAIs) are used to reduce delay
and power. In Section 2, we present our Carry Skip
Adder implementation. In Section 3, we present our
results and compare our design with other high-speed
adders. In Section 4, we give some concluding remarks.

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

milena
Carry skip adders

milena
also dissipate less power than other adders due to their

milena
low transistor counts and short wire lengths [3,4].

milena
Although the techniques presented in [6-10] reduce the

milena
delay of carry skip adders, they did not take into

milena
account further delay optimizations that can achieved

milena
by complementary carry generation and the use of carry

milena
look-ahead techniques within the blocks. Furthermore,

milena
these techniques were not designed to reduce the power

milena
dissipation of carry skip adders.

2. 32-bit adder implementation

Different adder implementations have been
developed to optimize various design parameters. Some
important design parameters include propagation delay,
area utilization, and power dissipation. Most adder
implementations tend to trade off performance and area.
Occasionally dynamic switching power is considered.
In our implementation, we are concerned with
minimizing dynamic switching power and short circuit
power, while achieving high performance.

With carry skip adders, the linear growth of carry
chain delay with the size of the input operands is
improved by allowing carries to skip across blocks of
bits, rather than rippling through them [2]. The idea
behind our adder design is to find the optimal bit
partitioning to balance the propagation delay of the
inputs to the carry chain. For the less significant portion
of the adder, fewer bits are combined into blocks to
speed up the carry generation. As the propagation delay
increases along the carry chain, more bits are combined
into blocks. Our design also uses carry look-ahead logic
and complementary carry generation to reduce delay.

The carry out of the jth bit Cj+1, can be expressed as:
 Cj+1 = Gj + Pj · Cj (1)

where
 Gj = Aj · Bj generate signal (2)
 Pj = Aj + Bj propagate signal (3)
Assume a block has input bits from i to j, then Ci is

the carry in from the previous block. Expanding the
equations above, we get:

Cj+1 = Gj + Pj·Gj-1 + Pj·Pj-1·Gj-2 +…+ Pj…Pi·Ci

 = Gblock + Pblock· Ci = Gj:i + Pj:i· Ci (4)
where

Gj:i = Gj+Pj·Gj-1+Pj·Pj-1·Gj-2+…+Pj·Pj-1…Pi+1·Gi

Pj:i = Pj · Pj-1 ·… · Pi (5)
Therefore, while Ci is propagating along the carry
chain, Gj:i and Pj:i can be calculated in parallel.

In our design, the number of bits, j-i+1, involved in
one block strongly depends on the propagation delay of
Ci in order to guarantee that Gj:i and Pj:i signals have the
same propagation delay. Then, the complex logic gate
used to generate the block carry out, Cj+1, has a glitch-
free output, since all three input delays are matched.
Applying this rule along the carry chain optimizes both
the block partitions and the logic depth on the critical
path.

2.1. Top-level architecture

To favor the carry generation at the lower bits and
the sum generation at the higher bits, and to balance the
inputs along the carry chain, a variable-sized block
partition scheme is used, as shown in Figure 1. A31:0

and B31:0 are two 32-bit input operands and C0 is the
carry in. S31:0 is the 32-bit sum output of the addition
operation with a carry out signal of C32. The smaller
blocks at the two ends of the diagram are used to speed
up the carry and sum generation. The block sizes in the
middle part of the adder, which are multiples of three,
balance the carry chain inputs very well. The reason for
selecting these block sizes is explained below for each
carry skip block. In the following discussion, we
assume the inputs A, B, and C0 are fed into the adders
from input registers and have the same delay at the
inputs of the adder.

Figure 1. Block diagram of the 32-bit carry-skip
adder with optimized block sizes

2.2. First 4-bit block

For the least significant bits, fast carry generation is
more important than sum generation, since the sum bits
are not on the critical delay path. To match the
propagation delay of each carry in the carry chain,
block P and G logic combines a small numbers of input
bits, which means that block sizes are small. A structure
similar to a ripple carry adder is used for the least
significant bits because the ripple carry adder has good
performance and power consumption when there are
only a few adder input bits. The logic depth, however,
accumulates to make larger block sizes advantageous at
the more significant end.

The circuit architecture of the first 4-bit carry skip
block (CS4) is shown in Figure 2. The LSB is on the
right and the MSB is on the left. The delays for signals
that affect the critical path delay are shown in
parenthesis next to the signal’s name. For example, P3:2

(2) indicates that the block propagate signal, P3:2, is
available after two complex gate delays. The LSB
addition is implemented using a standard full adder
(FA). Since the sum generation is not on the critical
path here, minimal size devices are used to reduce
power consumption. This FA takes one complex gate
delay to generate the inverted carry out,

1C . Producing
an inverted carry reduces the logic depth on the carry
chain.

 In the second FA, P and G logic operates in parallel
with the carry generation in the first FA. The P and G
logic computes inverted outputs

111 BAG ⋅= and
111 BAP += (6)

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

milena
In our implementation, we are concerned with

milena
minimizing dynamic switching power and short circuit

milena
power, while achieving high performance.

FA

A2 B2

S2

P2(1) G2(1)

FA

A0 B0

C1(1)

S0

FA

A1 B1

S1
P1(1) G1(1)

OAI

FA

A3 B3

S3

P3(1) G 3(1)

OAI

AOI
C2(2)C4(3)

G 3:2(2)P3:2(2)

C0

C3(3)

Figure 2. Block diagram of the first CS4 block

Figure 3. Block diagram of the CS6 block

As with the inverted carry,
1C , we use one logic level

to generate the inverted
1G and

1P , instead of G1 and
P1, to reduce the logic path length. The propagate signal
is implemented using a NOR gate instead of an XNOR
gate to simplify the logic without affecting the next
carry generation. From Equation (1), the carry output of
this bit, C2, is expressed as:

 C2 = G1 + P1·C0 =)(111 CPG +⋅ (7)
A simple OrAndInverter (OAI) gate takes the inverted
inputs and produces the carry, C2, after one more
complex gate delay. By matching the path lengths on all
the inputs of the OAI gate, glitches do not occur on its
output. This assumes the NAND, NOR, and OAI gates
have the same delays, which is done by properly sizing
the transistors of the logic gates. As shown in Figure 2,
C2 is available after two complex gate delays.

The next block is a 2-bit adder with inputs A3:2 and
B3:2, and carry in signal C2. To match the two units of
propagation delay on C2, two generate and propagate
signals are combined to form, G3:2 and P3:2. In Figure 2,
the logic to produce G3:2 and P3:2 has two gate delays.
The inverted carry out is computed as:

22:32:32232334 CPGCPPGPGC ⋅+=⋅⋅+⋅+= (8)

G3:2 and P3:2 each are ready after two gate delays, which
match the delay of the input C2. They also have the
same polarity as C2. Since all the inputs are non-
inverted, an AND-OR-INVERT (AOI) cell is used to
generate the inverted carry,

4C . As shown in Figure 2,

4C is available after three complex gate delays and the

inputs used to compute
4C are balanced.

2.3. 6-bit block

The 6-bit carry skip (CS6) block has
4C from the

previous block as the carry in signal. To match the

4C delay, Gblock and Pblock of this block have three levels

of logic depth before entering the carry chain. This
allows three pairs of bits to be used as inputs to the P
and G logic. A block diagram for the 6-bit carry skip
block (CS6) is shown in Figure 3.

At the top of Figure 3, the two 3-bit adders are
identical. The block propagate and block generate
signals, P9:7, G9:7, P6:4, and G6:4 are ready after two gate
delays. Then these signals are fed into the third level P

and G logic to produce 4:9P and 4:9G . Notice that after

3 levels of logic, the signal outputs are all inverted,
which means an OAI gate is used in the carry chain of
this block and the carry out polarity is positive. The
equation for C10 is:

)(44:94:910 CPGC +⋅= (9)

Sum generations in this block require additional
design consideration. If the second 3-bit adder takes the
ripple carry out from the first 3-bit adder block, the
subsequent sum generation will be on the critical path.
To avoid ripple carries inside the block for sum
generation, we use the carry skip logic to produce

7C .

Therefore, P6:4 and G6:4 from the first 3-bit block are re-
used together with C4 to produce

7C for the higher 3-bit

block in order to reduce the delay path for sum
generation. This way the higher 3-bit sum delay is only
one gate delay greater than the lower 3-bit block delay.

By the end of the CS6 block, the 10 lower bits of
the operands are added with a carry chain logic depth of
four, and all the inputs along the carry chain are well
balanced. Every bit input takes the same number of
logic steps to the carry out C10.

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

3-Bit Adder3-Bit Adder3-Bit Adder

A12:10 B12:10

S12:10

P12,10(2) G12,10(2)

AOI

CLL

Group GenerateGroup Propagate

P15,13(2) G15,13(2)P18,16(2) G18,16(2)

P18,10(3) G18,10(3)

A15:13 B15:13A18:16 B18:16

S15:13S18:16
3-Bit Adder3-Bit Adder3-Bit Adder

A21:19 B21:19

S21:19

P21,19(2) G21,19(2)

AOI

CLL

Group GenerateGroup Propagate

P24,22(2) G24,22(2)P27,25(2) G27,25(2)

P27,19(3) G27,19(3)

A24:22 B24:22A27:25 B27:25

S24:22S27:25

AOI

Group GenerateGroup Propagate

AOI
C28(5)

C10(4)

P27,10(4) G27,10(4)

Figure 4. Block diagram of the CS18 block

Compared to the previous carry skip block, which
has bits 2 and 3 joined in Figure 2, this block has 6 bits
combined. Thus, a one logic level increase of P and G
logic triples the number of input bits per block. The
reason for this tripling comes from the usage of
complex logic cells to generate P6:4, P9:7, G6:4, and G9:7.
This ratio is also used in the next block.

2.4. 18-bit block

Since the carry generated by the previous block, C10,

takes 4 levels of logic, the block P and G logic in this
block has one more logic level to balance the carry
chain inputs. Applying the factor of three discussed in
the previous section, the total number of bits in this
block is three times as large as the previous blocks,
which gives a block size of 18 bits. The block diagram
for the 18-bit carry skip block (CS18) is shown in
Figure 4.

Notice that the sum calculations become more
critical as the bit number increases. The 3-bits adders in
Figure 4 use local P and G logic to balance the carry
inputs for each 3-bit adder for sum generations. The
capacitance on carry in C10 may also become high. This
can be mitigated with local buffers, which are not
shown in Figure 4. By the end of this block, 28 pairs of
operand bits have been added, but only 5 levels of logic
were used along the carry chain. Again, all critical
paths are balanced to avoid glitches.

Figure 5. Block diagram of the final CS4 block

2.5. Final 4-bit block

Since there are only 4 bit inputs left in this block,
and the sum generation is more critical than the carry
generation, more effort is put into calculating the sum
by using carry select logic to obtain the correct sum,
and the same carry skip blocks to obtain the carries.
The block diagram for the final 4-bit carry skip block
(CS4) is shown in Figure 5. The logic depth of the final
carry out, C32, is equal to 6.

To balance the inputs along the carry chain with
only a few operand bits, XNOR gates are employed,
instead of NOR gates, to obtain the propagate signals.
These signals can also be shared by the sum generators

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

to save hardware. Since the critical paths are well
balanced on the carry chain, the critical paths of the 32-
bit adder include the four sum outputs in this block. By
using local carry skip adders and carry select style
logic, the propagation delays of the sums are equal to 7
logic levels, which is one level more than the delay of
the carry chain.

3. Results and Comparison

The adder was implemented using 130nm CMOS
technology. All input delay balancing along the carry
chain was implemented in layout. To also balance wire
lengths, the carry chain is put close to the block P and
G logic. Full spice simulation with pessimistic wire
load estimation was performed on the circuit. The adder
achieves a typical frequency of 1.086 GHz at 1.2V and
25C in 130nm CMOS technology. The power
dissipation for the adder when normalized to 600 MHz
operation is 0.786 mW.

For comparison purposes, the delay for various
adders in terms of minimum-sized fanout-of-four (FO4)
inverter delays is given in Table 1. Since the 130nm
process has an F04 delay of 71.2ps, the number of F04
delays for our adder is roughly 12.9. The F04 delays for
the other 32-bit adders shown in Table 1 come from
Table 5 of [11], assuming the other adders use inverting
static CMOS. These results indicate that our adder has a
critical delay path that is comparable to other high-
speed adder designs. In practice, our adder is likely to
be faster than reported in Table 1, since we used
pessimistic wire load estimates.

Table 1. F04 delays for 32-bit adders
Adder Architecture Number of F04 Delays

Ripple Carry 52.2
Carry Increment 27.5

Brent-Kung 13.7
Ladner-Fisher 12.9

Sklansky 21.6
Kogge-Stone 12.4
Han-Carlson 12.1

Knowles 12.7
Helper 1a from [11] 12.6
Helper 1b from [11] 11.6
Helper 1.5 from [11] 12.0
Helper 2 from [11] 11.7

Our adder 12.9

4. Conclusions

We have presented a carry skip adder
implementation with balanced critical paths. To achieve
balanced delay, input bits are grouped into variable-

sized carry skip blocks. This grouping reduces active
power by minimizing extraneous glitches. The adder
has been implemented in 130nm CMOS technology and
achieves a typical frequency of 1.086GHz at 1.2V and
25C. Average power dissipation normalized to 600MHz
operation is 0.786mW.

References

[1] K. Uming , T. Balsara, and W. Lee, “Low-power design
techniques for high-performance CMOS adders,’’ IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 3, no. 2, pp. 327-333, June 1995.

[2] I Koren, Computer Arithmetic Algorithms, 2nd edition A.
K. Peters, Ltd., Natick, MA, 2002.

[3] C. Nagendra, M. J. Irwin, and R. M. Owens, “Area-time-
power tradeoffs in parallel adders,’’ IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal
Processing, vol. 53, no. 10, pp. 689-702, October 1996.

[4] T. K. Callaway, and E. E. Swartzlander, Jr., “Estimating
the power consumption of CMOS adders,’’ Proceedings
of the 11th IEEE Symposium on Computer Arithmetic,
pp. 210-216, July 1993.

[5] V. G. Oklobdzija, B. R. Zeydel, H. Dao, S. Mathew, and
R. Krishnamurthy, “Energy-delay estimation technique
for high-performance microprocessor VLSI adders,’’
Proceedings of the 16th IEEE Symposium on Computer
Arithmetic, pp. 272-279, June 2003.

[6] V. Kantabutra, “Designing optimum one-level carry-skip
adders,” IEEE Transactions on Computers, vol. 42, no.
6, pp. 759–764, June 1993.

[7] M. Alioto and G. Palumbo, “A simple strategy for
optimized design of one-level carry-skip adders,’’ IEEE
Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 50, no. 1, pp. 141-148,
January 2003.

[8] S. Turrini, “Optimum group distribution in carry-skip
adders,” in Proceedings of the 9th IEEE Symposium on
Computer Arithmetic, pp. 96–103, September, 1989.

[9] P. Chan, M. Schlag, C. Thomborson, and V. Oklobdzija,
“Delay optimization of carry-skip adders and block
carry-lookahead adders using multidimensional dynamic
programming,” IEEE Transactions on Computers, vol.
41, no. 8, pp. 920-930, August 1992.

[10] V. Kantabutra, “Accelerated two-level carry-skip adders-
a type of very fast adders,” IEEE Transactions on
Computers, vol. 42, no. 11, pp. 1389-1393, November
1993.

[11] D. Harris and I. Sutherland, “Logical effort of carry
propagate adders,” Proceedings of the Thirty-Seventh
Asilomar Conference on Signals, Systems and
Computers, vol. 1, pp. 873-878, November, 2003.

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

milena
We have presented a carry skip adder

milena
implementation with balanced critical paths. To achieve

milena
balanced delay, input bits are grouped into variablesized

milena
carry skip blocks. This grouping reduces active

milena
power by minimizing extraneous glitches.

milena
V. G. Oklobdzija, B. R. Zeydel, H. Dao, S. Mathew, and

milena
R. Krishnamurthy, “Energy-delay estimation technique

milena
for high-performance microprocessor VLSI adders,’’

milena
Proceedings of the 16th IEEE Symposium on Computer

milena
Arithmetic, pp. 272-279, June 2003.

milena
[5]

	footer1:

