THAMMAVARAPU R. N. RAO, MEMBER, IEEe, AND AVTAR K. TREHAN

Abstract—We consider a residus number system using n pairwise
relatively prime moduli m,, -, m, to represent any integer X in the
range M [2<X>M /2, when M =r[m,. The moduli m, are chosen to be
of the 2-1 type, in order that the residue arithmetic can be imple-
mented by means of binary registers and binary logic. Further, for each
residue number X, a magnitude index P, is maintained for all arithmetic
operations. We investigate the proparties of such a system and derive

" the addition, subtraction, multiplication, sign determination, and
overflow detection algorithms. The proposed organization is found to
improve the operation times for sign detection and overflow detection
operations, while rendering multiplication to be a difficult operation.

Index Terms—Base extension, index generation logic, maghnitude
index, modular adders, naturalized form, overflow detection, residue
mult’plication, residue number system, scale by 2, sign determination.

I. INTRODUCTION

CONSIDERABLE amount of attention has recently
A been devoted to the use of residue number theory
in computer system design. The first documented
effort in this direction was by Svoboda [8] in 1954. Later
Garner [3] and Aiken and Semon [1] studied and demon-
strated the advantages of residue number systems for com-
uter applications.
The principal advantage of doing arithmetic in the res-
lue mode 1s in multiplication, addition, and complemen-
on, the three basic arithmetic operations. In residue
hmetic, a digit of the result depends only on the corre-
ng digits of the operands. This property eliminates
propagation of carries between the digit positions, and
sequently there is no need to form partial products in
iplication except for the individual moduli. Hence, the
e required for multiplication is limited by the largest
modulus used in the system.

The main disadvantage of the residue system is that the
sign of any number in the residue representation is a func-
tion of all the residue digits, which is not so in the conven-
- tional system. This makes sign determination in a residue
. computer relatively difficult and time consuming. The de-
tection of overflow in the addition operation and the mag-

nitude comparison of two numbers involve sign determina-.

. tion and hence are equally difficult. However, the problems

of sign determination and overflow detection usually reduce
- to the problem of magnitude comparison with M/2 and M,
.- where M is the range of the number system and is equal to
the product of the moduli when they are pairwise relatively
prime, in which case the system is a nonredundant represen-
tation of numbers.

Manuscript received May 15, 1969 revised February 9, 1970. This
work was supported by the National Science Foundation under Grant GK.-
:543. .

The authors are with the University of Maryland, College Park, Md.
42, -

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-19, NO. 8, AUGUST 197

Binary Logic for Residue Arithmetic
Using Magnitude Index

In this paper an attempt has been made to speed up thej
above-mentioned arithmetic operations, sign determina
tion, and magnitude determination, using moduli of th
type 2* or 2—1 as suggested by Merrill [5]. Also with eac
residue number a magnitude index will be attached as sugs4
gested by Sasaki [6].

For the purpose of background a brief discussion of (5]
and {6] will be provided. The reader’s knowledge of th
base extension [9] is assumed, as it will be used later in th
multiplication algorithm.

A. Notations and Definitions

|x|,,=least nonnegative residue of x modulo m
m;=ith modulus i=1,2,--- n. The moduli are pairwise
relatively prime

M =range of the residue number system, i.e., the number
of different integers which can be represented non-
redundantly in the residue system where

M= 1] m
i=1
M, =M/m,
n;=|1/M},,., i.e., the multiplicative inverse of M ; mod m;
Xii:'ni/\/lm.
yi=n;M,, called the ith weight
X*=(X{, X,,-, X,) residue number representation
X with respect to moduli my, m,, - m,, X, =|X|,3
X*=X,, X,, -, X,/P,, residue number representatio
with magnitude index of X ; X, here is any integer
X*=X,, X,, -, X,//P, naturalized residue numb
with magnitude index of X, 0< X, <m,.

B. Moduli of the Type 2*, 2*— 1, and Binary Coding
of Residues

Merrill [5] and Rao [10] have suggested independentl
that residue arithmetic can be implemented using somg
modifications of a conventional binary arithmetic unit]
Merrill demonstrated that in a nonredundant system using
moduli which are of the form 2% or 2¢— 1, addition, subtra
tion, and multiplication can be carried out a great dea
faster than in a conventional computer. Specifically, hg
considered a conventional binary system with a word leng
of 25 bits, and a residue system with moduli 128,127, 63,3
In this system addition and subtraction in the residue arith
metic mode are three times faster, and multiplication twelvi
times faster, than in the conventional system. '

The basic system design approach of Merrill is bes
described as the modification of the arithmetic and cont
units of a parallel organized conventional computer, so th

computation routines can be executed in either the con-
ional binary mode or the residue mode. The arithmetic
is utilized to execute the residue system routines by the
ioning of the adder and shift register into segments
a control standpoint. Each corresponding adder and
register segment have the same number of bit positions.
number of bits in each segment is that required for
ry encoding of the residue digits of the particular
ulus. The adder shift register segments are controlied
parately during the residue computation mode, so that
rtain shift and carry bit transfer operations peculiar to
modulus can be accomplished. The control unit has
to be modified to accept the residue add and shift in-
ructions.
By selecting moduli that are powers of 2 or ore less
a power of 2, residue addition, subtraction, and multi-
ication can be implemented very efficiently using con-
ntional binary arithmetic circuitry, assuming, of course,
at the residue digits are binary encoded.
Addition modulo 2* of two residue digits, each modulo 2*,
cequivalent to conventional k-bit binary addition, except
at the most significant bit carry is ignored, as [2/|5=0
r j>k. Since [2%,. ;=1, addition modulo (2*-1) is
uivalent to conventional k-bit binary addition with end-
ound carry. Hence addition modulo 2* or 2¥—1 can be
complished in one k-bit binary addition. Residue subtrac-
n can be accomplished by adding mod m;, the subtra-
nd’s additive inverse to the minuend. The additive inverse
r X |y is 2= 1—|X|,x_ 4, or the I’s complement of the
binary representation, and it is 2*—|X|,, or the 2’s com-
ement of the binary representation of |X|,« By utilizing
k-bit adder which accepts a carry input to the lowest bit
position, mod 2* subtraction can be accomplished in one
bit addition interval by forming the 1's complement of the
binary representation for the subtrahend and adding the
result to the minuend while at the same time introducing a
into the lowest bit position carry input.
- Multiplication in this system can be accomplished by
e usual shift and add technique. Multiplying by 27 is
accomplished in the mod 2* shift register exactly as in a
conventional k-bit shift register because [2/],x=0 for all
j>k.
However, one can show that |2/],._; =2/« and therefore
multiplying by a power of 2 in a mod (2¥— 1) register is
accomplished as in a conventional k-bit shift register,
except that each bit that is shifted out is recirculated into the
register’s lowest bit position by a cycle or rotate operation.
In general, multiplying by a power of 2 mod 2* or 2¥—1
requires only shifting or cycling operations and no addi-
ions. Using a mixed radix conversion is discussed in [5].

@

i
&

" C. Residue Systems with Magnitude Index

. Following the notation used by Sasaki [6] with some
. minor modifications, an integer x of any sign and magnitude
is represented by x,, x,, -, x,/P,, if

X = X311 + x2y2+.”+xnyn_PxA4 (1)

where M is the product of the moduli, and the y; are the digit
weights as defined before. P, will be called the magnitude
index of x. We denote this by

AND TREHAN: BINARY LOGIC FOR RESIDUE ARITHMETIC

753 "

, X,/ P,

*
X =Xy, Xp "

Note here that in the conventional residue representation
which uses no magnitude index, the x; are such that 0 <x;
<m; and 0<x< M. In the magnitude index system the x;
and P, can be any integers, and therefore x can be any
integer. On the other hand, if x is represented in the natural-
ized or ratural form with magnitude index, then we write

.
X = Xq, X5, X,/ Py

and for 0 < x;<m;. (The double slash is used here to empha-
size the natural form.) As an example, consider the 7, 5, 3
system (that is, m; =7, m, =5, and m,=3). Some of the ex-
pressions for x =2 are

2522 -1/0
2= -5 =3, —1/-2
222,22

The reader may check these expressions by substituting
the values for y, =15, y,=21,y,=70,and M=105 (n,=1,
ny=1,n,=2)m(1).

Since the residues x; are in the range 0<x;<m; in the
expression 2, 2, 2/2, this is already in naturalized form, and
and hence can be written as 2=2, 2, 2//2.

Representation of negative numbers poses no problem;
(1) applies to negative numbers as well. For example, in the
system with moduli 7, 5, 3, x=~2 %5, 3, 1//2 as can be seen.

D. Addition and Subtraction

Consider two numbers x, y:

X = xlﬂx25.“,xn//1)x
V=YY" VllP,

= xiy:xl ihaxz iy2.~'”’xniyn/PxiPy
Z=2,2 ", Z,//P.

The expression for sum (or difference) is to be naturalized
by a gereration of borrows (or carries) from each residue
position and absorption of them with the magnitude index
P.+P,. A carry (or borrow) from the ith residue to be ab-
sorbed has a value of n;, since m;y, =m;M n;= Mn,.

Examples: (7, 5, 3 moduli) M =7 x 5x 3=105

M, =15; M,=2l, My=35
1 1 1
n, = ‘4__ — 1 Ny = o = Ny = |— = 2
s, 27 Il > 135,

vy = Mn; =15,
19 = 54,12
413224222
5129.63/4
29765334 —n, —n, - n,
S04 —1—1-2
* 2,1,0/0.

y3 = Msny =70

IEEE TRANSACTIONS ON COMPUTERS, AUGUST

-

-

MODULAR ADDERS

>

-] [B o]

Verifying (1), 51=2x 15421 x 1 +0 x 70—0 x 105.

19254 12
322 4,222
19-32=—-132 1,2, —1,0
= 1L,2,(=1+ 3)J0 + n,
1,2,2/2.

These examples demonstrate that the magnitude index
reintroduces carries into the residue system, which obvi-
ously slows down operation and also increases the hard-
ware costs. These carries or borrows from the residue digits
to the magnitude index do not have the value 1, but rather
~ n;, which can be an awkwardly large number. Hence mag-

- nitude index formation, which involves addition of P, and
P, and subtraction of the values , from the n residues, is a
ery formidable problem. One might say that magnitude
ndex formation is the bottleneck in the process flow.

e

II. RESIDUE SYSTEM WITH MAGNITUDE INDEX
USING 2%, 2%~ |-TyPE MODULI

A new residue system is proposed which uses the mag-
itude index in a modified form, as well as moduli of the
ype 2% 2*— 1. That means we combine the techniques sug-
‘gested by Sasaki and Merrill. In this process, we introduce
a somewhat modified representation scheme and a mag-
‘nitude index generator logic.

- In the proposed system, the moduli are of the 2%, 2¢— 1
type and are pairwise relatively prime. For any x, —M/2
<Xx<Mj2, represented by the expression

X = X11» X227, x,,,,/‘/Px

where x;;=[x/M||,,;=|n:x],.; for all i, x satisfies

XZXHMI+x22M2+"'+xm,M,,—PxM. (2)

It is important to note the distinctions made in the pro-
posed representation and the previously given representa-
tion as given by (1). In (2) we use x; and M, as against x; and
y; in (1). The digit weights in the proposed system are M ;
instead of y;=n,M;; consequently, the carries (or borrows)
from each residue position (or modular register i) to the
magnitude index register are going to be simply 1’s, in-
stead of being n;, and hence provide easy absorption of these

Fig. 1. Schematics for the addition registers and magnitude index
generation logic.

c 3
clz ———73 INDEX INDEX
c —] GENER- ADDER
3 ——
(S — ATOR
4
Carries or borrows ——T

from modular registers

[]

carries (and borrows). Further, from (2), using —M/2 <3
<M/2, we get

’n

Px:(z xiM; —

x)/M .
Ni=1 p]

Since each x;M;<M, P, can be no greater than n and ni
less than 0, giving 0< P, <n. In the Sasaki system we ge

i=

The magnitude index register in the proposed system wi
therefore be very much smaller.

A. System Organization

The system organization is essentially the same as used
by Merrill [5], except that an extra shift register called
magnitude index register (MIR), a magnitude index adder
and an index generator (IG) as shown are required. (See
Fig..1.) The MIR size is dependent on the number of moduli
and the index generation scheme employed. For a system
using four moduli, such as 128, 127, 63, and 31, the MIR
need only be of 5 bits. 3

The index adder forms P .+ P, and stores the result in]
MIR. The index generator receives borrows (or carries)
from the residue adders and P.+P, from the MIR and g
obtains F,. Since P.+F, is obtained in a parallel fashion]
with the residues x,; + y,y, the extra time required for the |
addition.is only that needed for absorption of the possible §
carries in IG. The index generator, a combinational function
of 9 inputs (5+-7) and 5 outputs, is a formidable network. :
But it is the most important functional block and its speed
is of immense value for the success of this proposed system. 4
Hence it is proposed that this function be generated in a
few logic levels of delay, of the order of 4 levels or less. We
will show that in such an event, shift or scale operation and
sign detection can be obtained relatively fast.

B. Addition
For the moduli

127 63 31 128

we consider addition :

*

= X1 X2z X33
Y=Y Va2 Vaa J’44//Py
Y =1Xi1 + Vi X22 F V22, X33 T Va3,
X44 + Yas//Pc + P, — C

Xa4// Py

C=C,+C,+Cy+C,

e X; + y; is addition modulo m;, and C denotes the sum
he carries from the modular registers. The operation
Ine is the time required for the addition modulo 127, plus
time delay in the subtraction of C. (Note P, + P, is formed
arallel with the x;;+ y;;.) If the response of IG is A, the
ddition in the proposed system is A units longer than the

-

ddition without the magnitude index.

.. Complement

or any x, we denote —x by X.

' xrm//Px

My — Xzp 7

=

=Xy X227

=

=m; — Xy,
x+x=0 0---0/P, + P; — n.

m, — xnn//Pf

herefore P, + P;—n=0, and hence P;=n—P,.

While the complements of the residues are with respect
the moduli m; (i.e, 2’s and 1’s complements), the comple-
ent of the magnitude index is with respect to n, the number
f moduli. Subtraction of y from x can be carried out by
dding y to x. The time required for subtraction is about the
ame as for addition.

. Multiplication

Let the two operands x and y be defined as follows:

x =Y x;M; — PM., —M/2<x<M)2
y:ZyiiA’li_PyM: -M2 <y< M2

Let z=|x y|y=Y2Z;M;,~P,M and we desire to obtain
Z=2Z11, 232, " » Z,a//P.. Bach z;; can be obtained from the
corresponding values of x;; and y,;, but P, is a function of all
X, all y;;, P, and P,. Realization of P, involves a horrendous
amount of computation and brings out the hidden lie about
residue systems with magnitude index. No simple algo-
rithm can be conceived to determine P, from the two
operand expressions. An algorithm is given here for the
realization of z; it is by no means simple, but the most
reasonable we can think of. This aigorithm includes, as a
first step, obtaining z;;, and then computation of P, from the
z; by means of base extension. The z, determine uniquely
- the product z if z is constrained to the limits, such as
- 0<z<M, and P, contains only redundant information.
Since we are using n,, h,, - - -, h,//P; to represent 1, z;; is not
equal to |x; Yilm,» but

Zip =

Xy Yu Ny llm‘-'
Therefore the algorithm involves

.1) obtaining r;=|x;; y;ln, fori=1,2,- -, n;
2) obtaining z;=|rn; Y, for i=1,2,- -, n;

AND TREHAN: BINARY LOGIC FOR RESIDUE ARITHMETIC

o v OO |

3) computing P, from (2,4, Z,,, " * * » Z,,) by the use of the
base extension method [9] and (3) derived below.

Given (zy,""",z,), where z;=|z|,, for some z
(0< z<M=]]; m,), the method used to obtain z,, , =|z|,,, .,
for a new modulus m,, ; is called base extension. (Note that
all meduli including m,, ; are pairwise relatively prime.)
The base extension operation requires n+ 1 multiplications
and n subtractions [9]. The procedure for obtaining P, from
the z;; is as follows [2]: for 0<z <M,

z=) z;M; — MP,

=1

or
pefa Moz
[P, = ‘22;11 - 1\14
Since GCD(M, m,, ;)= 1, we get
S R

This equation may be simplified by denoting the multi-
plicative inverse of m; and M mod m,, , ; as follows:

1
— = Wi
’ni My o+
1 p—
‘lwlm" + 1 a us'
Further, if P,<m,, ,, we get
‘Pz = Zypy t+ 2, l’ts| :
irzl ! My o+ (4)

Equation (4) gives P, for the given values of z(0<z < M)
and z.,, z,,,"**, z,, This is because the base extension
method derives z,,, from z,, z,,---, z, for 0<z<M but
not for — M/2 <z<M/2. Therefore conversion of P, for the
range —M/2<z<M/2 is required. This can be accom-
plished by adding 1 to P, whenever z is greater than or equal
to M/2. Fortunately, one can recognize this condition from
the base extension procedure used. These ideas are illus-
trated by the examples below.

Example: Consider the 8, 7, 3 system. Here M=8-7-3
=168. Given x=y=9%35, 3, 0//1, we intend to determine
z=xy%&2,4, 23, 233//P, as follows:

it = My = Pl = 5
nyt=|24], =3,
nyt = |56|3 =2
Zp = ’xu Y11 "fllml = |5‘5'5|8 =5
Z32 = |x22 Va2 ”;1|m2 = |3 "3 3|7 =6
Z33 = |x33 Y33 ”51|M3 = IO'O'2|3 =0.

Also z.=|z;; ny Y, Hence z; =1, z,=4, z,=0.

755

756

Extending to the base m, =5, we get z,=|z|s=1 and that
z<M/2=84. (The base extension is not shown here.)
Further, we obtain

ul-é5=2
#2—;5=3
#3:§5=2

Substituting these above values in (4), we get

P, = Pgy = |zy30y + 22015 + 233005 + Zap
=[Sx2+6x3+0x2+3x1s=1

ms

< Since z< M/2, as provided by base extension, no correction
1s required. Hence

-
y4

81 £5,6,0/1

is the required result.
As a verification of (2),

8l =5x214+6x24+0x56—1x168.

E. Scaling by 2

- We define here an elementary operation O(x) on a num-

ber x expressed in the natural form. The operation is a
multiplication by 2 with the result expressed in the natural
form, as follows:

x % Xy Xogs ", X /P
O(X) = 2x x 25(11, 2x227 cee 2xnn/2Px
Ox)=y * Vit Yoz, y'm//Py.

o This operation is very useful in the sign detection scheme
0 be described in the next section, and also in floating-point
rithmetic. The multiplication by 2 can be accomplished
by a left shift or left rotation of the residue digits to form Vi
At the same time, P, is obtained from the output of the com-
* binational circuit whose inputs are 2P, and the one most
- significant bit from each of the n residues. We can use the
same magnitude index generation logic as described in Sec-
- tion II-A. In this case the inputs to the index generator
" (IG) are the most significant bits of each of the 7 residues
instead of carries from them (see Fig. 2).

This operation is much faster than addition, as here we
do not have to wait for the carries, and the most significant
bits are always available. The following example illustrates
the operation O(x).

Example: Let m; =8, m,=7, and m,==3. We shall use

- binary notation to illustrate the formation of the magnitude
index. We use a three-bit MIR. Let

x =110 101 01/001
O(x) =100 011 10/010 — (S, + S, + Ss)

R

IEEE TRAI‘JSACT]ONS ON COMPUTERS, AUGUST 1976

INDEX
GENERATOR

Control signal _“{’_

P

x

Fig. 2. Index generation logic.

O(x) =100 011 10/010 — (1 + 1 + 0)
=100 011 10//000.

{(Note that S; is the leftmost bit of x; for i=1, 2, 3)

F. Sign Detection

The sign function S(x), such that — M/2<x<M/2, is de-
fined as follows:

0, 0<x< M2
S(x) = .
I, —MR2<x<0

To find the function S(x) for any number x represented in
the naturalized form we look at (2). (Also 0<P_ <n for
—M2<x<M/2).

x=x M, + x,,M, + -+ + x, M, — P.M.

By inspection of this equation it is seen that if P> n, then
S(x)=1. Also since all the terms in the above equation are
positive, S(x)=0 if P, <0. Hence we get the following rules
for determining the sign function S(x).

1) If x;=0, for all i=1, 2,---,n then S(x)=1 when
P.>0, and S(x)=0 when P_<0.

2) If P.>n, then S(x)=1.

3) If P,<0, then S(x)=0.

In order to determine the function S(x), we perform the
elementary operation O(x), discussed in the last section, on
x. O(x) is checked for rules 1, 2, or 3, and if the function
5(x) is not obtainable from O(x), we look at O(0(x)) denoted
by O*(x), and if S(x) is still not obtainable by a check of the
above rules, we look at 0%(x), O*(x) and so on, till we get
the function S(x). The following lemma puts an upper
bound on the number of scaling operations for obtaining
the sign function S(x). Let [K] denote the integer greater
than or equal to K. :
Lemma: U scaling operations are sufficient to determine
the sign of x, where U= [log, nM].
Proof : Let x £ x,,, x,,, -+, x,, //P,. From (2) we get

x=x My + x,M, + -+ + x,, M, — P.M.

If x=0, then all x;=0, and S(x) is determined by P, by the
application of rule 1. Hence the case of interest will be for
x#0. Scaling U times implies multiplication by 29 >nM.
Therefore, if 2Yx=y=y, ,,y,,, -, Y/ P,, then

2% =Y yuM, - MP,

i=1

tive
of o
thes
inve
of tt
aral
for

outs
tecti

o

or
1 n 2U
P =— M — —
s = i; yiuMi— S x
Denoting
1 $’! M-k
M & ViVt =
2U
— = u,
M

we can write P, =k —ux, where k <n, and u>n. We consider

the following cases.

Case I-——x>0: P, <0, which implies S(x)=0.
Case 2—x<0: P,=k+ul|x|, or P,>n, which implies that
S(x)=1.

Hence scaling U times is sufficient to determine the sign
of x. This is the number of operations needed for the worst
case. Usually it is possible to determine the sign in much
fewer than U operations. Since we check for rules 1, 2, or 3
after every scaling operation, the process may be terminated
when S(x) is obtained.

For a four-modulus system, with 22% < M <22 we need
log, (4-2%%)=27 scaling operations. If a very fast logic for
the scaling operation exists, we can continue scaling till
S(x) is available.

This scheme uses a large nuraber of operations to extract
S(x). The simplicity and uniqueness of the operation give it
a definite advantage over other methods [7]. Also the size
of the magnitude index register is only 5 bits, which is of
small size and allows a reasonably fast logic for the mag-
nitude index generation. It may be noticed that this scheme
is not the same as the one suggested by Sasaki [7], in which
scaling is done by the moduli of the system successively,
which in turn increases the size of the magnitude index regis-
ter and slows down the process, not to mention the increase
in hardware.

G. Overflow Detection in Addition

Let z=x+y, where x and » are in the range
[—M/2, M/2). The sum =z is said to overflow this range if
z>M/2 or z< — M/2. This could happen if some two posi-
tive (or two negative) operands x and y are added. Detection
of overflow in conventional residue systems is by a check of
the sign of the two operands against the sign of the sum, thus
involving three sign-determination operations. The presence
~ of the magnitude index makes overflow detection possible in
a rather simplified manner. Since P, is uniquely determined
for the given n residues z;,. z,,, -+, z, in the range
—M/2<z<M/2, any overflow (or underflow) to a value
outside the range can be detected. Hence the overflow de-
tection algorithm is as follows.

1) Add x and y to get the result z.

2) Compute P, from z,y, 2,5, ", 2,,
multiplication algorithm.

3) Compare the P, of step 2 with P, obtained in step 1.
If the two are different, an overflow is indicated.

as giver in the

AO AND TREHAN: BINARY LOGIC FOR RESIDUE ARITHMETIC

R

757

Although the computation of P, from the residues is not:"
simple, this method should yield a favorable operation time
when compared with the conventional overflow detection.

II1. CoNCLUSION

A new residue system has been proposed which uses n
moduli of the types 2* and 2*— 1, and also uses a magnitude
index P, for each integer x represented in the system. A 1
in-the system is represented here as (n,, n,, - - -, n,//P;)
rather than as (1, 1, -+ -, 1, /P,) thereby easing consider-
ably the size and complexity of the magnitude index gen-
eration logic. Addition and subtraction (by complement and
add) can be accomplished with very little loss of speed by
the use of a high-speed index generator circuit, which ab-
sorbs the carries from the modular adders. Multiplication
is found to be the most difficult operation in the proposed
system, replacing the old nemesis, the sign detection opera-
tion. A new fundamental operation, called scaling by 2, is
designed to accomplish multiplication by 2 in about the
time required for a shift in conventional binary logic. This
enables sign detection to be accomplished by a repetition of
the scale operation as required. An upper bound U on the
number of scale operations required to detect the sign is
given by U= [log, Mn], where M is the range and n is the
number of moduli. For a 128, 127, 63, 31 system, the sign =
detection requires fewer than U= [log, Mn]=27 scale op-
erations (or 27 shifts). assuming a high-speed magnitude
index generator logic is used. The presence of magnitude
index also eases to some extent the problem of additive
overflow; thus we could conclude that the magnitude index
improves sign detection operation significantly, while the
multiplication operation replaces the sign detection as the
one operation to be dealt with in the future.

ACKNOWLEDGMENT

The authors thank the Guest Editor, Dr. R, Shively, and
the IEEE referees for many helpful suggestions.

R EFERENCES

[1] H. Aiken and W. Semon, ‘‘Advanced digital computer logic,”
Wr.ght Air Development Center, Tech. Rept. WADC TR-59-472,
July 1959.)

[2] 1. Flores, The Logic of Computer Arithmetic. Englewood Cliffs,
N. J.: Prentice-Hall, 1963.

[3] H. L. Garner, *“The residue number system,” IRE Trans. Electronic
Computers, vol. EC-8, pp. 140-147, June 1959. .

[4] O. L. MacSorley, ‘‘High-speed arithmetic in binary computers,”
Proc. IRE, vol. 49, pp. 67-91, January 1961.

[5] R. D. Merrill, Jr., “Improving digital computer performance using
residue number theory,” [EEE Trans. Electronic Computers, vol,
EC-13, pp. 93-101, April 1964.

[6] A. Basaki, ““Addition and subtraction in the residue number system,’
IEEE Trans. Electronic Computers, vol. EC-16, pp. 157-164, Apri]
19¢7.

[7] ——, “The basis for implementation of additive operations i
residue number system,” IEEE Trans. Computers, vol. C=
10661073, November 1968.

[8] A. Svoboda, “The numerical system of residual classes
matical machines,” Information Processing, Proc. UN]

(Paris, June 1959), 1960, pp. 419-422. i

[9]1 N.’5. Szabo and R. I. Tanaka, Residue Arithmetic and Its Applicatioy
to Computer Technology. New York: McGraw-Hill, 1967, pp. 47-
50.

[10] T. R. N. Rao, “The general properties of finite, weighted number
systems,” Ph.D. dissertation, University of Michigan, Ann Arbor,
December 1963.

