division and multiplier recoding procedures,” Dept. of Computer
Sci., University of Illinois, Urbana, Rept. 252, December 1967.

[5] J. O. Penhollow, “A study of arithmetic recoding with applications to
multiplication and division,” Dept. of Computer Sci., University of
iplie Illinois, Urbana, Rept. 128, September 1962.

p] C.S. Wallace, “Suggested design for a very fast multiplier,” Dept. of
Computer Sci., University of Illinois, Urbana, Rept. 133, February
11, 1963.

 J. E. Robertson, internal memo, February 11, 1968.

Abstract—The advent of large-scale integration of logic circuits
equires the definition of digital computer structure in terms of large
unctional arrays of logic of very few types. This paper describes a
ingle-package arithmetic processor called the arithmetic building
lement (ABE). The ABE accepts operands in either conventional or
igned-digit radix-r representation and produces signed-digit results,
hich the ABE can reconvert to conventional form. Radix 16 is chosen
or illustrations. Arrays of ABE’s may be arranged to implement unit-
ime parallel addition, all-combinational multiplication, and more
omplex functions which are presently computed by subroutines.
o facilitate such arithmetic design, a graph model is deveioped which
ermits a translation of the given arithmetical algorithm into an
nterconnection diagram of ABE’s. The design procedure is illustrated
by an array for polynomial evaluation. Speed. cost. and roundoff
“error of the array are considered. A computer program has been
written for the automatic translation of the algorithm graph to an
nterconnection graph, and for the evaluation of the cost and speed
for a given polynomial degree and a given precision requirement.

Index Terms—Arithmetic array modeling, arithmetic building
element, arithmetic processors, computer-aided processor design,
graph models of arithmetic. microelectronic building block, poly-
rof. nomial evaluation array, signed-digit number systems.
ince
rote

date

I. INTRODUCTION

HE ADVENT of large-scale integration in the manu-
facturing of logic circuits has created a new challenge
‘ to the designers of digital systems. In order to take ad-

vantage of the potentially low cost per circuit it is necessary
to define large functional packages of logic elements which
Arry-
Sci.,
Manuscript received December 15, 1969 revised March 13, 1970. This
research was sponsored by Atomic Energy Commission Contract AT(11-1)
Gen 10 Project 14,
A. Avizienis is with the Department of Computer Science, University
of California, Los Angeles, Calif. 90024.
C. Tung was with the Department of Computer Science, University of
California, Los Angeles, Calif. He is now with the IBM Research Labora-
tory, San Jose, Calif. 95114.

> de-
t. of
e 1,

TOW
101,

gital

i A

TRANSACTIONS ON COMPUTERS, VOL. C-19, NO. 8, AUGUST 1970

733

[8] ——, “Methods of selection of quotient digits during digital divi-
sion,” Dept. of Computer Sci., University of Illinois, Urbana, File
663, 1965.

[9] D. E. Atkins, “Higher radix division using estimates of the divisor
and partial remainders,” IEEE Trans. Computers, vol. C-17, pp.
925-934, October 1968.

[10] ——, “Iliac IIT computer system manual: Arithmetic units,” vol. 1,
Dept. of Computer Sci., University of Illinois, Urbana, Rept. 366,
December 1969.

A Universal Arithmetic Building Element
(ABE) and Design Methods for
Arithmetic Processors

ALGIRDAS A’VIZIENIS, MEMBER, IEEE, ANDD CHIN TUNG, MEMBER, IEEE

have multiple usage in various systems [13]. Storage arrays
are most directly suitable for such implementation because
of their repetitive internal structure. A typical large arith-
metic processor from current generation computers is not
readily built up from sizable identical subsystems. To a large
extent this is due to the rneed for a logic structure which pro-
vides fast carry propagation during addition. Either the
addition time or the structure varies with varying operand
lengths.

An algorithm for a carry-free addition and subtraction in
which the addition/subtraction time remains independent
of the length of the operands has been devised for re-
dundant signed-digit (SD) number representations [1]. SD
representations are redundant positional representations
with a constant integer radix r > 3, in which the allowed digit
values are a sequence of 2a+ | integers:

{éa.-"-T’Oala.”,

In this paper the overbar (1, 3, etc.} is used to designate nega-
tive digit values.

Further studies of SD number systems have shown that
the redundancy of representation allows other unusual
algorithms, such as wired-in significant-digit arithmetic (2],
[14], most-significant-digit-first serial addition and multi-
plication [2], algorithms which can accept both SD and
conventional operands to produce SD results [3], and two-
digit product as well as multidigit sum algorithms whose
results are suitable inputs to the carry-free two-digit sum
algorithm [4]. The self-contained digit-by-digit nature of
these algorithms suggested the possibility of a general arith-
metic building block suitable for microelectronic imple-
mentation [4], [5], [7]. This paper presents the results of

ay, withr/2 <a <r.

734

" recent investigations which have led to the definition of a
single universal arithmetic building element (ABE). The
ABE incorporates all the desirable properties of SD arith-
metic enumerated above as well as the means to accept
conventional number inputs and to convert SD numbers
back to conventional form. A storage register at the ABE
output provides for “pipelining” [12] of ABE arrays, with
the resulting increase in the effective rate of computing, A
single ABE can serve as the entire arithmetic unit of a digit—
serial computer.

A second important feature of the ABE approach is the
3 separation of the functions of logic design and arithmetic
design. The ABE is specified entirely by the numeric algo-
rithms which express the values of output digits in terms of
| the input digits. These algorithms are called the transfer
:" algorithms of the ABE. The logic design aspect is restricted
to the internal realization of the transfer algorithm within
the ABE. It will depend on the choice of the radix and of the
encoding of digit values. The arithmetic design is the speci-
fication of ABE arrays for a given algorithm, which may
range from addition of two operands to matrix inversion
and to the evaluation of trigonometric, logarithmic, and
similar functions [6], [7]. The arithmetic design is accom-
plished by a systematic procedure which is described in this
paper. The arithmetic algorithm is expressed by a directed
graph model which is translatable to an interconnection
diagram for ABE’s. :

The procedure of arithmetic design is illustrated by the
example of an ABE array for polynomial evaluation. A
minimally redundant radix-16 SD number system (3 to 9)
is chosen for the specific illustrations [4]. The practical
- choice of radices for an ABE is limited to radix 10 and
- ‘radices 2* with £ >2. Radix 10 requires only 13 digit values
(6 to 6); thus storage requirements are not increased com-
red to the conventional form (0 to 9). Radices 2* (i.e.,
8, 16, 32, etc.) require one additional bit of storage per
glt when immediate reconversion is not performed. Their
antages are their compatibility with conventional bi-
nary input operands. Further, full utilization of available
mternal logic complexity is possible by choosing the largest
- acceptable value of k in r=2*.

- The choice of a specific radix is not necessary in the
following description of the ABE transfer algorithms as
long as the details of internal logic design are avoided.

II. THE ARITHMETIC BUILDING ELEMENT (ABE)

A set of five arithmetic building blocks called arithmetic
microsystems was described in 1966 [4]. These building
blocks employed SD number systems, and the examples
were implemented in the minimally redundant radix-16 SD
system. The number of building blocks was subsequently
reduced from five to two, the universal building unit (U BU)
and the reconversion and sign unit (RSU) [5]. The present
paper describes a single building block, called the arithmetic
~building element (ABE). The reduction of the set to one ele-
‘ment is attained at the cost of greater internal complexity
nd reduced speed of reconversion to conventional repre-

IEEE TRANSACTIONS ON COMPUTERS, AUGUST 1976

sentation. New and more effective forms have been devised
for most ABE transfer algorithms.

The ABE is implemented with combinational logic and
storage elements for all output signals. The following de-
scription of the ABE presents a detailed statement of the
algorithms which define its internal logic design. The de-
scription uses the following notation:

ly] floor (integer |y|<y<|y]+1)
[¥] ceiling (integer [y]—1<y<[y])
r radix

a maximum SD digit magnitude (LI +r/2J <a<r—1)

— (overbar) additive inverse

.) + addition

Arithmetic | qyptraction

Operations: |, (or adjacency) multiplication
/ division

OR

NOR

AND

NAND

NOT
EXCLUSIVE OR.

Logic
Operations:

e >

A. External Structure of the ABE

The external connections of the radix-r ABE are show
in Fig. 1. The inputs supply either control or data signals
There are four types of control inputs (individual log1
variables):

1) Four Algorithm Lines: SS (simple sum), MS (multipl
sum), PD (Product), and RS (Reconversion). One of thes
four lines is permanently set to the value 1 and determine
the arithmetic transfer algorithm of the ABE.

2) Two Algorithm-Modifier Lines: Cl (conventional 3
input), and SF (significance arithmetic). When either one §
or both of these are set to the value 1, they modify the algo
rithm according to their specifications.

3) Two Output-Gating Lines: G1 and G0. The outputs o
the ABE are¢ held to zero by the logic condition
~GO0v G1=0; otherwise the specified outputs are avail
able.

4) m Sign Lines: C1,-+, Cj, -+, Cm, with m<r+ 1. The
logic value 1 on the sign line Cj commands a change of%}
s1gn (additive inverse algorithm) for the input digit appear-
ing on the associated input digit line Dj. The sign change 2
occurs before the algorithm is applied to the input digit. h

The remaining input lines are dara mpum

5) m Digit Lines: DI, , Dj, - -+, Dm, with m<r+1
Each digit lineis a bundle of d bit lines. Thc dlogic varlables
applied on one¢ digit line represent the value of one radix- -t §
input digit. The value of d depends on r and on the ch01ce
of encoding. A

6) One Borrow-In Line: BI. This input is used to repre-
sent an incoming borrow for the reconversion (RS) from
SD to conventional form.

DiGITS

]

ZERO LINES

1)

-—
BORROW-OUT

! BORROW~IN

RANSF ess P T S ZIZOTESE B Gye ourpuT
RANSFER) ‘

¥ ‘ .
ALGORITHM| ~™MS ABE Goe—/ GATING
ISELECTION | ~—*PD Clie— } ALGORITHM
: —RS) ¢ o ¢ O Cm SFle—] MODIFIERS

BEREES N

DIGIT LINES AND SIGN LINES

ig. . Input and output lines of the arithmetic building element.

he outputs of the ABE represent the results computed
g the specified algorithm. Two outputs (T and S represent
its; all others are individual logic variables. The follow-
jg outputs are provided.
) Two Output-Digit Lines: T and S. They represent the
its of the result and are also bundles of d bit lines each.
) Two Zero Lines: Z1 and Z0. The line Z1 assumes the
c value 1 only if the result computed by the ABE has
numeric value zero. The line Z0 assumes the logic value
L.
) Two Zero-Significance Lines: T¢p and S¢. They assume
logic values 1 only if the input SD digits for the recon-
sion (RS) algorithm are nonsignificant (*‘space’) zeros.
) One Borrow-Out Line: BQ. It is related to the BI input
and represents an outgoing borrow in the reconversion
orithm.
'Additional and more specific discussion of the inputs and
tputs will be found 1n the subsequent discussion of the
BE algorithms and their modifiers.
ur example employs r=16 with minimal redundancy
1="9). One digit line Dj receives five logic variables which
present the 19 digit values 9 to 9 inclusive. The maximum
owable number of digit lines is m=17.

. Number Formats

Input operands and output results are positional, con-
ant radix-r number forms:

1 1

xt=xt - 1oyl

coxLxgxixy X xk
ither conventional (CONV) or signed-digit (SD) forms are
mployed. The allowed values of a digit x} are {0, 1,-,r — 1}
r CONV forms, and {7, -+, 1,0, 1, -, a} for SD forms,
ith the constraint r/2 <a<r. Unless explicitly otherwise
ecified, SD forms with minimal redundancy (a=|1+r/2))
e assumed.

Rightward indexing of digits is used unless otherwise
ated :

tt, —n, — (n__]')7...7_27_1’05192"“7’15”.

] =

ith this indexing convention, greater indices refer to less
gnificant digit positions. Positive indices are used to indi-
te positions to the right of the radix point, while negative
nd zero indices identify digit positions to the left of the
dix point.

When 'more than one operand is considered, the super-
ript is employed to identify a specific operand, i.c., x* and

ENIS AND TUNG: UNIVERSAL ARITHMETIC BUILDING ELEMENT

735

x? for two operands, or x!, x2, -+ -, xJ, -+, x™ for m oper-
ands. The ith digit of x’ is uniquely identified as x/.

C. The Additive-Inverse Algorithm (Cj= 1)

A sign line Cj is associated with every digit line Dj in the
ABE (Fig. 1). When the digit x} is the input on Dj, an asso-
ciated sign-change variable ci is applied on Cj. The logic
value ¢i=:1 causes the sign of the digit xJ to be changed
(except when x! is zero) to the opposite value before the
selected ABE algorithm is applied to the input digits.

The sign-change variables ¢! permit the specification of
either the operand x/ or its additive inverse — x” as the input
for any algorithm which is implemented by ABE’s. For
example, the simple-sum algorithm can form any one of the
four sums:

x4 (=xY 4+ x%; xt 4+ (=x3); (=xH+(—x?)

with appropriate application of the sign-change variables.

In the following discussion of the ABE algorithms the
effect of ¢ will be expressed in terms of the arithmetic sign
variable ¢4 which is defined as

oi=(~ci~c)
and assurnes the values +1 and -- 1. The value of the modi-
fied input digit which is processed by the ABE algorithm is
the product g{x{. Unless explicitly otherwise stated, the
same value of ¢’ is specified for the entire operand x’. The
value of an input operand is given as ¢/x’ in the subsequent
discussion, where o/ is the common sign variable for the
operand.

D. The Simple-Sum Algorithm (SS=1)

The SS algorithm computes one SD sum digit s; for the
n+1-digit-long sum s=g'x'+¢?x* of two n-digit SD
operands.

Iy Inputs: x}, x}.,, x?, x2 | on D1, D2, D3, D4, respec-

tively; ¢* on C1 and C2; ¢? on C3 and C4.

2) Outputs: Sum digit s; on S; zero-condition z;, ~z; on

Z1, 70, respectively (z;=1 if 5,==0).
3) Algorithm: Define the digit sum K, (for h=i and
h=i+1)as
oix} + ofx} = K,
Compute (for radix r > 3) the output digit s; as follows:

5 =K ~rg; + ¢;44

where
0, |K,| < a
gn =11, K,>a
1, K, <a.

The operands x! and x? are extended by prefixing oné

zero digit at the left end of each. This extension is required =

to assure the correct n+ 1 digit sum s. A total of n+1 ABE’s
is used.

4) Example (r=16, a=9): ¢!=c¢*=0; x'=09076;
x* = 0.8953 (internal values shown in decimal).

736

IEEE TRANSACTIONS ON COMPUTERS, AUGUST 197

E. The Multiple-Sum Algorithm (MS = 1)

The MS algorithm computes two SD digits s; and t,_, :
one each for two n-digit words (s, 1) which represent the
sum ‘of m words (n-digit SD operands) x' to x™ such that

m
s+t=) ox/, with m<r+ 1.
i=1

1) Inputs: xion Dj and ¢/ on Cj for j=1, -, m.

2) Outputs:s;onSand t; ., on T;zero-condition variables
z;, ~z; for the digit sum Z, (see below) on Z1, Z0.

3) Algorithm: Define the digit sum I, and its functions
(for the radix r>3) as follows:

m
= Jyd
X = Z 01X
j=1

1Z) /r
R(Z,) = integer remainder || —rI(Z)).

integer quotient [Z,

The output digits are computed as follows:
sign (¢, ;) = sign (Z))

| = %’I(Z)i) + 1,
TR,
5, =2, — rt;_ .

R(Z)>a
RZ)<a

The constraint m<r+1 assures that the output digits 5;
and t;_, do not exceed the allowed range of values of the
input digits x/. A total of n ABE’s is used.
4) Example (r =16, a=9): ¢! = c?=¢?
x'=09807; x*=0.0759; x>=0.6348; x*=
ternal values shown in decimal).

i =0 1 2 3 4
oix! = 0 9 0 7 6
aix} = 0 8 9 5 3
‘ Lo o [— | o P— I —
| Ko Kooy | =|0.T7 R A KRS | ‘ 12,3 30 |
ss=1] GuGivr = 0.1 L L1 Lo 0.0 ‘
| K; - 16g; + g.+, :0—O+T! fT7—T6+1] ‘9—16+1‘[{12-16+0; 3-0+4+0
!] J I 1 i) . _
! 1 !] 1 !
s, = i 0 5 3 3
sum s = 1.0643.

sum (s; 5)=(0.2691; 1.202).

F. The Product Algorithm (PD = I)

The PD algorithm computes one SD product digit s,
for the n+1-digit-long product s*=o;xjc’x* of one SD |

digit x} and the n-digit SD operand x2.

I) Inputs: x} on D1; x2, x2, ,,
Cl; c¢* on C2, C3, C4. 3
2) Outputs: Product digit sf,; on S; zero-condition vari- |
ables zj, ;, ~zr,; (for s¥,) on Z1, Z0.
3) Algorithm: Define three digit products n,,, (for h=i
i+1,i+2)as follows:

x?., on D2, D3, D4; ¢' on |

Tesn = (01x}) % (07x2).

Compute the cutput digit sf . ; in two steps. First, apply the
MS algorithm to each .., (substituting =, , , for Z,, u,, ,_ !
for t;_;, and v, for s)) to get the digits Uy -1 and vy,
such that

Tty = Ty + Uy,
Thtit1 = Fllpyi ot Dy
Thtivy ™= Plpsiv 1+ Ui

Second, perform the SS algorithm (substituting Uiis Uksie1 3
for x{, x{, , and wey;, w14y for x2, x2,) to get the product
digit:

ko
Skvi = Vgt Ugsi = "wi + Grviv1

The n-digit operand x* is extended by prefixing one zero
digit at its left end in order to yield the correct n+ 1 digit 4
product. ABE count is n+ 1.

When the multiplier x' consists of more than one digit
(say, g digits) we can simultaneously obtain all products
s*=x;x* (k=1, 2,-- -, g). The product x!x? is computed .§
by summing the columns of product digits with the same
index, using the MS algorithm followed by the SS algorithm.
The total number of ABE’s required to form the product
x,x? is gn+g; therefore g<n is the preferred choice when
g+#n. The maximum number of digits with the same index 3
to be summed by the MS algorithm is f=min (g, n+ 1. §

It is noted that the PD algorithm is internally more com- §
plex than the previously described product (PU) algorithm !
[5] which computed two output digits for every digit 4
product x;x?, but had f=2 min (g, n). ‘

4) Example (r=16,a=9): ¢'=c?=0, x} =9; x2=0.681 §
(internal values shown in decimal).]

ENIS AND TUNG:

UNIVERSAL ARITHMETIC BUILDING ELEMENT

0 T

7317

. The Reconversion Algorithm (RS=1)

The RS algorithm receives SD digits x!, x!, , and recon-
rts them to conventional (CONYV) digits y,, y,., such
that the CONV radix-r form y represents the same value as
the SD radix-r ¢'x*. A borrow-propagation must take place
because the CONV digits cannot assume negative values.

1) Inputs: SD digits x} on D1, x!, , on D2; ¢! on CI and
C2; input borrow b, ,; on BI (from the positions i +2,
i+ 3 of x1).

2) Outputs: CONV digits y, on T, y,,, on S; output bor-
row b;_; on BQ; zero variables z,, ~z;(for y;, v;, ;1 =0)
on Z1, Z0.

3) Algorithm: For h=i+ 1 and h=i compute sequentially

b 0, olx} —b,=0
T ikt - by <0
Yo = rhy_y + ayxy = by
An output borrow b__,_, =1 from the ABE in the most sig-
nificant position i= —n will cccur when the SD number

o'x! is negative. The relationship between the values of x'
and y is therefore

lxl

ag

v — ’,n+1b_n_1.

i = 0 1 2 3
oix? = 0 6 8 1 0
==
Ly e — .
J— = [
‘ Tt 0 34 1 72 19
oxx; =9 “ = | o= i 1
-5 Tysisy fil 3 72 | 9 ‘1 0 i
o Thti+2 29 0 0
Kk+i’ Kk+i+1 = 1 10 T(),g - g, 9 | ; 9.0 \
T 7 : T T
sk 3 6 7 7
PD(i = 0) | PD(i = 1)
- Y | =1
T = 0 =(16)0 + vO o | Tt 54 = (16) 3 + ;gl -
Tpr1 = 54 = (16) 3_‘" 6 T+ 2 72 = (16) ‘,Z",HL ‘r‘g‘
Mpey = 12 = l(1<5) 4+ 8 Mey = 9 = (16) 10+ 9
1 I T
Ky, K+ = 3;7 10 Kii 1 Kz = T_Q__g
Sllﬁ = Z 5‘14—1 = 6
PD(i = 2) PD(i = 3)
Terr = T2 = (16) 4 + 8| vy = 9 = (160 +[9]
Ty = 9= (16) 0+[9 Teew = 0= (16) [0+]0]
Tyey = 0 = ((16) 0+ 0 Tss = 0 = (16) [0+ 0
! ! i 1
Kyip Kyyy = @, 9 Kivs Kisg = %_,9
Skt2 = 7 Skes = 7

product s* = (4.6 7 7) x 167k

The presence of the output borrow indicates that the result
y represents the negative value ¢'x' as the complement with
respect to r"*1 (or “two’s complement” when r=2* is em-
ployed). Connecting the output borrow b_,_, as the input
(“end-around”) borrow b, into the ABE in the least signifi-
cant position i=¢g of x' will yield the complement with
respect to ¥""!—1 (or “‘one’s complement” when r=2F)
which is more readily converted to sign-and-magnitude
representation of ¢x!. Taking individual digitwise comple-
ments y;=(r —1)— y,; will yield the magnitude y of the nega-
tive number olx!,

It is to be noted that the RS algorithm yields only two
digits of y per ABE, while the previously described recon-
version-and-sign unit (RSU) reconverted at least m/2 digits
[5]. The number of output wires is the limiting factor in the
ABE. An internal arrangement which would utilize some
of the ABE input digit lines for CONV digit outputs during
the RS algorithm would approximate the RSU capability.

The RS algorithm may be applied as a modifier for the SS
and PD algorithms. The BI and BQ lines must be connected
according to the RS specification. The output is the CONV
form of the SS sum s or the PD product s*.

4) Example (r=16,a==9):c' =0; x' =0.1035. 1

738

i = 1 2 73 ﬂ

oixt = 1 0 3 5

: L

' ra}x}—? = 01 |3 s

‘ N I
RS—-I’ [bq ,\—\ :lJlﬁ{\\JO\OL\

L by =0 Mo N o0=5p,

| B Vo

- T T

16b,_ +alx! —b=y, = 015 13 5

result y = (0.0, 15, 13, 5),,

= (0.0000, 1111, 1101, 0101),.

H. Conventional-Input Modification (CI = I)

- The similarity between CONV and SD forms is exploited
by the CI modification which allows conventional digits
©(0<x{<r—1) as inputs to the ABE and thus provides a
convenient conversion from CONV to SD forms. The mix-
‘ing of SD and CONV-input operands applies to SS, MS,
and PD algorithms.

1) CQNV-Input Simple Sum (SS= 1 and CI= 1) The input
operand x! is a CONV form (sign-and-magnitude).
The input ¢! =1 is applied when the sign of x! is minus.
The digit values x{, x!,., are 0 to r—1. The SS algo-
rithm remains unchanged, since the maximum digit
sum has the value

- iKh~max=(r*1)+a=r+(a__1)

which assures that |g,/ <1 and |s; < a will hold.

2) CONV-Input Product (PD=1 and CI= [). The input
digit x; is a CONV form digit (0 <x} <r—1). Input C1
receives ¢' =1 when the sign of x! is minus. The PD
algorithm remains unchanged, since the maximum
digit product has the value

‘nk*-hlmax = a(r -]) = r(a - 1) + (r - a)

which assures that |u,,,_(|<a—1 and |v,.,[<a will
hold.

3) CONV-Input Multiple Sum (MS=1 and CI=1): The
digit sum X, of the MS algorithm cannot exceed the
limit

IZi}gra%-a or m<r+1

i in order to assume that |t,_;|<a and |s;/<a will be
| satisfied and the result will be SD forms. The maximum
number of CONV input digits which satisfies the same
requirement is m’ such that m'(r— 1) <(r+ l)a, or

m' <|a(r + D/(r — 1)].

In order to allow the mixing of CONV and SD input
operands, we specify the following rule for MS=1 and
Cl=1:

for every pair of digit lines Dj, D(ji+1) with j odd
(j=1,3,5,), either x] is a CONV digit and x/* =0,
or x{ and x] ! are both SD digits.

IEEE TRANSACTIONS ON COMPUTERS, AUGUST 197

The existence of the CI modification climinates the nee
for special conversion algorithms. SD forms with radice
2%(k=2,3,4,---)are directly compatible with conventional
binary number representations, since binary input operand
are accepted by radix 2¥ ABE’s in the CI mode, and the R
algorithm returns results in binary form.

1. Significance- Arithmetic Modification (SF = 1)

This optional feature is applicable to the SS, MS, PD
and RS algorithms and is compatible with the CI modifica
tion. The algorithms are altered to the significant-digi
mode [14] by SF=1. A special “space-zero” digit value ¢
is used to identify nonsignificant positions in SD operands

In the reconversion (RS) algorithm, input digit value
Xi,=¢ and x! =¢ cause the outputs y,, , =0, S¢p=1 and
¥:=0, T¢ =1, respectively. The logic [outputs on S¢ and
T¢ explicitly identify the zero value outputs on S and T to be
nonsignificant positions in the conventional representation

Details of the SF-mode algorithms have been described
previously [2]--[4], [7]. The general rule requires a “space-
zero” output value ¢ whenever at least one input digit in
the same position has the value ¢.

III. A GrRAPH MODEL FOR ARITHMETIC
PROCESSOR DESIGN

A single ABE can serve as a digit-serial arithmetic pro-
cessor. Arrays of ABE’s can be arranged for the pipelined
hardware implementation of an entire class of functions
[6]. The arrangement of ABE’s into such arrays can be
called arithmeric design, in contrast to the term “logic;
design,” which is needed only within the ABE. Arithmetic1
design is the process of converting an arithmetic expression?
to an interconnection diagram of ABE’s. The present sec-
tion presents graph models for algorithms and ABE arrayss;
which make a systematic arithmetic design procedure pos- 3
sible. The procedure has been programmed for computer- g
aided design of large arithmetic processors. ‘

A combinational' arithmetic (CA) net is an acyclicall
interconnected array of ABE’s. Such a net can be described :
by a directed graph. The graphical representation of CA}
nets exists in two levels, the algorithm level and the hard-!
ware level. At the algorithm level, the CA net is described in;
terms of a loop-free directed graph with vertices represent-
ing fundamental arithmetic, logical, and test operation
At the hardware level the CA net is also described by a loop-
free directed graph, but the vertices are specified in terms:
of the functions performed by the ABE’s.

In the description of CA nets, radix-r fixed-point number
are defined to be of the form
"X g Xg. XyXp "t Xy)
and their format is described by the pair of nonnegativ
integers (p. q), in which p is the length (in digits) of th
integer part of x, and g is the length of the fraction part of x.

X = (:‘:~p+1x—p‘+2 o

! The word “combinational” is used here to denote the absence of feed- i
back loops within:the CA-net. Arithmetic niets with closed loops are calle
“iterative.”

IENIS AND TUNG: UNIVERSAL ARITHMETIC BUILDING ELEMENT

739

TABLE 1
H-LEVEL VERTICES

Inputs

Multiplicity p

PDp .q: 1]

SD multiplicand + x?, n digits

ame and Notation Symbol (Not Modified) Numeric Output Result of Output Arc
Simple Sum: 2 SD summands +x!, +x? single SD word s .
SSlp . g 1} @ n digits each p+g=n+1 digits g
Multiple Sum: m SD summands +x! -, £ X" double SD word s, ¢ -
MS[m; p . g: 1] ® n digits each p+g=n+1digits g
Product: ® SD multiplier +x'. g digits f-tuple SD word s', % - - -, 5¢ u=f

p+g=n+g digits J=min (9. n+1)

Reconversion: SD word + x! CONV word yv; p+g=n 1

RS[p . ¢: A} n digits output borrow b, .

Storage: SD word x* the input word 1
Sk g Al ® n digits .

& A vertex in either the algorithm or the hardware level
ph is identified by the notation

OP[m;p.q;h]

operation symbol of the vertex
m number of vertices providing inputs
.q format of the result of the vertex
h number of vertices receiving the output.

e parameter m may be omitted when its value is defined
the operation symbol. All input operands are signed-digit
bers except when conventional numbers are explicitly
cified. Conventional form results are obtained only from
econversion (RS) veriex.

An arc represents either a numeric result or a logic (two-
ued) variable which is generated by its source vertex. The
eiving vertex is identified by the arrowhead of the arc.
e transfer of information is unidirectional.

More specific properties of vertices and arcs are presented
the following discussion on the two levels of description.

The Hardware Level

The hardware-level (H-level) graph describes the algo-
hm which is carried out by the CA net in terms of ABE
ays and their interconnections. Five different types of
level vertices are used in an H-level graph. They are de-
ibed in detail in Table I. Each H-level vertex (H vertex)
resents an array of ABE’s, except for the storage vertex S
ich represents a register.

The operation symbol of an H vertex contains the follow-
information : the ABE algorithm, the additive inverse
put specifications, and the algorithm modifiers. The addi-
ve inverse is specified for any input operand x’ by listing
s superscript j with an overbar in parentheses following the
\BE algorithm symbol. For example SS(1) indicates the
m (~x"')+x?; PF(2) indicates the product x!(—x?); and

MS(, 4) [5; p.q; h] indicates the sum (—x!)+x*+ x3
+(—x%--x°. On the graph, a solid dot at the arrowhead of
an arc indicates the additive inverse ol the input operand on
this arc.

The algorithm modifiers are listed following the ABE
algorithm symbol, separated by “slant” symbols. For ex-
ample,

MS(T, 3)/CI5)[5: p.q: K]

modifies the previous MS example by specifying that x>
1s a conventional-form operand. The storage vertex
S/CI [p.q; h] indicates a CONV form operand, and
SS(2)/SF [p.q; h] indicates a significance-mode addition
xt (= x%).

An H-level arc (H arc) represents an output result (numeric
or logic). An identifier tag is attached to an arc. For numeric
results the tag identifies arithmetic shifts of k positions: k1
for left, and k| for right shift. It also specifies the extraction
of certain digits of the result, and identifies the receiving
input line. For example, the tag

21 (sy5,53)|D2

identifies that the output digits s,s,s53 are extracted from
the sum § and are supplied to the D2 input lines of the re-
ceiving H-vertex ABE’s with a left shift of two positions.
Omission of the digit extraction information means that
the entire result is transmitted; zero shifts are also not
shown.

An arc which represents a numeric result has an asso-
ciated multiplicity u. The value of u is a function of the
source vertex as shown in Table I, in which the outputs are
single (u==1), double (u=2) or f-tuple (u=f) words.

Logic results are obtained from the ABE output lines
71,70, Tp,S¢, BQ. When an H arc represents a single logic
variable, the tag contains the variable name, the index of
the source ABE, and the receiving input line. For example,
Z1(2)|G1 indicates that the Z1 output of the ABE in posi-

740

TABLE 11
A-LEVEIL VERTICES

IEEE TRANSACTIONS ON COMPUTERS, AUGUST 1970

Operatio;lmr } Notation \ S};mbol Inputs Output } H Vertices Needed
{ H — E—
: :
Addition Sm:p . q;h] ! @ m operands sum \ SS. MS
Mutltiplication ! Iip . g; k] @ 2 operands product SS, MS, PD
Reconversion RS{p . g: 4] SD number CONYV number RS
Storage | Slp . q; h) @ | I operand input word i S
|
Logic Op. # L#[k; h) @ k operands 1 logic word | S8, MS
‘ i
‘ ! i
1 : : N L e .
Test Op. X } X[k; h] | @ k operands I logic variable i SS, MS, RS
| | .
1 ‘ | operand input word
Gating : Glp g¢:h) @ SS.orS
| gate variable G if G=TRUE ‘
\
m operands 1 word |
Merging Mim;p . g;h) ‘ @ ‘ SS. MS
‘ ‘ (only one nonzero) ‘ (nonzero input) ‘
i \ .

tion i=2 of the source vertex is conveyed to every G1 input
of the receiving vertex. A logic variable (TRUE or FALSE)
input to a digit line is received as the digit value 1 or 0,
respectively.

A fully specified H-level graph provides a complete spec-
ification for the wiring diagram of the CA net.

" B. The Algorithm Level

The purpose of the algorithm-level (A4-level) graph is to
describe the algorithm which is to be computed by the CA
net in terms of elementary arithmetic, logic, transfer, test,
selection, and storage operations. The H-level description
is also acyclic and corresponds to a sequence of typical pro-

- gram (or microprogram) steps, which are identified as ver-
tices on the A:level graph.

The principal constraint which must be satisfied by the
A-level graph is that every A vertex should have an equiva-
lent H-level vertex or graph. The conversion from A level
to H level is carried out by direct replacement. The resulting
H-level graph frequently may be simplified by H-vertex
merging, which is discussed in a subsequent section.

The extent of the A-level vertex set is optional with the
designer and depends on the complexity of the algorithms
which are to be implemented. A typical set of A vertices is
listed in Table II. The translations of these vertices to the
H level are described in following sections.

The notation for 4 vertices has the same format as for
H vertices, but different operation symbols are used. The
additive inverse and algorithm modifier specifications,
where applicable, follow the H-level rules.

The A-level vertices of Table 11 fall into five categories.
The arithmetic vertices T, T, RS (with additive inverse in-
cluded in each) are used for the implementation of arith-
metic. The siorage vertex designates storage registers for
initial conditions. The logic operation vertex L# is a generic
vertex in which # represents any one of the logic operations
(NOT, AND, OR, NAND, NOR, EXCLUSIVE OR, EQUIVALENCE,
etc.). The test operation vertex TX is also generic. The sym-
bol X represents the test; for example TP, TZ, and TN:
stand for test-positive, test-zero, and test-negative, respec
tively. The selection operations are implemented by the use
of the gating vertex G and the merging vertex M. These
vertices (as well as the logic vertices L#) represent auxiliar /
uses of the ABE’s which may be performed by other type
of elements. :

A-level arcs have the same meaning as the H-level arcs:
The A-level tag specifies a scale factor of #** instead of an
arithmetic shift. Digit extraction remains explicitly speci-;
fied. The logic (control) signals on the A-level arcs have the;
values TRUE and FALSE. The multiplicity of the A-level arcs
is one, since the representations of the results are not cons
sidered at the A4 level.

C. Elementary Graphs for Arithmetic Operations

The elementary A4-level graphs for addition (£) and mu
tiplication (IT) are shown in Fig. 2. The H-level impleme
tation of the A-level addition graph is shown in Fig.
Three cases are distinguished :

1) for n=2 operands, an SS vertex replaces the ¥ vertex!
[Fig. 3(a)];

ICIAMNECINNED
\$/< S/ >‘$/
x ! N\eeexi //x“

Z
f= x!
i=1
(a}

e e
S) S
\~/\/\/7;,/
x! x2
Sl

\T(—xlx2
(b)

Fig. 2. A-level graphs for (a) addition and (b) multiplication

with n operands.

x! x ! x"
\\\/}\)/
€D

+
Txuxz p=2
{a) ¢
(+
x4+ x24+x"
(b)
S
¥
s =2

(c)

Fig. 3. H-level implementation of addition. (a) n=2. (b) 2<n<m.

() m<n<m|m/2].

2) for 2<n<m operands, an MS vertex followed by an
SS vertex replaces the T vertex [Fig. 3(b)];

3) for m<n<m|m/2| operands, a two-level cascade of
MS vertices followed by an $S vertex replaces the X
vertex [Fig. 3(c)].

The H-level implementation of the A-level multiplication
eraph is shown in Fig. 4. The structure of the H-level graph
depends on the length (¢ digits) of the shorter operand x!.
Two cases are shown n Fig. 4:

) for g<m, the I1 vertex is replaced by a PD vertex
followed by the graph of Fig. 3(b) [Fig. 4(a)];

2) form<g=<m|m/2 |, the PD vertex must be followed by
the graph of Fig. 3(c) [Fig. 4(b)].

Case 1) above should suffice for most multiplications.
I For example, a radix-16 multiplier x' can have up to
P =17 digits (or 68 bits) without requiring the graph of
Fig. 4(b).
The conversion vertex RS and the storage vertex S re-
main unchanged in the translation from the A4 level to the
H level. The S vertex is omitted in the graphs of Figs. 3-7,
i 10, and 12.

741

+ () - :;:)
\F oS N
1# w2 K= 7\\ l/
+) *
< x2 ’ u= 2
(o) +)
I
(b}

Fig. 4. H-level implementation of multiplication.
(@) g<m. (b)y m<g<m|m/2|.

D. Graphs for Logic, Test, and Selection Operations

In addition to the arithmetic functions, the A-level graphs
may contain vertices which represent logic, test, and selec-
tion operations. In this section it is shown how these opera-
tions can be implemented at the H level using only the
defined algorithms of the ABE.

1) In the Implementation of Logic Operations: The logic
values (TRUE, FALSE) are defined in terms of numeric digit
values (1, 0):

TRUE = 1, and FALSE = 0.

The digit values representing k logic variables are desig-

nated w,, - - -, w, and are applied to the input digit lines
D1, - - -, Dk. The output is either z (on line Z1) or ~z (on
line Z0).

The implementations of the logic operations NOT, AND,
OR, NAND, NOR, EQUIVALENCE, and EXCLUSIVE OR by the ABE
are as follows (using the SS or MS algorithm):

NOT: ~w, = z(w, + 0), with k = L.
k \,
AND: wl/\wzx\-'-/\wk=z<<zw,->-k),
i=1 Y
with k < m — 2 (two inputs accept the
constant input value k).
k
OR: wlvwzv'--vw,\.=~z<z wi>,
with k < m, =l
NAND : ~ Wy AWy, A A W)
h ~
= ~ Z<<Z w,—> - k>’withk <m-—2
i=1 ,
K
NOR : ~Wy VW, Vv W) = z(Z wi>,
i=1

with k < m,
EQUIVALENCE: ~ (W, # w,) = z(w, — w,), with k = 2.
EXCLUSIVE OR: (w; # w,) == z(w, + w, — 1), with k = 2.

The notation z(f(w;)) indicates the z output (on Z1) of an
ABE which computes f(w;).

Fig. 5 iilustrates both A-lavel and H-level graphs for the
logic function f= ~ [(a A ~b) v ¢]. The H-level vertices re-
quire one ABE per digit of the input word or words; the
output is a logic word of the same length.

D1

(b)

Fig. 5. Graphs for the logic function f= ~ [(@a n ~b) v cl.
(a) A level. (b) H level.

While it is interesting to note that logic operations can
be performed using ABE’s, such use is generally not con-
sidered practical because of the relatively high complexity
and cost of an ABE.

2) Test Operations: Test operations at the H level refer
to the test of an arithmetic result: the sum =¥/ of two or
more (k> 2) numbers. The result is a pair of logic variables
TRUE and FALSE (FALSE= ~ TRUE), where TRUE=1 when the
test is satisfied, and TRUE=0 if it is not. Test-positive (TP)
is satisfied for x/>0, test-zero (TZ) for £x/=0, and test-
negative (TN) for Zx’ <0.

At the H level the TX vertices are implemented by SS,
MS, and RS algorithms. Fig. 6 illustrates the test for x =«
which is implemented as TZ for x—a=0 at both levels. At
the H level the ~ z; outputs for all digits of x — @ are summed
m an MS vertex, which has z=0 if all ~z,=0 at its inputs.
Fig. 7 shows the test for x<a, implemented as TN for
—a<0atboth levels. The negative sign of x —a is obtained
the RS vertex which has the borrow b, =1 from its most
pificant position when the result is negative. The sign of
D number is the same as the sign of its most significant
digit; therefore leading zeros may conceal the sign
—a. This possibility makes a reconversion to CONV
T necessary.

More complex tests are implemented as combinations of
e elementary tests. For example, the test for a<x<b is
implemented as the logic AND of two TN tests:

S=1la—-x)<0] A [(x —b) <0].

A more detailed discussion of testing is presented in [7]1.

3) Selection Operations: The gating (G) and merging
(M) H-level vertices provide the equivalents of selective
gating (AND—OR) operations in conventional logic circuitry.
They are included to demonstrate the extent of the functions
provided by CA nets. Their use is not practical when sim-
pler logic circuits are available for this purpose.

An illustration of the use of G and M vertices is shown in
Fig. 8. The function of the CA net is as follows:

s={®

Js

X2y
X < y.

The gating function (replacing AND) is implemented by SS
vertices (S can also be used). The merging function (replacing

IEEE TRANSACTIONS ON COMPUTERS, AUGUST)
x \\ / a
AR
Z0
1Z :3:)

ITR UE T 7
f

f
(a) {b)
Fig. 6. Graphs for the zero test x—a=0. (a) A level. (b) H level.

X\\
T
}P{ %
¢ TRUE '\l/b out
(a) (b)

Fig. 7. Graphs for the negative test x —a<0. (a) 4 level. (b) H level.

(b)

Fig. 8. Graphs for the selection: f=x if x i f=yifx<y.
(a) 4 level, (b) H level.

OR) uses an SS vertex ; an MS vertex is needed for more than
two inputs.

E. Iterative Arithmetic Nets

The acyclic nature of the CA net may require too many §
ABE’s to implement the net at an acceptable cost. In this §
case a smaller CA net can be designed and used iteratively
to compute the same function. Such an iterative arithmetic 3
(IA) net requires fewer ABE’s and more time than the CA |
net which computes the same function in one pass through 4
the net.

The CA net provides a reference point for the design of a
processor. It requires the greatest number of ABE’s and
has the lowest computing time. An entire set of IA net de- j
signs usually can be derived from the CA net: these IA nets |}
have gradually decreasing cost and increasing time require-
ments. The IA net with the highest acceptable computing
time will yield the least costly design. The graph models of
the original CA net explicitly display the regularities of the
CA net structure and therefore facilitate the IA net design.

Hlustrations of IA nets are provided by two nets for the
implementation of division [4], [16]. A further example of
an IA net is found in the design of an ABE-array arithmetic
processor which computes a large class of functions [6].
The same processor also employs pipelining of CA nets in

er to achieve the highest possible rate of utilization. The
prage registers at the output of the ABE are provided in
der to make pipelining of CA nets feasible.

V. CA NETS FOR THE EVALUATION OF POLYNOMIALS

The Algorithm and Its Graphs

n this section we consider the application of CA nets to
plynomial evaluation. A common method of approxi-
ating a given function is to employ polynomial approxi-
ation [8], [9]. The application of CA nets to polynomial
jaluation will serve as an illustration of their potential
pplication. A method proposed by Estrin [10] permits the
stest evaluation of explicit polynomials when sufficient
arallel computing capacity is provided. The method to
mpute the nth-degree polynomial

el. p(x) =ay + a;x + -+ + a,x"

quires the computation of the terms C!V
CV=a, +xa,,, i=02",2|n2]|

llowed by successive computations of terms CY for
om:

CP = C 4 x2C,, i= 0,4, 4[n/d]

Lo oD 27 nm— 1)
Ct C! + x !

i+2m- 17

i=0,2m",2"n>2"]
his process will terminate when
m = |log,n| + 1
p(x) = C§".
: he procedure corresponds to the factoring:
px) = ao, + a;x + x*(a, + asx)
+ x*[a, + asx + x*(ag + a;x)]
+ x¥[ag + agx + x*ayo + a5,X)

+ x*ay, + ay3x + xHag, + agsx)] +

We notice that for each j, all CY may be computed simul-
taneously in one multiplication time plus one addition time.
Therefore, the minimum time to compute p(x) using this
algorithm is

t = [log, n] + | multiplication—addition times.

It is necessary to have a sufficient number of arithmetic
units to compute C¥ simultaneously for any j in order to
achieve this minimum time. This requirement can be met
by a CA net in which each vertex performs addition and
multiplication.

A simple example illustrating how CA nets are organized
to evaluate third-degree polynomials using Estrin’s method
is shown in Fig. 9. Here the evaluation of a third-degree
polynomial at the 4 level takes [log, 3 |+ 1=2 units of time
required by a pair of II-Z vertices. The speed at the H level
requires further information. The delay through one vertex
in the H-level CA net is the delay through one ABE. The
total delay through the H-level CA net is equal to the num-

7IENIS AND TUNG: UNIVERSAL ARITHMETIC BUILDING ELEMENT

ot st NG

743

ag+ xa, + x2(a2 + x0,)

Fig. 9. A-level graph for the evaluation of polynomials (degree 3).

ber of vertices along the longest information flow path of
the net. The configuration and complexity of the H-level CA
net depend not only on the topology of the A-level CA net,
but alsc on the precision of the data word.

The cost of the CA net is defined as the count of ABE’s in

‘the net. It is a function of the degree of the polynomial and

of the precision of the data word. Error in a CA net comes
only from round-off operations if all input data are assumed
to be free from inherent errors. Precision controls the size of
the round-off errors. Since precision thus affects the speed,
cost, and error of the CA net, it will be used, together with
the degree n of the polynomial, as the independent variable
in the study of speed, cost, and error of the CA net.

B. Complexity and Speed of the CA Net
In an A-level CA net for evaluating the polynomial

p(x) = i a;x’
i=0
the number of storage (S) vertices N(S) is
NSB)=n+2
because there are n+1 coefficients a,, i=0, 1,2, -+, n, and

the independent variable x.
The number of multiplication vertices in the net is

N(T) = n + |log, n|
and the number of addition vertices is
NZ) =n.
The speed of this A-level CA net is
© = [log, n| + 1 TIZ time units

where cne IIZ time unit is the delay through one I1-Z pair
of vertices.

The H-level implementation of the A-level vertex IT is .
shown in Fig. 4 One PD vertex and one SS vertex are...
needed, i.e.,)

N(PD) = N(SS) = N(II).

The count of the MS vertices depends on the precision of
the operands. Given the precision g=min (g, n+ 1) accord-
ing to Table I, there are two cases:

Fig. 10. H-level translation of the A-level graph of Fig. 9.

1) a single MS vertex is sufficient when g <m;
2) a two-level cascade of MS vertices is required for
m<q<m|{m/2].

The one-level cascade is sufficient for most cases. For in-
stance, in the radix 16 and m= 17 example a precision of 17
radix-16 digits can be accommodated. The number of MS
vertices in the first level of the cascade of case 2) varies from
1 to |m)2 | as ¢ increases, and is given by

K =[(g — m}m - 2)].

The second level always contains one MS vertex.

It must be noted that in the formation of the term
a;+a;,,x, the summation in the MS vertex includes the
single word g, along with the result word of the PD vertex,
In this case the preceding results apply when q is taken to
be the sum of the multiplicities of the product a;, ;x and the
word a;. A direct translation of the A-level net to the H level
is shown in Fig. 10 (including the dotted-line vertices) for
q<m.

The detailed count of ABE’s in the SS, MS, and PD ver-

tices has been discussed in the algorithm description of Sec-
tion II.

C. Computer-Aided CA Net Design

The graph of a CA net displays its structure and is a con-
venient means to design a CA net for relatively simple prob-
lems. For more complex problems, however, the graphical
approach becomes tedious, especially when many designs
are needed for purposes of evaluation. A programming
effort was undertaken to demonstrate that a graphical CA
net may be represented by tables acceptable to conven-
tional computers, and that nontrivial operations on these
tables can be performed by the program. The program is so
far limited to evaluating polynomials up to 15th degree with
Estrin’s method. It is written in FORTRAN Iv for running on
the SDS Sigma 7 computer of the Digital Technology Re-
search group at UCLA.

The topological relations among the vertices and arcs of a
graph can be described by a family of matrices (connection
matrices, precedence matrices, etc.) or threaded lists. The
list representation was adopted for the following reasons.
‘The description of vertices and arcs in a CA net consists of

" more complicated, more attributes will need to be add

IEEE TRANSACTIONS ON COMPUTERS, AUGUST 1

many parameters, and it is expected that, as problems

Consequently, greater numbers of matrices are required
fully describe a CA net; this may result in an overflow
memory capacity. On the other hand, a threaded list is mu
less storage consuming, even though searching through t
threaded list may be slower.

The prograra consists of four parts:

1) generation of CA-15 net for evaluating

15
p(x) =) a;x’atthe 4 level,
j=0

2) generation of CA-i net for evaluating

px)= 3 a;x’/ with i <15

j=0

at the A4 level from the CA-15 net;
3) translation of CA-i net from A level to H level;
4) simplification of the H-level CA-i net.

The first step is to generate tables fully describing t
topological configuration of a CA net for evaluating a 15tl
degree polynomial at the A level. The graph shown i
Fig. 11 is translated to a tabular form. With these tables a4
a base, the tables describing CA nets at the A4 level fi
polynomials up to degree 15 are obtained through a proce
of elimination. A direct-replacement translation from t
A level to the H level then takes place to provide more ing
formation about cost, speed, and accuracy. (Figs. 3 and 4
show parts of the translation process.) Redundancy ma;
exist in the H-level tables thus obtained, because the translag
tion is not simplified. A final simplification step eliminateg
redundancies in the H-level CA net. :

An example of simplification is given in F ig. 12. A typ
portion of the (CA net of Fig. 11 is shown in Fig. 12(a).
direct translation would result in an H-level CA net show
in Fig. 12(b). If the output multiplicity of the PD(*) verte
does not exceed m— 1, the input capacity of the MS(=
vertex is not filled. Consequently, the second SS(+) verte
can be removed by connecting its input to the multiple-su
vertex. Fig. 12(c) is the simplified form of the H-level ne

Another example of simplification is shown in Fig.
Translation to the H level by direct replacement will yiel
the graph including the dashed-line vertices at levels 2 and
The SS vertex at level 3 is removed if one unused inp
exists in the level-5 MS vertex. Furthermore, the dashed
line MS vertex at level 2 is removed if 1+ py+ 1 <m hold
at the level-5 MS vertex.

A detailed description of the implementation of
CA-net design program is presented in [7]. The existence of
the CA-net design program allows the designer to try several
designs with differing choices of precision and with differi
values of the polynomial order. The program tabulates t

cost (in ABE’s) and the speed [in ABE delays] for every de
sign. The study of tradeoffs between speed, cost, precision]
and error of approximation becomes feasible even for largg
CA nets and for numerous changes in these parameters. 4

. ol a2
S)lsuom LR <S 150003
* 1) soe
E>ISMDI <E 150202
x2
)n 150301
)l
(i
o
é @
& 501
P 150x)
Fig. 11.

Fig. 12.

V. CURRENT WORK

The study of arithmetic building blocks has been stimu-
fitcd by the Variable Structure Computer research at the
mputer Science Department of UCLA and is being con-
cted as part of this research project [10], [11]. The ABE
intended to serve as a standard inventory item of the
riable structure resources.

Work is currently progressing in three directions: the
sign of a pipelined function generator to replace arith-
fictical subroutines [6], the study of the computational
Somplexity aspects of signed-digit arithmetic [15], and the
gic design of a radix-16 ABE for LSI implementation.
The present paper omits the logic design aspects of the
ABE in order to avoid excessive length. The design follows

REFERENCES

] A. Avizienis, “Signed-digit number representations for fast parallel
-al - arithmetic,” IRE Trans. Electronic Computers, vol. EC-10, pp. 389-
400, September 1961.

g] , “‘On a flexible implementation of digital computer arithmetic,”

he Information Processing 1962, C. M. Popplewell, Ed. Amsterdam:

B ~. North-Holland, 1963, pp. 664-670.

i %[3] ——, “Binary-compatible signed-digit arithmetic,” 1964 Fall Joint
3 =

Computer Conf., AFIPS Proc., vol. 26, pt. 1, Baltimore, Md.:
Spartan, 1964, pp. 663—672.
4] —, “*Arithmetic microsystems for the synthesis of function genera-

1ZIENIS AND TUNG: UNIVERSAL ARITHMETIC BUILDING ELEMENT 745

The A-level CA-15 net {partial graph).

N

/

x! x? e X3 x
oo w
b3)

(@ (b) ()

2

Simplification by vertex merging at the H level. (a) 4 level.
(b) H level, direct. (c) H level, simplified.

tors,” Proc. IEEE, vol. 54, pp. 1910-1919, December 1966.

[S] A. Avizienis and C. Tung, “‘Design of combinational arithmetic
nets,”” Dig. Ist Ann. IEEE Computer Conf. (Chicago, Ill.), pp. 25-28,
September 6-8, 1967.

[6] C. Tungand A. Avizienis, ‘‘Combinational arithmetic systems for the
approximation of functions.” 1970 Spring Joint Computer Conf.,
AFIPS Proc., vol. 36. Washington, D. C.: Spartan, 1970, pp. 95~
107.

[7] C. Tung,"“A combinational arithmetic function generation system,”
Ph.D. dissertation, University of California, Los Angeles, Engrg.
Rept. 68-29, June 1968.

[8] C. W. Clenshaw, Chebyshev Series for Mathematical Functions,
Mathematical Tables, vol. 5. London: National Physical Lab.,
1962.

[9] W. Dorn, “‘Generalization of Horner’s rule for polynomial evalu-
ation,” IBM J. Res. Develop., vol. 6, pp. 239-245, April 1962.

[10] G. Estrin, “Organization of computer systems—the fixed plus vari-
able structure computer,” /960 Western Joint Computer Conf.. vol.
17, pp. 33-40.

[11] G. Estrin, B. Bussell, R. Turn, and J. Bibb, “Parallel processingina .
restructurable computer system,” IRE Trans. Electronic Computers,
vol. EC-12, pp. 747-755, December 1963.

[12] M. J. Flynn, “Very high-speed computing systems,” Proc. IEEE, vol.-
54, pp. 1901-1909, December 1966.

[13] R. A. Henle and L. O. Hill, “Integrated computer circuits—past, .
present, and future,” Proc. IEEE, vol. 54, pp. 1849-1860, December
1966.

[14] N. Metropolis and R. L. Ashenhurst, “‘Significant digit computer
arithmetic,” IRE Trans. Electronic Computers, vol. EC-7, pp. 265-
267, December 1958.

[15] A. Avizienis, “On the problem of computational time and complexity
of arithmetic functions,” Proc. ACM Symp. on the Theory of Com-
puting (Los Angeles, Calif.), pp. 255-258, May 5-6, 1969.

[16] C. Tung, ‘Signed-digit division using combinational arithmetic
nets,” IEEE Trans. Computers, this issue, pp. 746-748.

