710 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-19, NO. 8, AUGUST 1970 :'1

The LX-1 Microprocessor and Its Application
to Real-Time Signal Processing

GARY D. HORNBUCKLE, MEMBER, IEEE, AND
ENRICO I. ANCONA, MEMBER, IEEE

Abstract—LX-1 is an integrated circuit prototype of a micro-
processor which is being used as a design vehicle to study the prob-
lems associated with the design and implementation of a similar
computer constructed with large-scale integrated circuits. The
organizational simplicity of LX-1 is emphasized and the supporting
microprogramming and simulation facilities are discussed and exarn-
ples are given.

The major portion of the control of the microprocessor is imple-
mented in a 2566-word by 64-bit control memory, and the remaining
logic is partitioned into a very few unique functional logic circuits.
There are 16 general-purpose 16-bit registers and 2 256- by 16-bit
scratch memory. The cycle time is 70 ns, and logic is provided for
addition, bit logical, array shift, and array multiply operations.

To demonstrate the feasibility of using small, general-purpose,
microprogrammed computers for real-time digital signal processing,
the application of LX-1 as a digital vocoder was investigated. The
advantages of using a microprogrammed processor rather than
special-purpose hardware for this application are the lower cost of
such a general-purpose computer and the flexibility provided by the
ability to change the microprogram.

An implementation of the spectrum analyzer portion of the
vocoder and its operation on the LX-1 simulator is described. The
results show that real-time operation of the spectrum analyzer on the
LX-1 prototype could be expected with minimal additional hardware,
e.g., a 200-sample input buffer. Moreover, the proposed LSl version of
LX-1 could be operated in half duplex mode for both analysis and
synthesis, or to process several input channels.

Index Terms —Computer dasign, LSI computers, microprogram-
ming, real-time digital signal processing, spectrum analysis, vocoders.

INTRODUCTION

NHERE is currently much interest in machines designed
T[to take advantage of large-scale integrated circuit
(LST) technology. This paper discusses a micropro-
cessor which was designed and built at the M.I.T. Lincoln
Laboratory. The organization and regularity of layout were
central considerations because of the constraints posed by

large-scale integration. The major portion of the control of

the microprocessor is implemented in a control memory and
the remaining logic is partitioned into a very few unique
functional circuits. The technique of control implemented
in a control memory (often read-only memory) is well
known and is called microprogramming, and such pro-
cessors are referred to as microprocessors.

The paper describes a prototype processor, called LX-1,
which has been built primarily to test the applicability of

Manuscript received September 18, 1969 revised January 25, 1970.
This work was sponsored by the U. S. Advanced Research Projects
Agency.

G. D. Hornbuckle was with the Massachusetts Institute of Technology,
Lincoln Laboratory, Lexington, Mass. He is now with Applicon Inc.,
Burlington, Mass., (1803,

E. 1. Ancona is with the Massachusetts Institute of Technology, Lincoln
Laboratory, Lexington, Mass. 02173.

microprogramming, as well as the particular design, to a ‘

variety of problems. However, the prototype was con-

structed from commercially available emitter-coupled logic]
circuits which are similar to those anticipated for an LSI §
version. The logic was partitioned as nearly as possible in 1

the same manner that an LSI version might be. This paper |

emphasizes the organizational simplicity of 1.X-1 and dis-
cusses the supporting microprogramming and simulation §
facilities that have been programmed on the TX-2 computer ;

at the MLL.T. Lincoln Laboratory. Specifically, it discusses
in detail the application of LX-1 to the problem of real-time,
digital encoding of speech.

LX-1 is a processor intended for use in a multiprocessor
environment with a hierarchical, general-purpose memory
system. It has three levels of memory—register, scratch, and
control-—but has no core or bulk memory as these are
treated as I/O devices. LX-1 can be used in a variety of ways.
For example, it can be used as a digital controller, such as a
drum or tape controller, or as a special-purpose processor to
rapidly compute such functions as Fourier transforms,
floating point arithmetic, or trigonometric functions. The
more cormmon use for microprocessors has been in the role
of a Central Processor to interpret (or emulate) so-called
machine languages, such as is done in several models of the
IBM System/360, and microprocessors have been proposed
which could interpret higher level languages such as Lisp
[1] and Euler [2]. A wide variety of applications is made
possible by changing the contents of the control memory,
i.e., the microprogram. In a general sense, LX-1 is like other
processors if one considers the (read-only)! program to
reside in the control memory. With this view, LX-1 is a four-
address machine with limited (read-only) program memory.
The four addresses contained in a typical microinstruction
are the location of two operands, the location of the result,
and the location of the next instruction.

HARDWARE DESIGN
Partitioning
In the design of LX-I, the emphasis was placed upon
simplifying the backpanel wiring, minimizing the number
of different kinds of circuits, and simplifying testing, since
these are major considerations in large-scale Integration.
The processor was not designed to simplify microprogram-

! Read-only is placed in parenthesis here to emphasize that micropro-
gram memory need not be read-only. The control memory of LX-1 is read-
only with respect to the microprogram, but is externally writeable.

4

I I N]

~ < wg W <

R I O T T B T

A e

—

S— SR .

SUST 19 BUCKLE AND ANCONA: LX-1 MICROPROCESSOR

bl

711

.] D BUS
Hon
Y Y Y
see BINARY SCRATCH
] RO] | R LRZ] FUNCTIONS MEMORY
IJ } [}
iSHIFT rOMPLEMENT
] }
A BUS
! B BUS
n, to a

1S con-

N . 16 REGISTERS
:d logic o |
an ISTj '8t

sible in}
i paper}
ad dis-
lation
nputer i
cusses$
-time, §

Bing, although considerable attention was given to making
[possible to concisely write and conveniently debug micro-
grams.

' The three major components of LX-1 are the control
memory, a set of 16 16-bit registers, and several function
Inits which perform operations on the data in the registers.
he function units realized in LX-1 include a logic and adder
jmnit, a scratch memory, and a muitiplier unit.

To simplify the backpanel wiring a three-bus structure
vas used. Fig. | gives a simplified block diagram, Fig. 2 is
imore detailed. Each of the 16 registers is connected to the
- and B-bus which are the data paths from the registers to
e function units, and each register is connected to the
bus which is the data path from the function units to the
gisters. These 48 bus wires consume one layer of parallel
wiring on the backpanel. The remaining wires, which con-
st of selection lines, input/output lines, and other control
wires, cause all the backpanel wiring crossover problems.
An attempt was made to minimize the number of these

essor "
‘mory §
1, and
€ are 3
ways.
1as a §
Orto §
Tms, }
The |
role §
iled §
“the |

sed §
LISP | wires by suitable partitioning of the logic and by simplifying
ade | the basic design.

The number of different kinds of circuits was minimized

Ty
hg; by partitioning all flip-flop memory into identical registers,

to one-half register per card or LSI chip. The logic and arith-
ur- metic function units are partitioned into three types, each
ry. of which is iteratively repeated for the function. One type
on implements four bits of a function unit which can generate

the arithmetic sum or Boolean sum or product of twe oper-
¢ ands. A second type implements one-eighth of an array shift
function unit. A third type generates the arithmetic product.
The remaining two frequently used logic circuits are a select
circuit which selects one of eight inputs or decodes three in-
puts into eight outputs, and a select circuit which is used to
select between pairs of inputs such as for the B-bus comple-
ment function.

The rernaining miscellaneous circuits, such as bus drivers,
either would be fundamentally different for LSI or would be
- added to the frequently used circuits to avoid new circuit
types. The circuits directly associated with the control
memdry would also be different for LS]. The scratch mem-
ory of LX-1 is constructed from one printed circuit card

FUNCTION UNITS

Simplified bleck diagram for the LX-1 microprocessor.

type which contains 16 16-bit integrated circuit memory
elements. A similar LSI scratch memory circuit would con-
tain 256 memory bits with decoding. Table I gives the num-
ber of each circuit type used and Fig. 1 shows where they are
used.

Register slice, rather than bit-slice, partitioning was
chosen for reasons of expandability. It was felt that it would
be desirable to be able to increase the number of registers
and function units with only minor revisions in the layout.
With bit-slice the number of bits per register could be ex-
panded easily, but this was considered to be of secondary
importance, although with LX-1, the number of bits could
be conveniently increased in four-bit increments. Another
important reason for using register slice partitioning was to
1solate all sequential circuits, that is, all flip-flops, to one
circuit type. All other circuits, other than the scratch mem-
ory and control memory buffer, are combinational, and well
developed techniques for diagnosis of combinational cir-
cuits are applicable [3].

Operation

During a typical microinstruction, the contents of one of
the 16 registers is placed on the A-bus, the contents of the
same or another register is placed on the B-bus, an operation
1s performed in a function unit, and the result which appears
on the D-bus is stored in the same or a third register. This
entire sequence occurs within a single 70-ns clock cycle; the
clock is only used to strobe the function results from the
D-bus into a register and to strobe the results of control
memory read cycles into the control memory buffer. The
control memory, which is constructed from the same circuit
as the scratch memory, acts as a combinational circuit dur-
ing reading, and the read cycle is generally overlapped with
the register operations.

The data on the A-bus can be shifted or rotated from zero
to 15-bit positions, right or left, and the data on the B-bus
can be complemented, prior to the arithmetic and logic
function operations. The latter include binary addition and
bit-by-bit AND, OR, and EXCLUSIVE-OR. Subtraction of the
B-bus data is performed by complement addition. Both
one’s and two’s compiement arithmetic are made possible

S B a5 e 6 e G T s RS AR e

Bt b

o
e
1%}
=)
o}
0-BUS
2 — 15 DRIVERS [T)
< ﬁ L\[u‘ L
- (74 Z
v 1, NEW
o NEW SPECIAL BITY 8 SPECIAL | CURRENT SPECIAL BITS Y el e 16,
o (BIT SEL CF 3 3
= 2P0 & <
: 4 TEC
W _ u_ [o o * D _] — . 2 DETE! 3 5
Z L g [S e B[YA d_ e v |9
o Ris RS EXT. MEM EXT. MEM EXT. MEM. COUNT CONGIANT 10) CARRY-IN| 1
O e = Wwwmmm ~ ADDRESS I\ | CONTROL SPECIAL o= BIT SEL LOGIC AND ADDER FUNCTIONS SCRATCH MEMORY MULT
Z. BT SELECT | 1 "
N NEW/OLD ADD FCN I
o 16, 164 SYanoFch A &
M NO EOR FCN 3
§ OVERLAP 1,0 < 8
o) VA B e A AlE
=
= oLD sPECIAL BiTS J 10 R d rorare T1A-8us| |B-Bus oP op ||z
M TNDIR SHIFT GOUNT 7 7 BIT SEL |~ SHFTR |compL| | | seCect SeLeCT| la
vi a a
ANn 6] 1] J 16 15, [16, 16} m
o ABUS A-BUS 1§/ 16/ g =
[™| oRIVERS 7
o SCRATCH
m 4, MEMORY
23] ___B-8us \ 8-BUS g cLock g 16/
= DRIVERS 0) 4
SHIFT
S — COUNT
INDIRECT SELECT
— - WRITE ADORESS SHIFT COUNT, N n i
) (\Y A A
of o 3 9 (A oA IA
- ; " SELECT | [seLect| [seLect
XT. MEM. ADDRES REG TO [|REG TO D-BUS
ADDR COUNTER €M ADDRESS SELECTOR A-BUS B-BUS TO REG
9f ADDRESS
1
—
> sy | 13) 3y 1 2 ' [1 72 28N .)
[A COMPARED b 4 1
S 5 7STNC AGDR |
N
z e N K SPECIAL 'SHIFTIN SHIFT DIRECT SHIFT COMPLEMENT A-SEL B-SEL D-SEL
&3 Ni-SEL air SELECT INDIR SHIFT LEFT OPERATION
H4 CONTROL MEMORY 64/ NO-SEL SELECTS COUNT SELECT
O v 256 WORDS X 548115 7 !
QUARTER DaTA IN |% CONTROL MEMORY BUFFER AND PARITY CHECK NET
u 64 BITS
16, , 24 s 1 ' i '
4 4
WRITE READ ADDR. ENABLE SYNG WRITE SYNC SELECT NG PARITY CLOCKS,
DATA DATA EXT. MEM] ADORESS ~ QUARTER WRITE OVERLAP CHECK REGISTER RESTART
SELECT'R SELECT ADDRESS CLEAR [4——@~ OSCIL REMOTE

EXTERNAL MEM INTERFACE | —————ICOMPLET'N

LX-1 SWITCH CONTROL

fr=—@= OSCIi. SYNC OUT
=0+ ADDR SYNC OUT

LOAD CM

Fig. 2.

]
/

M
LOOP

]

il
sTop

-

¥

CLEAR

!

9

RUN

[
9

11

/

¢

I
/
s

/

¢

SINGLE SUPP SYNC LOCAL /REMOTE
STEP PARITY ADpDR OSCILLATOR
ERROR

Block diagram for the LX-1 MICIOProcessor.

ORNBUCKLE AND ANCONA: LX-1 MICROPROCESSOR

TABLE |
LX-1 CirculT TYPES

Gates

~ , Signal Pins
N . Circuits Gates
Circuit Type Fig. | Used per Used per
Circuit Circu:t
egister 32 72 2304 47
der/Logic & 4 71 284 21
O 8 75 600 24
glect 1 A 12 13 156 26
elect 2 O 4 49 - 196 33
ultiply Y 4 103* 412 57
ratch Memory AN 8 37t 296 20
72 4248

* Includes 64 full adder circuits.
+ Excludes 256 memory bits.

allowing the carry-in to the lowest order adder position
be a logical one, logical zero. or one of six special bits.
All types of shift operations, such as arithmetic and logical,
ire possible because the bits shifted intc the vacated bit
hositions can be selected from logical one or zero, one of
ive special bits, or the bits shifted out (for rotate or cycle
ifts). Also, the shift count can be stated explicitly in the
croinstruction or can come indirectly from register one.
The second function unit of LX-1 is a 256-word scratch
emory. In a single microinstruction, a word can be read
m or written into the scratch memory. The data to be
itten come from the A-bus, and the address comes from
e low-order eight bits of the B-bus. The write-clock is de-
ived from the basic machine clock.
A third function unit, an array multiplier, generates the
gh-order or low-order 16 bits of the product. Two instruc-
jions are required to store the results for full precision. The
ultiplier is attached to the A-, B-, and D-buses in a manner
milar to the other function units.
All overflow, carry indicators, and condition bits used for
rry-in, shift-in, and conditional branches are stored in six
ts of register one. These special bits are as follows:

H-—high-order bit of D-bus

C——carry-out of add operation

Z—zero detect from adder/logic unit

L-—low-order bit of D-bus

S—second-from-low-order bit of D-bus

F—overflow from add operation or multiply operation.

By selecting any two of the special bits, a logical one, or a
ogical zero, one can cause absolute, two-way conditional,
or four-way conditional branches. All next-address selec-
tion bits are included in every microinstruction and a pro-
ram counter is not used. The address counter shown in
ig. 2 is for external lcading of the control memory. In each
microinstruction, one can elect to save any subset of the
special bits just generated or to save the old values. The con-
ditional branch can use the old values or the newly gener-
ated values of the special bits. In the latter case an extended
yele is caused because overlap of control memory reading

713

and function execution is not possible. Since an extended
cycle is also used for addition to allow for worst-case carry
propagation, long extended cycles can occur. A special case
of the next-instruction bits allows the next control-memory
address to come from the D-bus. This extended cycle feature
allows microprogram subroutines and branch tables.

Sixteen bits of each microinstruction are reserved for an
immediate constant. The constant will appear on the A-bus
or B-bus if register zero is selected. A standard register cir-
cuit is used for register zero to allow uniform gating onto
the A- and B-buses, although it is wired to act as a non-
storage data transfer circuit.

Each register, in addition to its A-, B-, and D-bus con-
nection, has 16 output and 16 input lines, one for each bit.
These connections are used internally in the processor in the
case of register one, but the remaining 448 leads can be at-
tached to external equipment. For an LSI version some
rather small connectors will be required. Although a multi-
plexed I/O bus would avoid these connections, the timing
problems and complexities of such logic would be greater.
Even if one were to construct an 1/O bus, further logic
would be needed to tap onto the bus for each external de-
vice. If such logic were to be constructed with LSI, one
would have a problem similar to connecting 448 leads to the
microprocessor. Furthermore, for LX-1 most of the timing
problems associated with input/output equipment can be
solved in the microprogram. It is unlikely that all 14 regis-
ters will be attached to I/O equipment, although at least two
are required if an external memory is connected to the pro-
cessor. The interconnection of two processors can be made
by simply attaching the input leads of a register in one pro-
cessor to the output leads of another, and vice versa. Com-
munication control can be handled with the micropro-
grams.

FIRMWARE DESIGN

A programming package has been created on the TX-2
computer that allows a user to write and run microprograms
written in a symbolic assembly language. Statements in this
language, called ML, correspond to the control instructions
for the LX-1 processor. ML programs are free-format text
files. The language allows symbolic labels, register names,
literal and address constants, and is highly readable. The
ML programs are compiled by the ML assembler, which is
implemented in VITAL [4], into files of control memory bit
patterns. Side-by-side formatted listings are produced. The
control memory files created drive the LX-1 simulator.
Eventually, they will be read into the LX-] control memory
or be used to determine read-only memory bit patterns in
subsequent LSI versions. The syntax and description of the
language are included in the Appendix.

The LX-1 microprogram checkout and debugging pack-
age (LXSIM) provides a cycle-by-cycle simulation of the
LX-1 prototype processor. The simulator was designed to
allow maximum user flexibility. Snapshots of the current
machine status are given via an on-line display. Breakpoints

714

can be put on microinstructions or on memory locations.
Individual instructions can be altered or the whole program
can be edited and recompiled. Memory locations can be

‘examined and filled. Conditional execution or single step-

ping of the simulator is possible. New control memory or
main memory files can be loaded at will. Different versions
of the simulator, corresponding to various machine con-
figurations, can be selected.

Since its purpose is to assist in debugging microprograms,
the simulator is controlled interactively in a very flexible
way. This flexibility is achieved because the simulator is
designed to accept a large number of low-level text-encoded
commands. If desired, the user can enter lists of these com-
mands directly, via the outline keyboard, but to do so is
quite tedious. These basic commands, though quite flexible,
are relatively primitive. For example, 72 characters must be
typed to clear the 16 general registers. To combat inevitable
user fatigue, a run-time command package has been written
to allow the directed expansion of user-defined succinct
commands into primitive commands.

User commands are defined by procedures written in the
poMEX (Display Oriented Macro EXpander) language,
which has been based on the TRAC language [5]. Like
TRAC, DOMEX is a language for text manipulation. Strings of
characters may be named, parameter markers inserted, and
strings called by name with argument lists. Character strings
can be treated arbitrarily as executable procedures, names,
or as text. Recursive function calls are also possible.

Unique to DOMEX is its ability to use the on-line display
and Sylvania tablet [6]. Psendo light buttons can be defined
and given procedural value. When a light buttcen is pointed
at, the procedure is executed, at times producing a new
selection of light buttons. The procedure executed may also
send strings of commands to the simulator. It can interro-
gate the status of the 16 registers in the simulated machine
and use this information to control the generation of the
command sequence sent. The procedure may aiso choose
to demand characters from the tablet. The character recog-
nizer [7] will be called and its output made available to the
procedure.

Part of the flexibility of DPOMEX commands is their run-
time definition. When the simulator package is first called,
the only defined poMEX command is one that will read and
execute text files. An initialization text file might contain a
DOMEX procedure which, when executed, defines other com-
mands. Different users may have different initialization
files. The user is free to drop or edit old definitions or to
create new ones. DOMEX procedures can define new ones or
be self-modifying. New initialization files can be written
out at any time. :

Typical simulator control procedures that can be defined
might include: ‘

1) single step until a selected register contains a given
value,

2) load one register from another,

3) remember the machine status so it can be restored
later—even at a different session,

IEEE TRANSACTIONS ON COMPUTERS, AUGUST 1970 HOR?"?

4) print read-only memory in symbolic format,

5) trace a register, typing the value and the micropro-
gram instruction counter every time it is changed,

6) edit, recompile, and reload the control' memory file,

7) write out a text file which, when read in, redefines all
strings currently in use,

8) trace an instruction, printing out selected register
values every time it is executed.

The selection and form are, of course, up to the user. The
command package can be tailored as desired.

APPLICATION TO REAL-TIME SIGNAL PROCESSING

The usefulness of the LX-1 design to real-time digital sig-
nal processing was investigated to demonstrate LX-1's J
capabilities and flexibility. In particular, its application to
the spectrum analyzer and coding portions of a digital chan-
nel vocoder was investigated. The vocoder algorithm was
designed by Anderson [9] and Bially [10]. This particular A
application was chosen because of the current interest in
digital signal processing and also because the computa-
tional load and real-time constraints imposed by the spec-
trum analyzer algorithm are well-matched to the micro-
processor’s capabilities. j

The advantages of using microprogrammed processors ;
rather than special-purpose hardware are twofold: first,
general-purpose LSI processors like LX-1 are potentiall ;
less expensive than special-purpose devices. Second, th
flexibility provided by the microprogrammed control en
ables designers to alter their algorithms by changing onl
the control memory contents.

The LX-1 Simulator

The vocoder spectrum analyzer and coding were simu
lated using the LXSIM package on the TX-2 computer
Except for input/output, and input buffer maintenance, th
vocoder simulator microcode is identical to that of the rea
vocoder microcode. The above operations, however, do no
add significant overhead to the computations, and thus th
values obtained from simulation are reasonable.

Channel Vocoder

The overall vocoder analyzer and synthesizer structure i
shown in Fig. 3. The input to the analyzer consists of 10-bi
samples of speech entering at a 10-kHz rate, or eve
100 ps. Speech bandwidth compression in the vocoder i
achieved by coding two parameters of the speech: the firs
parameter is the pitch period, which is a measure of the
citation to the vocal tract. The second parameter is the spe
trum, which is a measure of the characteristics of the voca
tract. The spectrum analyzer calculates the magnitude o
the response of the vocal tract at 32 frequencies. These twg
parameters are coded into 2400 bits/second and are trans:
mitted to the synthesizer. ‘

There, the impulse response of the vocal tract, or the in:
verse discrete Fourier transform of the spectrum, is con

NBUCKLE AND ANCONA: LX-1 MICROPROCESSOR

715

. 3 o EXCITATION |
icropra { ,Pnﬂ_j SENERATOR |
2 DZTECTOR
ged: O o CODING TRANSM(SS‘O—NQ DECODER CONVOLUTION
ry file, 1 SAMPLED ’] SPEECH
3 @ 1 SPEECH INPU N ouTPUT
fines af Ta e
; RESPONSE —
. X COMPUTER
registeg .
3 Fig. 3. Digital vocoder system.
__| DELAY
cos mw,nT 50T
+
. ACCUMULATE +
G E - AND DUMP —/ - T
. (50 samples)
tal sig4
LX-1¢
. 3 a(50kT)
tion to;
Ichan
m ‘
1 was] SAMPLE AT ACCUMULATE A, (200 1T}
ticular) f (nT) Oo—g ' = 50 KT MAGNITUDE AND DUMP f—# mm CHANNEL
rest 111 (4 somples) AT 20ms RATE
[w2 5
4]
aputa-]
: Spec-; | DELAY
nicro-] ot b (50 kT)
Cro-j
+
. ACCUMULATE
€ssors | L. AND DUMP ._/ — N 5 >_
(50 samples) e’
sin mwynT
Fig. 4. Simplified mth channel of vocoder analyzer.
jolved with an appropriate excitation to produce speech. 32 g32; SBCHANNEL e, 16
Dnly the spectrum analyzer and coding portions of the s CHANNELS L rmarion MANNELS (L ANELs
vocoder are described here in detail and the results of simu- o o e ove
& . . . ——0 20
ation on LXSIM will be discussed. The reader is referred : o2
o Gold [11] for a description of pitch detection and to __01‘1 .
Anderson [9] and Bially [10] for a description of the o1z o———=—0t10'0— 1"
thesizer . ':'éliﬁ%wm Waks [0°
yn . r —
y o | 5-BIT [0 MATRIX | o
LOG . . AND .
N [} . . 0
Vocoder Spectrum Analyzer . M I 458
. e p——025
The spectrum analyzer consists of 32 bandpass filiers I:?,%?%%‘CH
sentered at 100, 200, - - -, 3200 Hz. Each bandpass filter is —o28
»f the form shown in Fig. 4. The 10-bit samples of speech Erl o :
. ire input into each channel at a 10-kHz rate and are modu- 32C o3z
e 1s ted by a sine and cosine function at the center frequenc e 2 nree 198
. e S ; : 1€ . . .
0-bit a Y a4 4 Fig. 5. 2400-bit coding of 32 vocoder channels.

of the bandpass filter in question. Fifty successive samples

ve 1
y ire accumulated and saved, and are then added to the sum

ef;r;i of the previous 50 samples. The magnitude of the function
ox is then taken. Thus, every 5 ms the magnitude of the dis-

srete Fourier transform at the center frequency of the filter

S:’: for the last 10 ms of input has been found. This corresponds
(| t/o
> of
two 2
JJmowonT
\11S- "4;0 S T)ermee
in- - for channel m (center frequency mamg), where wq
- =27 x 100 Hz.

The second portion of the spectrum analyzer’s function
is to take the average of the last four 5-ms outputs and to
code the output of the 32 channels to enable transmission
at 2400 bits/second, as shown in Fig. 5. First, the 5-bit
logarithm of each of the 32 10-bit channels is taken. Then
the 32 channels are converted to 16 by means of a linear
combination of less significant channels, and finally the
channels are multiplied by a Hadamard matrix to decor-
relate the channels and quantized to 1 to 5 bits per channel.
This coding yields a total of 1550 bits/second. The remaining
850 bits/second are used for pitch information.

716
o
g
INPUT NEXT SAMPLE X,
EVERY 100 us
r
sin nwokT (c0s nuwykT
ADD RESULT TO ADD RESULT TO
SUM (S) FOR CHANNEL SUM (C) FOR CHANNEL

¥
REPEAT FOR 22 CHANNELS

!

REPEAT FOR 50 SAMPLES

LOOP 1

EVERY 5ms LO0P 2:

'

Woma

LOOP 3
Fig. 6. Loop | of microprogrammed analyzer.

Microprogrammed Analyzer

There are three main loops in the microcode.

Loop 1: Every 100 ps, the discrete Fourier transform of
the current sample at the 32 frequencies is computed. Next,
the running sum over the last 50 samples, as shown in Fig,
6, is computed as follows:

49
Y x,sin mwnT, (1)
n=0

and
49
Y. x, cos mwenT)
n=0 ’

where m is the channel nurnber and wy, is the base frequency
(100 Hz). The first quadrant of the lowest frequency sine
wave (100 Hz) is stored in 25 words of the read-only control
memory. Each value is coded into 6 bits. All cther sine and
cosine values may be obtained from this table by appropri-
ate functions for the sign and table lookup. The multipli-
cation is done by means of the array multiplizr mentioned
earlier. Thus, the input to Loop 2 is the 64 sums of the form
shown in (1) and (2).

Loop 2: Every 5 ms, the 64 sums are added to the sums of
the previous 50 samples, which were stored in the scratchpad
memory, and the magnitude of the spectram for each
channel is calculated (see Fig. 7). Next, the sum of four
spectrum magnitudes for each channel is calculated. Thus,
every 20 ms, the input to Loop 3 consists of 32 10-bit
spectrum magnitudes.

Loop 3: Every 20 ms, the logarithm of the sum of the
spectra is calculated and the 32 channels are compressed to
16 by appropriate linear combinations of the logarithms.
Finally, the 16 results are multiplied by a Hadamard matrix

IEEE TRANSACTIONS ON COMPUTERS, AUGUST 1970

o

g

INPUT NEXT SAMPLE X,

EVERY 100 s
1

LOOP 1

lEVERY 5ms

ADD FIFTY SAMPLE SUM
TO PREVIOUS
FIFTY SAMPLE SUM

i

CALCULATE MAGNITUDE OF SPECTRUM
FOR EACH CHANNEL

!

ADD RESULT TO
SUM OF CHANNEL MAGNITUDES J

!

REPEAT OVER 4 MAGNITUDES

LOOP 2

]
lzvam 20 ms Loop 3

Fig. 7. Loop 2 of microprogrammed analyzer.

[

INPUT NEXT SAMPLE X

IE\/ERY 100 us

LOOP 1

J,EVERY S5ms

LOOP 2

lE\/ERY 20 ms

TAKE LOG OF
32 CHANNEL RESULTS

{

COMPRESS 32 CHANNELS TO 16
BY LINEAR COMBINATION

!

MULTIPLY BY HADAMARD MATRIX
(decorrelate channels)

{

QUANTIZE CHANNELS

LOOP 3

4

Fig. 8. Loop 3 of microprogrammed analyzer.

to decorrelate the channels and the channels are appropr
ately quantified to yield a total of 32 bits every 20 ms (se
Fig. 8). The magnitude of the Hadamard coefficients
always one and their sign is calculated by means of

hij:al'ﬁ4690‘2',83®°‘3'ﬂ2@054'ﬁ1

where i= o, 0,050, and j= B, 8,85, are the row and colum
indices, respectively. If 4;;=1, the sign is negative. If hy;

BUCKLE AND ANCONA: LX-1 MICROPROCESSOR

TABLE II
RESULTS OF SIMULATION
! Length Best Time | Worst Time
(uinstructions) (us) ! (us)
50 ‘ 55 . 80
very sample) (55 ps/sample) (80 us/samplz)
30 45 50
ery 50 samples) i {1 us/sample) (1 us/sample)
120 650 700
very 200 samples) (3.2 pus/sample) (3.5 ps/sample)
200 60 85
per sample basis)

sign is positive. Note that - is logical AND, and @ is

cal EXCLUSIVE-OR.

he results, using a 70-ns cycle time for 1.X-1, are shown
Table II. All times marked ‘‘per sample’” assume a 200-
ple input buffer. This buffer is necessary because, as
wn in Table II, the 5-ms and 20-ms calculations take
considerable amount of time. The 100-us calculation is
enough, however, to enable the analyzer to catch up
h the input every 200 samples at most. Depending on
e values of the speech input samples, the computation
mes vary within the limits described in Table II.

he above implementation shows that the analysis of
iput speech can be done in real-time. Two factors, how-
r, have not been taken into account. One is the main-
ance of the input buffer and the other is the section of the
nalyzer dealing with pitch detection which operates in
arallel with the spectrum analyzer.

It can also be seen that Loop 2 and Loop 3, even though
ey are long, add at most a 10 percent overhead to the
verall calculation if a 200-sample input buffer is assurned.

{CONCLUSION

‘In summary, the simplicity of organization of LX-1 lends
elf to large-scale integration, yet the instructions are
mplex enough to be interesting and useful. The price for
mplicity appears to be in the long words required in the
ntrol memory. All attempts to date to decrease the num-
r of bits per microinstruction have resulted in rather
hoc and cumbersome additions to the present logic. For
ample, the 16-bit constant field could be eliminated by
ferencing a second read-only memory indirectly. This
would eliminate approximately ten of the 64 bits. With a
ardware program counter one could also eliminate about
ght bits from the next-instruction address. However, pro-
ram counters must be incremented, and if the adder is
ed in order to avoid a new chip type, the cycle time might
crease. One could also allow fewer operations per instriuc-
on. Rather than allow a shift followed by an add, these
uld be separate instructions. In fact, if one were to
tempt to decrease the number of bits in each microinstric-
on to 16, he might be led to an instruction set typically

717

found in 16-bit minicomputers. The 64-bit microinstruc-
tions of LX-1 are, on the average, four to six times more
powerful than typical 16-bit instruction sets.

There appear to be many possible applications of LX-1.
Microprograms have been written to simulate two small
machines; the Digital Equipment Corporation PDP-§|
and the Hewlett—Packard 2115A. Both took approximately
100 microinstructions and ran at real-time with respect to
the machine being simulated. A 64-terminal communica-
tions line multiplexer has been coded. It also required less
than 100 microinstructions and took about 1 us per bit input
or output (all serial/parallel conversion was done in the
microprogram).

.The usefulness of the design to-a vocoder analyzer has
been demonstrated, and the only required hardware addi-
tion is a 200-sample (slow) input buffer memory. The LSI
version, which should be five times faster, could be used
with no hardware modifications and should be fast enough
to handle both analysis and synthesis simultaneously.

Thus, real-time digital signal processing is feasible in
small microprogrammed computers, and the expected per-
formance of LSI technology should make this method of
operation even more attractive because of the potential
cost advantage and the flexibility provided.

APPENDIX

Syntax for ML

The syntax for ML is based upon the extended BNF no-
tation developed by Cheatham [§]. The metasymbol = is
equivalent to the BNF ::= and means “is defined as” or
“consists of.” Upper case alphabetics and all other char-
acters (other than metasymbols) are terminal symbols,
whereas strings of lower case alphabetic characters (in some
cases separated with dashes) are used to define nonterminal
syntactic elements. Exceptions are that space, tab, and cr
stand for the obvious terminal symbols. The metasymbol
is used to separate and specify alternatives, brackets en-
close alternatives, and brackets with subscripts and super-
scripts mean the following:

; choose at least j but at most i of the alternatives
' choose none or at most i

choose at least j with no upper limit

is equivalent to []*

is equivalent to []L.

A ——
Lon - .

The following example means that a jwak is defined as
a snex followed by at most 3 zats followed by exactly one
carriage return:

jwak = snex[zats]* {cr}.

In general, the microprogram source text may be liberally
sprinkled with separators; only those places where separa-
tors are necessary are indicated in the following.

718

Preliminary
alphabetic-character = A|B|C| - - - | Z] 1
alphanumeric-character = alphabetic-
character [0]1] -~ - |9
~ separator = space | tab
comment = 4 [any-character-but-cr]® 4
Iname, cname, rname = alphabetic-character
{alphanumeric-character]*® 5

General Program Structure

microprogram => definition-section assignment-

section END cr 6
definition-section = [definition-line cr], 7
definition-line = comment] definition [comment] 8
assignment-section = [assignment-line cr], 9
assignment-line = comment | assignment-

statement [comment] 10

Definitions
definition = register-declaration | constant-

declaration 11
register-declaration = rname = octal-number-

modulo-16 12
constant-declaration = cname = octal-number-

modulo-2'®|cname = label 13

Assignments
assignment-statement = [label] [separator |,

assignment [/[goto]] 14
assignment = left-side {— right-side] 15
right-side = [dregsel] [, special-bit]® 16
left-side = [aregsel [shiftop] logop] [—]

bregsel | 17

aregsel [shiftop] + [—] bregsel

[, carryin]| 18

aregsel [shiftop] — bregsel | 19

[aregsel] A bregsel | 20

aregsel {X|x} bregsel 21
bregsel, aregsel => rname | cname |octal-number-

modulo-21¢ 22
dregsel = rname 23
logop =v | A |+ 24
shiftop = {/| +} {octal-number-modulo-16 | #}

[, {special-bit| 0|1}] 25
carryin = {special-bit| 1[0} 26
label = Iname [({1|0} [, {1]0}])] 27
goto = Iname [({special-bit|1 |0}

[, {special-bit|1]|0}]) [}]] 28
special-bit = C|Z|H|L|S|F - 29

Description of ML

A microprogram consists of a set of definitions (or dec-
larations) and a set of assignment statements. The defini-
tions allow the use of symbolic names for register identifi-
cation and literal constants.

Example: Define register 5 to have the name XYZ:

IEEE TRANSACTIONS ON COMPUTERS, AUGUST 1970

_ TABLE III

MICROINSTRUCTION BIT ASSIGNMENTS

Key

Syntax Fig. 1 Name N?Igber Function

Line of Bits

22 A-Sel 4 Select 1 of 16 registers for A-bus
22 B-Sel 4 Select 1 of 16 registers for B-bus
23 D-Sel 4 Select 1 of 16 registers for D-bus
17 Operation-Select S Select 1 of 32 operations

16 Special-Bit-Select 6 Update or ignore 6 special bits
28 N 6 Select next address modulo 4

28 N1-Sel 3 Select second bit of next address
28 NO-Sel 3 Select low-order bit of next address
25 Shift-Indir 1 Select indirect shift count

25 Dir-Shift-Count 4 Direct shift count

25 Shiftin-Sel 3 Select shift-in

25 Shift-Left 1 Shift left or right

18 Complement 1 Complement B-bus

13 K 16 16-bit constant

— No Overlap 1 Execution dependent next address
— Panty 1 Control memory parity

Spare 1
64
XYZ =5 [SX — 12].2

Each assignment statement is translated into a 64-bit
microinstruction for which the bit assignments are given in
Table III. The basic form of an assignment statement is:]

{A-bus select) {operation> {B-bus selectd> —

{D-bus select)/(next instruction select).

Example: Store the binary sum of the contents of regis
ters ABC and XYZ into register XYZ:

ABC 4+ XYZ - XYZ [SX — 15, 16, 18].

If the next instruction field is missing, the next sequentia
instruction is assumed and the appropriate bits are filled in .
by the assembiler.

Of the 16 addressable registers, register zero is wholly
dedicated for immediate constants, register one is partly-
dedicated for the special bits and indirect shift count, an
the remaining 14 registers are available for general use.

Example: Define the immediate constant PQ and load i
plus register ABC into register XYZ. The three statement
following the definition are equivalent .

PQ = 177326 [SX — 13]
ABC + PQ - XYZ [SX — 15, 16, 18]
ABC + 177326 — XYZ
PQ + ABC — XYZ

Of the 32 possible operations selectable, eight are fo
addition (eight different carry-in options), three are for th

2 SX—12 refers to syntax line 12, above. Only the key syntax lines ar
referenced. Numbers used in programming examples are octal; number:
used in the text are decimal.

NBUCKLE AND ANCONA: LX-1 MICROPROCESSOR

al operations AND, OR, and EOR. two are for reading
writing the scratch memory, two are for the multiply
Bberations, and the remaining are unassigned.

P Example: Form the logical or of ABC and XYZ and put
fe result in register XYZ.

ABC v XYZ - XYZ {SX - 171

xample.: Increment register ABC. The first increments
th a carry-in, the second with a constant. The third adds
e or two to ABC depending on the state of special bit H.
ABC + 0,1 - ABC
ABC + 1 — ABC
ABC + 1, H - ABC

[SX — 18]

Example. Subtract ABC from XYZ assuming 2’s com-
ment encoding:

XYZ — ABC » XYZ [SX — 19].

Example: Multiply ABC and XYZ and place the low-
der 16 bits of the product in UVW:

ABC x XYZ —» UVW [SX — 21].

- Any subset of the special bits which are generated each
cycle can be ignored or saved in register one. In the latter
se, the old values are lost.

Example: Save the carry (C) resulting from the addition of
ABC and XYZ, and also save the low-order bit (L) of the
um.

ABC + XYZ - XYZ, C,L [$X — 16].

Program sequencing information is contained in each
microinstruction. The location of the next instruction,
modulo 4, is given explicitly,- and the low-order two bits
which complete the next instruction address may be given
explicitly or selected from the special bits. Unconditional
branches, two-way branches, or four-way branches are
provided.

Example. Clear register ABC and branch to L1:

0 - ABC/ LI [SX — 4]

Example: Test the sign bit (H) of ABC and branch to
L2(0) if the sign bit is 0, or branch to L2(1) if the sign bitis 1:

ABC — ,H/L2(H) [SX — 14,28].

Example: Test the carry bit (C) and branch to L3(0. 1) if
the carry bitis 0, or branch to L3(1, 1) if the carry bitis 1.

ABC/L3(C,1) [SX — 15,28].

The data on the A-bus can be shifted or rotated, right or
left, up to 15 positions, and the data on the B-bus can be
ones complemented prior to the addition or logical opera-
tions.

Example.: Shift XY left three bits (shifting in zeros) and
AND with the complement of ABC:

[ERRIRELRT L1

719

XYZ=*3 A~ — ABC - PQR [SX — 17,25].

Example: Divide the 2°s complement number in ABC by
16:

ABC - | H xsave the sign-bit
ABC /4, H - ABC.

Example: Rotate ABC left an amount equal to the num-
ber of zeros in XYZ. Assume COUNT is register 1 where
the indirect shift count must be stored:

0 - COUNT

— XYZ ->TEMP,Z, L /L3 (L, Z)

L3(,0) TEMP/1->TEMP, L, Z, /L3(L,Z)

L3(1,0) COUNT + 1 - COUNT /L3(0,0)

L3(0.1) ABC =#, F - ABC =shiftin = F causes rotate.

The low-order eight bits of data on the B-bus select the
word to be written into or read from the scratch memory.
For writing, the A-bus contains the data to be written, and
for reading, the scratch memory output appears on the
D-bus.

Example: Swap word 26 of the scratch memory with
ABC:

ABC —» TEMP

A26 > ABC
TEMP 4 26

A special case of the next microinstruction selection bits
has the effect of causing an unconditional branch of the
microprogram to the location whose value is on the D-bus.
This feature makes branch tables and subroutines possible.

Example: Call subroutine SINE. The subroutine will return
toL2:

L2 =12
L2 — RETREG /SINE

[SX - 13]

+*Subroutine return within SINE

RETREG — / [SX — 14].

ACKNOWLEDGMENT

The authors wish to express their gratitude to the many
members of the Digital Computers Group who contributed
to the LX-1 project. In particular, they wish to acknowledge
the work of R. Kalin, who was responsible for the simula-
tor and DOMEX, and S. Pezaris, who was responsible for the
engineering.

REFERENCES

{1] H. Webber, “A microprogrammed implementation of Euler on IBM
system/360 model 30,” Commun. ACM, vol. 10, pp. 549-558, Septem-
ber 1967.

[2] G. D. Hornbuckle, “Representation, generation, and manipulation
of computer graphical information,” Ph.D. dissertation, Department
of Electrical Engineering and Computer Sciences, University of
California, Berkeley, Calif., 1967.

[3]1 G. D. Hornbuckle and R. N. Spann, “*Diagnosis of single-gate fail-

£720

ures in combinational circuits,” IEEE Trans. Computers, vol. C-18,
pp. 216-220, March 1969.

[4] L. F. Mondshein, ““Vital: compiler-compiler systems reference man-
ual,” M.LT. Lincoln Laboratory, Lexington, Mass., Tech. Note
1967-12, February 1967.

[5] C.N. Mooers, “TRAC, a procedure-describing language for the reac-
tive typewriter,” Commun. ACM, vol. 9, pp. 215-219, March 1966,

[6] J. F. Teixeira and R. P. Salien, “The Sylvania data tablet: a new ap-
proach to-graphic data input,” 7968 Spring Joint Computer Conf.,
AFIPS Proc., vol. 32. Washington, D. C.: Thompson, 1968, pp.
315-321.

[71 J. E. Curry, “A tablet input facility for an interactive graphics sys-

Design of the Arithmetic Units of ILLIAC Ili:

Use of Redundancy and
Higher Radix Methods

DANIEL E. ATKINS, MEMBER, IEEE

Abstract —In keeping with the experimental nature of the Ilinois
Pattern Recognition Computer (ILLIAC 11}, the arithmetic units are
intended to be a practical testing ground for recent theoretical work
in computer arithmetic. This paper describes the use of redundant
number systems and the design of a structure with which multiplica-
tion and division are executed radix 256. The heart of the unit is the
stored-sign subtracter, a recently discovered member of the family
of borrow—save subtracters and carry—save adders. A cascade of these
subtracters, controlled by a multiplier recoder, provicdes multiplica-
tion. The same structure, controlled by a ““madel divisicn’” (a quotient
recoder), performs division.

Index Terms — Arithmetic unit, computer arithmetic, division,
higher radix arithmetic, iLLIAC 111, multiplication, redundant number
systems, signed-digit subtracter, stored-sign subtracrer.

INTRODUCTION

N KEEPING with the experimental nature of the Illinois
J:[Pattern Recognition Computer (ILLIAC 111), the arith-
~7 metic units are intended to be a practical testing ground
for some recent theoretical work in computer arithmetic.
The bulk of this work centers upon the use of redundant
number systems and/or the use of higher radix methods.
The design of the arithmetic units of 1LLIAC 11 exhibits both
techniques. They are of primary importance in the adder—
subtracter, multiplication, and division structures.

ILLIAC I is a multiprocessor computer system. The four
central processors share the two floating-point arithmetic
units by way of an exchange net. The arithmetic units are

Manuscript received June 16, 1969; revised February 20, 1970. This
work was supported in part by the 1J. S. Atomic Energy Coramission under
Contract USAEC AT(11-1-1018), and in part by the National Science
Foundation under Grant NSF-GP-46.

The author may be contacted in care of the Department of Computer
Science, University ol Illinois, Urbana, 111. 61801. He is cur-ently on active
duty in the U. S. Army.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-19, NO. 8, AUGUST g

tem,” Proc. Internatl. Conf. on Artificial Intelligence.

D. C., May 1969. :

[8] T. E. Cheatham, Jr., “The theory and construction of compilers,”
Massachusetts Computer Associates, Inc., Wakefield, Mass., 1966;

[9] W. M. Anderson, Jr., “Specification of a digital vocoder system,”
presented at the Acoustical Society of America, Cleveland, Ohio
November 19-22, 1968. ‘

[10] T. Bially, “Structure of a digital channel vocoder,” presented at the’{§
Internatl. Conf. on Communications, Boulder, Colo., June 9-11,
1969.

(1] B. Gold, “Computer program for pitch extraction.” J. Acoust. Soc.
Am., vol. 34, no. 7, pp. 916-921, July 1962.

Washingto

therefore autonomous units with limited input—output
facilities. A brief description of the ILLIAC I computer sys-
tem together with the details of logic design is presented
in [10].

Adder—Subtracter

Redundancy is introduced into the adder—subtracter
structure in order to limit carry—borrow propagation. This
property is a key factor in the rapid execution of multipli-
cation, since during the iterative steps, the partial product
is formed without carry or borrow propagation. The prod- |
uct is converted to a nonredundant representation during a
terminal step in which propagation does take place. One
input, and the output of the adder—subtracter use a signed-
digit representation. Two bits, one a sign, the other a magni-
tude, are associated with each digital position. This struc-
ture also exhibits several properties not found in the con-
ventional carry-save adder or borrow-save subtracter. '

Multiplication

Elsewhere than in the adder—subtracter complex, high-
speed operation is also obtained by extensive use of redun-
dancy and by executing operations in radices greater than 2.
Multiplication, for example, is performed radix 256, ie., 7
eight bits of the multiplier are retired in one pass from the
primary to the secondary rank of the accumulator. By re-
coding, redundancy is introduced into the multiplier in such
a manner that all the required multiples of the multiplicand
may be formed merely by shifting.

Division
In division, redundancy is introduced into the represen-
tation of the quotient. As a consequence, quotient digits

