Abstract —To meet the challenge created by the advent of large-
scale integration, a unique microelectronic arithmetic building ele-
ment and combinational arithmetic nets, composed of the building
elements, have been studied and proposed for arithmetic processor

design. A fast division algorithm, particularly suitable for floating-
" point arithmetic, has also been developed for signed-digit arithmetic.
" This algorithm is characterized by the need of preprocessing the
~~divisor and then exact generation of quotient digits. This paper
‘describes the implementation of this division -algorithm with the
arithmetic building element and combinational arithmetic nets. The
intention here is to explore the feasibility of applying large-scale
integration technology to arithmetic processors.

Index Terms-—Arithmetic building element, combinational arith-
metic net, division, large-scale integration, microelectronic block,
- ‘signed-digit number system.

I. THE ARITHMETIC BUILDING ELEMENT AND THE
COMBINATIONAL ARITHMETIC NET

HE continuing reduction of the size and cost of micro-
electronic logic elements encourages the utilization of
more complex logic nets in digital computers. In
arithmetic processors, because of the application of these
" complex logic nets, the replacement of sequential logic nets
by their combinational equivalents and the substitution of
programmed software subroutines by hardware function
generators are to be economically justified in the near
future. A unique building block, the arithmetic building
ment (ABE), has been proposed [2], [3], [5], [7]. The
BE is defined in terms of arithmetic transfer functions,
nploying the redundant signed-digit (5-D) number sys-
m {1], in order to take full advantage of the complexity
offered by microelectronics on a single chip. A combi-
national arithmetic (CA) net, composed of an acyclic array
of the arithmetic building element, is organized in such a
ashion that the accuracy, cost, and speed of approxi-
mating a given function are adjustable 41, [51, [7]. A CA
net with feedback loops introduced is called an iterative
~CA net. As an economic alternative, hybrid CA nets can
be formed with totally CA subnets and iterative CA subnets.

A storage register at the ABE output facilitates “pipe-
lining” on CA nets with resulting increase of computation
throughput [4], [7]. A single ABE may also serve as the
rithmetic processor of a serially organized computer.

‘Without going into detail, we shall briefly describe only

those characteristics of the ABE and the CA net which are

pertinent to the implementation of the division algorithm

-with which this paper is concerned.

The simplified schematic diagram of the ABE is shown

‘Fig. 1. Let r be the radix of the S-D number system. The
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Fig. 1. ABE (simplified).

ABE can receive up to (r+ 1) input digits (X}, x2, - - -, xI*
on(D1, D2, - - -, DM) and produce one output digit s; on
or two output digits (¢;,, s;) on (T, S). The function line
inputs (SS, MS, PD, RS) are individual logic variables, allows}
ing the selection of various transfer functions. Separate fun
tion line inputs GO and Gl gate the output of the AB
which is held at zero only if ~ G0 v G1 =0 where ~ indica v
negation. There is also a bit line output, z; z=1 when th
result of the specified transfer function at the given digi
position is zero. The arithmetic transfer functions pertinen
to our discussion in this paper are described below. ‘

A. Simple Sum

The ABE is activated to perform the simple sum functi
with SS=1. The digits of the two inputs words, x! and
are x}, x2, x!, |, and x?, ;. They are entered on input di
lines D1 to D4 in that order. The algorithm is

— 41 2
§;=X; +Xi{ —rgi + ;44

where g, is the carry generated at position i in an S-D nuz
ber system and g;=1, 0, or —1. Thus, a single word s is t
result of adding two words x! and x2.

B. Multiple Sum

The ABE is activated to perform the multidigit sum fi
tion with MS=1. With up to m input digits (x}, - - -, x)
(D1, - - -, DM) digit lines, the algorithm is

m
L)
)

Lt
j=1

=y .
Xi =Tty + 8

where m<r+1, |s/<a, and [t;-1|<a. (a is the maximg
digit value of a given S-D number system: [(r/2)+1]
<r-—1) At each digit position there are two output di
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1,4 and s;; hence, a double word (s, 1) is the result of
ling m words.

Product

he ABE is activated to perform the product function
Bith PD = 1 The inputs are one dlglt x (on DI) of the

1t1p11er x! and threve digits x?, x2, ,, x?, , (on D2, D3, D4)
§ the multiplicand x*, The algorithm is

1.2
XjXit2 = Pivj+1 T Givj+2
1,2
XiXiy1 = "Pi+; + Givjer 3
1,2 _ :
X;Xi = rPivjoy + Gy
Sivj = Di+j F Giv; = F9ivj F Givjer 4

multiplication of two n-digit words, using this product
gorithm, will yield a result where there are not fewer than
i igits in at least one digital position. Such a result is said
e an n-tuple word. An n-tuple word can be reduced to a
le word by using more ABE’s which perform MS and

S functions on the a-tuple word.

Reconversion

iThe ABE is activated to reconvert an S-D number to
nary form with RS=:1. A CA net is an ensemble of ABE’s.
The graphical representation of CA nets, in the form of
rected graphs, exists in two levels, namely, the algorithm
hd hardware levels {5]. We shall describe the hardware
evel only. The emphasis on graphical representation of CA

ets at this level is for the purpose of exhibiting functional
roperties and limitations of the ABE. The vertices which
present the four arithmetic transfer functions just men-

1) simple sum: @.

2) multiple sum: (@ :
3) product: ®.

4) reconversion: Q@

urther, the ABE also provides storage capability ; hence,
5) storage: .

Arcs are represented by directed solid lines. Digits trans-
itted and their formats are identified along arcs; left shift
k1) or right shift (k3) k places can also be indicated if neces-
ry. If no such information is explicitly indicated, then the
hole word, as it was produced in the vertex, is to be trans-
itted without shift. The setting of control signals, if any, is
so indicated along the arcs. The special outputs, e.g., z,
from the preceding vertex assume the form of encoded digits
O or 1 if they stand by themselves along the arc. However,
f they are followed by “|G0” or “iG1”, then they assume
he form of a single bit 0 or 1 and are fed into the succeeding
vertex to energize the gating control G1 or GO. Comple-
mentation may be specified for any input word by putting
solid dot at the termination of the incoming arc trans-
E mitting the input word.

The delay time through one ABE is the same as that
through one hardware level vertex and is defined as one
lime unit (tu).

for odd radices r,

0 DO Y
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[1. THE SIGNED-DIGIT DIVISION ALGORITHM

S-D number representation which is a redundant and
positional representation with a constant radix »> 3 allows
arithmetic addition with carry propagation limited to one -
digit position regardless of the length of the operands [1].

A division algorithm characterized by exact generation
of quotients has been developed for S-D arithmetic [8]. The -
basic principle is outlined below. All numbers are assumed
to have the format

" X). )

It is further assumed that the divisor d is positive and has -
the format

X = (x "X oyXg Xyt

-m

d=dy-d, d, (6)

The recursive step in division is described by

9D =px —g.id,  j=01-,n—-1 (7
where x9 is the dividend, x' is the jth partial remainder,
qd;+1 1s the {j+ 1)st digit of the quotient g, and r is the radix. .
If it is desired to have the quotient digits generated in an
exact manner (i.e. not trial-and-error) and, in particular, to
have g;.., equal to xY), plus a constant (which may be zero),
then this requirement together with the constraint that
|xU* B be less than d would yield a specific range for d. For
a minimally redundant S-D number system it has been

found [§] that
1—hy<d<1+h,
where for even radices r,
hy=(r — 4)/r(r — 1)

t)
hy=(@—4/[r— D+ 49),

hy = (r = 3)/(r — 1)?
hy = (r = 3)/(r — D)(r + 3).

It should be pointed out that ranges for divisors in conven-
tional number systems have also been investigated [6].
Based on the above argument this division algorithm is
performed in two steps. In step one, the input divisor, as-
sumed positive and normalized, is brought into the specified
range by no more than two multiplications. A nonoptimal
set of multiplication constants has been developed [8], and
the selection of the constants is based on the examination of -
the unit digit and the two most significant digits of the frac
tion of the divisor. In the meantime the dividend is adjusted
accordingly. At the end of step one,d=1+¢,e=(0" e1 .
and e satisfies the conditions in (8), x=(x_ ;x4 " X; -
The recursive relation in step 2 can be described w1th t
following formula, analogous to (7):

U+ o ) i=01,-,n

t9r + xP)e -1
and

qjv1 = x(g+1)
where () is the carry digit out of the most significant digit
of the fraction of the partial remainder. A formal description




Fig. 2. CA net of step one.

of step 2 using Iverson’s notation and an example of radix
16 with minimum redundancy can be found in [8].

III. IMPLEMENTATION

o The basic operations in step one of this S-D division
algorithm are as follows. Compare the given argument
against a set of constants and then select, based on the re-
~sult of the comparison, an appropriate multiplication factor
“by which to multiply the given argument. The quantities
x"', d") are the given dividend and divisor, respectively, with
d” assumed to be positive and normalized. In the ﬁrst sub-
step x'=x"k; and d'=d"k; if k;<d” <kj, where (k}, k}) is a
pair of comparison constants and k; is the associated multl-
plication factor. In the second substep the above process is
repeated; x=x'k; and d=d'k;, if k;<d'<k]. A representa-
tive segment of a possible CA net 1mp_lementat10n of the
above process is shown in Fig. 2.
To test whether a <y <b is equivalent to testing whether
“(y—a)=0 and (b—y)>0. This is exactly the way it is de-
. termined whether or not dg-djd, is within the range
‘bounded by k; and &} in Fig. 2. First, the two subtractions
~are performed. The subsequent reconversions yield the
sign (polarity) information of the differences. If and only if
the two differences are nonnegative, the sum of their signs
- will yield the indication z=1. The zero indication is then
used as the gating control G1 to release the multiplication
factor k;. Of all multiplication factors, only one will be re-
“leased and the merging operation (5] is done at the multiple
-sum vertex at level 4. The CA net described so far has per-
ormed the functions of comparison, decision, and selection.
‘rhe appropriately selected multiplication factor k; is then

which is xY* 1. Note that there should also exist a storage
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Fig. 3.

used to multiply d” and x” to obtain d” and x’. The above
process may be repeated to obtain d and x.

The inputs to step two are d==1+e¢ and x, The CA net
describing the recursive relation is shown in Fig. 3. This step
is relatively more straightforward than step one. Note that
—t{re is formed by shifting é to the left by one digit position
and then multiplying it by ¢§, The quantity rx* is obtained
also by shifting x*” to the left by one digit position, Thus, the
input to the multiple sum vertex is the quantity

(rety’ + xPe + rx)

vertex receiving the quotient digits generated.

IV. CoNCLUSION

The implementation of an S-D) division algorithm char-;
acterized by exact generation of quotients with a unique;
microelectronic arithmetic building block has been shown.
We have also demonstrated the decision and selection?
capability of the combinational arithmetic net composed of?
the building blocks. We by no means attempt to sugges
that this scheme is better or more efficient than curren
techniques employed in existing arithmetic processors. Th
above discussion, however, does motivate our interest i
exploring a new approach to arithmetic processor design fo
the forthcoming era of large-scale integration.
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