
A Static Low-Power, High-Performance 32-bit Carry Skip Adder 

Kai Chirca1,2, Michael Schulte1,3, John Glossner1,2, Haoran Wang1,
Suman Mamidi1,3, Pablo Balzola1, and Stamatis Vassiliadis2

 1Sandbridge Technologies, Inc. 
White Plains, NY 10601 USA 
jglossner@sandbridgetech.com 

2Delft University of Technology 
Electrical Engineering, Mathematics 
and Computer Science Department 

Delft, The Netherlands 

3University of Wisconsin 
Dept. of ECE  

1415 Engineering Drive 
Madison, WI, 53706, USA 

Abstract 

In this paper, we present a full-static carry-skip 
adder designed to achieve low power dissipation and 
high-performance operation. To reduce the adder’s 
delay and power consumption, the adder is divided into 
variable-sized blocks that balance the inputs to the 
carry chain. The optimum block sizes for minimizing 
the critical path delay with complementary carry 
generation are achieved. Within blocks, highly 
optimized carry look-ahead logic, which computes 
block generate and block propagate signals, is used to 
further decrease delay. The adder architecture 
decreases power consumption by reducing the number 
of logic levels, glitches, and transistors. To achieve 
balanced delay, input bits are grouped unevenly in the 
carry chain. This grouping reduces active power by 
minimizing extraneous glitches and transitions. The 
adder has been implemented in 130nm CMOS 
technology. At 1.2V and 25C, typical performance is 
1.086GHz and power dissipation normalized to 
600MHz operation is 0.786mW. 

1. Introduction 

Adders are fundamental arithmetic components in 
many computer systems, since addition is the most 
common arithmetic operation in a wide variety of 
important applications [1,2]. Consequently, several 
adder implementations, including ripple carry, 
Manchester carry chain, carry skip, carry look-ahead, 
carry select, conditional sum, and various parallel 
prefix adders are available to satisfy different area, 
delay, and power requirements. Descriptions of each of 
these adder architectures are given in [2]. Comparisons 
between different types of adders in terms of area, 
delay, and power dissipation are provided in [3-5]. As 
noted in [2], Ripple carry and Manchester carry chain 
adders are the simplest, but slowest adders with O(n)
area and O(n) delay, where n is the operand size in bits. 

Carry look-ahead, conditional sum, and parallel prefix 
adders have O(n·log(n)) area and O(log(n)) delay, but 
typically suffer from irregular layout. Carry skip 
adders, which have O(n) area and O(n1/2) delay provide 
a good compromise in terms of area and delay, along 
with a simple and regular layout [6]  . Carry skip adders 
also dissipate less power than other adders due to their 
low transistor counts and short wire lengths [3,4].  

Several studies have been performed to reduce the 
delay of carry-skip adders [6-10]. Techniques presented 
in [6,7] select variable block sizes to minimize the 
delay of adders that use a single level of carry skip 
logic. Techniques presented in [8-10] allow multiple 
levels of skip logic, which further reduces delay at the 
cost of an increase in area and less regular layout.  
Although the techniques presented in [6-10] reduce the 
delay of carry skip adders, they did not take into 
account further delay optimizations that can achieved 
by complementary carry generation and the use of carry 
look-ahead techniques within the blocks. Furthermore, 
these techniques were not designed to reduce the power 
dissipation of carry skip adders.  

This paper presents the design and implementation 
of a full-static carry skip adder with low power 
consumption and low critical path delay. The adder 
reduces delay and power consumption by using 
variable-sized blocks to balance the inputs to the carry 
chain. Further reductions in delay are achieved by using 
complementary carry logic in the carry chain and by 
using highly optimized carry look-ahead logic to 
compute block generate and block propagate signals. 
The adder has just seven logic levels on the critical 
delay path, where each logic level corresponds to one 
complex CMOS gate. Efficient AndOrInverters (AOIs) 
and OrAndInverters (OAIs) are used to reduce delay 
and power. In Section 2, we present our Carry Skip 
Adder implementation. In Section 3, we present our 
results and compare our design with other high-speed 
adders. In Section 4, we give some concluding remarks. 
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2. 32-bit adder implementation

Different adder implementations have been 
developed to optimize various design parameters. Some 
important design parameters include propagation delay, 
area utilization, and power dissipation. Most adder 
implementations tend to trade off performance and area. 
Occasionally dynamic switching power is considered. 
In our implementation, we are concerned with 
minimizing dynamic switching power and short circuit 
power, while achieving high performance. 

With carry skip adders, the linear growth of carry 
chain delay with the size of the input operands is 
improved by allowing carries to skip across blocks of 
bits, rather than rippling through them [2]. The idea 
behind our adder design is to find the optimal bit 
partitioning to balance the propagation delay of the 
inputs to the carry chain. For the less significant portion 
of the adder, fewer bits are combined into blocks to 
speed up the carry generation. As the propagation delay 
increases along the carry chain, more bits are combined 
into blocks. Our design also uses carry look-ahead logic 
and complementary carry generation to reduce delay.   

The carry out of the jth bit Cj+1, can be expressed as: 
 Cj+1 = Gj + Pj · Cj                (1) 

where 
 Gj = Aj · Bj generate signal              (2)  
 Pj = Aj + Bj propagate signal              (3) 
Assume a block has input bits from i to j, then Ci is 

the carry in from the previous block. Expanding the 
equations above, we get: 

Cj+1 = Gj + Pj·Gj-1 + Pj·Pj-1·Gj-2 +…+ Pj…Pi·Ci

 = Gblock + Pblock· Ci = Gj:i + Pj:i· Ci                    (4)
where      

Gj:i = Gj+Pj·Gj-1+Pj·Pj-1·Gj-2+…+Pj·Pj-1…Pi+1·Gi

Pj:i = Pj · Pj-1 ·… · Pi                       (5)
Therefore, while Ci is propagating along the carry 
chain, Gj:i and Pj:i can be calculated in parallel.  

In our design, the number of bits, j-i+1, involved in 
one block strongly depends on the propagation delay of 
Ci in order to guarantee that Gj:i and Pj:i signals have the 
same propagation delay. Then, the complex logic gate 
used to generate the block carry out, Cj+1, has a glitch-
free output, since all three input delays are matched. 
Applying this rule along the carry chain optimizes both 
the block partitions and the logic depth on the critical 
path. 

2.1. Top-level architecture

To favor the carry generation at the lower bits and 
the sum generation at the higher bits, and to balance the 
inputs along the carry chain, a variable-sized block 
partition scheme is used, as shown in Figure 1. A31:0

and B31:0 are two 32-bit input operands and C0 is the 
carry in.  S31:0 is the 32-bit sum output of the addition 
operation with a carry out signal of C32.  The smaller 
blocks at the two ends of the diagram are used to speed 
up the carry and sum generation. The block sizes in the 
middle part of the adder, which are multiples of three, 
balance the carry chain inputs very well. The reason for 
selecting these block sizes is explained below for each 
carry skip block. In the following discussion, we 
assume the inputs A, B, and C0 are fed into the adders 
from input registers and have the same delay at the 
inputs of the adder. 

Figure 1. Block diagram of the 32-bit carry-skip 
adder with optimized block sizes 

2.2. First 4-bit block

For the least significant bits, fast carry generation is 
more important than sum generation, since the sum bits 
are not on the critical delay path. To match the 
propagation delay of each carry in the carry chain, 
block P and G logic combines a small numbers of input 
bits, which means that block sizes are small. A structure 
similar to a ripple carry adder is used for the least 
significant bits because the ripple carry adder has good 
performance and power consumption when there are 
only a few adder input bits. The logic depth, however, 
accumulates to make larger block sizes advantageous at 
the more significant end.  

The circuit architecture of the first 4-bit carry skip 
block (CS4) is shown in Figure 2. The LSB is on the 
right and the MSB is on the left. The delays for signals 
that affect the critical path delay are shown in 
parenthesis next to the signal’s name. For example, P3:2 

(2) indicates that the block propagate signal, P3:2, is 
available after two complex gate delays. The LSB 
addition is implemented using a standard full adder 
(FA). Since the sum generation is not on the critical 
path here, minimal size devices are used to reduce 
power consumption. This FA takes one complex gate 
delay to generate the inverted carry out, 

1C . Producing 
an inverted carry reduces the logic depth on the carry 
chain. 

 In the second FA, P and G logic operates in parallel 
with the carry generation in the first FA. The P and G 
logic computes inverted outputs 

111 BAG ⋅=   and  
111 BAP +=                       (6)   
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Figure 2. Block diagram of the first CS4 block 

Figure 3. Block diagram of the CS6 block 

As with the inverted carry, 
1C , we use one logic level 

to generate the inverted 
1G and 

1P , instead of G1 and 
P1, to reduce the logic path length. The propagate signal 
is implemented using a NOR gate instead of an XNOR 
gate to simplify the logic without affecting the next 
carry generation. From Equation (1), the carry output of 
this bit, C2, is expressed as: 

 C2 = G1 + P1·C0 = )( 111 CPG +⋅               (7) 
A simple OrAndInverter (OAI) gate takes the inverted 
inputs and produces the carry, C2, after one more 
complex gate delay. By matching the path lengths on all 
the inputs of the OAI gate, glitches do not occur on its 
output.  This assumes the NAND, NOR, and OAI gates 
have the same delays, which is done by properly sizing 
the transistors of the logic gates. As shown in Figure 2, 
C2 is available after two complex gate delays.  

The next block is a 2-bit adder with inputs A3:2 and 
B3:2, and carry in signal C2. To match the two units of 
propagation delay on C2, two generate and propagate 
signals are combined to form, G3:2 and P3:2. In Figure 2, 
the logic to produce G3:2 and P3:2 has two gate delays. 
The inverted carry out  is computed as:  

22:32:32232334 CPGCPPGPGC ⋅+=⋅⋅+⋅+=      (8) 

G3:2 and P3:2 each are ready after two gate delays, which 
match the delay of the input C2. They also have the 
same polarity as C2. Since all the inputs are non-
inverted, an AND-OR-INVERT (AOI) cell is used to 
generate the inverted carry, 

4C . As shown in Figure 2, 

4C  is available after three complex gate delays and the 

inputs used to compute 
4C are balanced.  

2.3. 6-bit block

The 6-bit carry skip (CS6) block has 
4C  from the 

previous block as the carry in signal. To match the 

4C delay, Gblock and Pblock of this block have three levels 

of logic depth before entering the carry chain. This 
allows three pairs of bits to be used as inputs to the P 
and G logic. A block diagram for the 6-bit carry skip 
block (CS6) is shown in Figure 3. 

At the top of Figure 3, the two 3-bit adders are 
identical. The block propagate and block generate 
signals, P9:7, G9:7, P6:4, and G6:4 are ready after two gate 
delays. Then these signals are fed into the third level P 

and G logic to produce 4:9P and 4:9G . Notice that after 

3 levels of logic, the signal outputs are all inverted, 
which means an OAI gate is used in the carry chain of 
this block and the carry out polarity is positive. The 
equation for C10 is: 

)( 44:94:910 CPGC +⋅=                (9) 

Sum generations in this block require additional 
design consideration. If the second 3-bit adder takes the 
ripple carry out from the first 3-bit adder block, the 
subsequent sum generation will be on the critical path. 
To avoid ripple carries inside the block for sum 
generation, we use the carry skip logic to produce 

7C .

Therefore, P6:4 and G6:4 from the first 3-bit block are re-
used together with C4 to produce 

7C for the higher 3-bit 

block in order to reduce the delay path for sum 
generation. This way the higher 3-bit sum delay is only 
one gate delay greater than the lower 3-bit block delay.  

By the end of the CS6 block, the 10 lower bits of 
the operands are added with a carry chain logic depth of 
four, and all the inputs along the carry chain are well 
balanced. Every bit input takes the same number of 
logic steps to the carry out C10.
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Figure 4. Block diagram of the CS18 block 

Compared to the previous carry skip block, which 
has bits 2 and 3 joined in Figure 2, this block has 6 bits 
combined. Thus, a one logic level increase of P and G 
logic triples the number of input bits per block. The 
reason for this tripling comes from the usage of 
complex logic cells to generate P6:4, P9:7, G6:4, and G9:7.
This ratio is also used in the next block. 

2.4. 18-bit block 

Since the carry generated by the previous block, C10,

takes 4 levels of logic, the block P and G logic in this 
block has one more logic level to balance the carry 
chain inputs. Applying the factor of three discussed in 
the previous section, the total number of bits in this 
block is three times as large as the previous blocks, 
which gives a block size of 18 bits. The block diagram 
for the 18-bit carry skip block (CS18) is shown in 
Figure 4. 

Notice that the sum calculations become more 
critical as the bit number increases. The 3-bits adders in 
Figure 4 use local P and G logic to balance the carry 
inputs for each 3-bit adder for sum generations. The 
capacitance on carry in C10 may also become high. This 
can be mitigated with local buffers, which are not 
shown in Figure 4. By the end of this block, 28 pairs of 
operand bits have been added, but only 5 levels of logic 
were used along the carry chain. Again, all critical 
paths are balanced to avoid glitches.  

Figure 5. Block diagram of the final CS4 block 

2.5. Final 4-bit block 

Since there are only 4 bit inputs left in this block, 
and the sum generation is more critical than the carry 
generation, more effort is put into calculating the sum 
by using carry select logic to obtain the correct sum, 
and the same carry skip blocks to obtain the carries. 
The block diagram for the final 4-bit carry skip block 
(CS4) is shown in Figure 5. The logic depth of the final 
carry out, C32, is equal to 6.  

To balance the inputs along the carry chain with 
only a few operand bits, XNOR gates are employed, 
instead of NOR gates, to obtain the propagate signals. 
These signals can also be shared by the sum generators 
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to save hardware. Since the critical paths are well 
balanced on the carry chain, the critical paths of the 32-
bit adder include the four sum outputs in this block. By 
using local carry skip adders and carry select style 
logic, the propagation delays of the sums are equal to 7 
logic levels, which is one level more than the delay of 
the carry chain. 

3. Results and Comparison

The adder was implemented using 130nm CMOS 
technology. All input delay balancing along the carry 
chain was implemented in layout. To also balance wire 
lengths, the carry chain is put close to the block P and 
G logic. Full spice simulation with pessimistic wire 
load estimation was performed on the circuit. The adder 
achieves a typical frequency of 1.086 GHz at 1.2V and 
25C in 130nm CMOS technology. The power 
dissipation for the adder when normalized to 600 MHz 
operation is 0.786 mW.  

For comparison purposes, the delay for various 
adders in terms of minimum-sized fanout-of-four (FO4) 
inverter delays is given in Table 1. Since the 130nm 
process has an F04 delay of 71.2ps, the number of F04 
delays for our adder is roughly 12.9. The F04 delays for 
the other 32-bit adders shown in Table 1 come from 
Table 5 of [11], assuming the other adders use inverting 
static CMOS. These results indicate that our adder has a 
critical delay path that is comparable to other high-
speed adder designs. In practice, our adder is likely to 
be faster than reported in Table 1, since we used 
pessimistic wire load estimates.  

Table 1. F04 delays for 32-bit adders 
Adder Architecture Number of F04 Delays 

Ripple Carry 52.2 
Carry Increment 27.5 

Brent-Kung 13.7 
Ladner-Fisher 12.9 

Sklansky 21.6 
Kogge-Stone 12.4 
Han-Carlson 12.1 

Knowles 12.7 
Helper 1a from [11] 12.6 
Helper 1b from [11] 11.6 
Helper 1.5 from [11] 12.0 
Helper 2 from [11] 11.7 

Our adder 12.9 

4. Conclusions

We have presented a carry skip adder 
implementation with balanced critical paths. To achieve 
balanced delay, input bits are grouped into variable-

sized carry skip blocks. This grouping reduces active 
power by minimizing extraneous glitches. The adder 
has been implemented in 130nm CMOS technology and 
achieves a typical frequency of 1.086GHz at 1.2V and 
25C. Average power dissipation normalized to 600MHz 
operation is 0.786mW. 
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