Semantics for Exact Floating Point Operations

G. Bohlender, W. Walter

Universitit Karlsruhe
Kaiserstr. 12, D-7500 Karlsruhe
W. Germany

Abstract

Semantics are given for the four elementary arithmetic
operations and the square root, to characterize what
we term exact floating point operations. The operands
of the arithmetic operations and the argument of the
square root are all floating point numbers in one for-
mat. In every case, the result is a pair of floating point
numbers in the same format with no accuracy lost in
the computation. These semantics allow us to realize
the following principle: it shall be a user option to dis-
card any information in the result of a floating point
arithmetic operation. The reliability and portabil-
ity previously associated only with mathematical soft-
ware implementations in integer arithmetic can thus
be attained exploiting the generally higher efficiency of
floating point hardware. Currently, these operations
are partially supported in hardware on many existing
architectures. This proposal is intended to influence
the design of future floating point processors to include
the full functionality with hardware efficiency.

1 Introduction and Summary

Hardware implementations of floating point arith-
metic operations have been prone to discard supple-
mental information necessarily generated in the pro-
cess of computing and returning a rounded result.
Most notably the low order bits of floating point ad-
dition, subtraction and multiplication are often avail-
able at intermediate stages of the hardware algorithm,
as also is the remainder for divide and square root,
yet these results are generally unavailable as a sec-
ondary supplemental result. It is our contention that
for many purposes the user would be well served to
have this supplemental information provided in a con-
venient form, particularly in view of its availability at
very modest additional hardware cost.

In this paper we first state a goal for hardware float-
ing point design in the appealing sense of “exact float-
ing point operations,” designed to dispel the popular

CH3015-5/91/0000/0022$01.00 © 1991 |EEE

P. Kornerup

Institut fir Angewandte Mathematik Dept. of Math and Computer Sci.

Odense University

DK - 5230 Odense
Denmark

22

D.W. Matula
Dept. of Computer Science and Eng.
Southern Methodist University
Dallas, TX 75275
USA

misconception that floating point operations are inher-
ently inexact. We support our goal with prescribed
semantics characterizing the notion of exact floating
point operations, where the prescribed results can be
readily obtained and provided to the user by tradi-
tional hardware procedures. Of the utmost signifi-
cance in this approach is then that any compromise
in floating point computation by truncation of either
the accuracy of a number representation, or the limit-
ing value of a process, is shifted to user control With
floating point accuracy compromises then an artifact
of a mathematical software system, any ill-contrived
and/or ill-defined approach may be appropriately cor-
rected at that level.

Our motivation is expoused in the following princi-
ple.

Exact Floating Point Operation Principle:
It shall be a user option to discard any infor-
mation in the result of a floating point arith-
metic operation.

This dictate is effectively directed to hard-
ware arithmetic unit designers with the term
“user” denoting either a person or program having ac-
cess to and controlling the operations. By “float-
ing point arithmetic operation” we mean the five
operations: addition, subtraction, multiplication, di-
vision, and square root; explicitly described in the
IEEE/ANSI floating point arithmetic standards(1,2].
We shall herein describe semantics for exact floating
point arithmetic operations satisfying this principle.

Our proposed semantics may briefly be summa-
rized as follows. The “exact” finite precision re-
sult of each of these floating point operations shall
be expressed by two component numbers, the first
of which is a rounded value of the infinitely precise
result rounded by an appropriate one of the IEEE
defined controlled roundings: to-nearest, to-positive-
infinity, to-negative-infinity; and designated the high
order part. Let z and y be floating point numbers of

the same format. Letting h denote the high order part
for addition, subtraction or multiplication of z,y, we
define the second component number to be the low
order part £ given, respectively, by £ = z +y — h,
£=z—y—h,and £ =z x y— h. Letting ¢ denote the
high order part for division of z by y or the square root
of =, we define the second component number to be
the remainder r given by r = £ — ¢ x y for division and
r =z — q x ¢ for square root. We note as a principal
result that if the high order part is chosen by round
to-nearest, the second component number can itself al-
ways be represented exactly by another floating point
number of the same format (in the absence of over-
flow /underflow or invalid operation exceptions). It is
possible for some, but not all, of the five operations
that the high order part may be chosen by an alterna-
tive rounding with the second component number still
representable by a floating point number of the same
format.

Our semantics is simply to prescribe as allowed
roundings for the high order part those roundings
which guarantee that the second component number
will be exactly representable as a second floating point
number of the same format. The exact floating point
result is then the floating point number pair in each
instance, in the absence of any exception condition.

The fact that the low order part and/or remain-
der so defined can be represented by a floating point
number of the same format in each operation instance
is straightforward to verify and is not claimed to be
a significant result in and of itself. The importance
we ascribe here is to the consistent package of results,
namely, that barring exceptions, the result of addi-
tion, subtraction, multiplication, division, and square
root can each be expressed by a pair of floating point
numbers in the same floating point format. Further-
more, these value pairs satisfy well known mathemati-
cal identities, allowing the user total flexibility to build
more complex expressions of arbitrarily high precision
by well known techniques [3,4,5,6].

In section 2 we give a brief formal account of the
semantics and prove their attainability. In section 3
we consider alternative roundings avilable to prescribe
the high order part in conformance with the low or-
der part/remainder guaranteed to be representable in
a second floating point word. In section 4 we note
exception conditions that can arise, and refer to a rec-
ommended known approach to the handling of under-
flow /overflow.

23

2 Semantics for Exact
Floating Point Operations

We consider a floating point system F =
F(b,p,emin,emaz) characterized by its base b, the
length p of a mantissa, and the minimal and maximal
exponents, emin and emaz. A floating point number
z in this system consists of a sign, a fixed-length man-
tissa with digits dy,ds,...,dp, where 0 < d; < b—1
for all i, and an exponent e with emin < e < emar,
both given to the base b:

P
T = :tbCZdib'i.
i=1

For simplicity, we will restrict our discussion to nor-
malized floating point numbers, that is, numbers with
d; # 0, and we do not define the representation of 0.

For floating point numbers, we define e(z) to mean
the exponent of z in the preceding sense. Also, we
define the notation

ulp(z) = pe(=)-p

to mean one unit in the last place relative to the float-
ing point number z. Note that for all floating point
numbers z, z + ulp(z) and « — ulp(z) are the adjacent
floating point numbers above and below z, unless one
of them overflows or underflows, or unless z = +b"
for some integer n. If # = b" for some integer n,
then there are b — 1 floating point numbers between
z —ulp(z) and z. By symmetry to zero, an analogous
statement holds for © = —b".

For the remainder of this paper, we will assume the
above definitions. In particular, we will assume a float-
ing point system F with an arbitrary base b > 2 and
with a number of mantissa digits p > 2. All float-
ing point numbers are assumed to be members of this
floating point system F.

The mathematical specification of the proposed ex-
act floating point operations is summarized in the fol-
lowing table. Note that all arguments are of the same
floating point format.

operation arguments mathematical specification
in | out

exact.add | (x,y, h,1) [z+4+y=h+1 with

e(l) <e(h)—~punless =0
exactsub | (x,y, h1) [z —y=h+1 with

e(l) <e(h) —punless I =0
exact.mul | (x,y, h,1) | z+y="h+1 with

e(l) < e(h) —punless I =0
exact.div | (x,y, q,1) | z=qy+r with

|7] < ly|ulp(g) unless ¢ =0
exact_sqrt | (x, q, 1) | £ =¢°+r with

—2q - ulp(q) + ulp*(g) < r

r < 2¢ - ulp(q)

We will demonstrate that the above specifications
are reasonable: they can be fulfilled, and they require
the first part of the result to be of one ulp accuracy.

Lemma: For every pair of floating point operands
z,y in the four arithmetic operations and for every
floating point argument z in the square root operation,
it is possible to find a pair of floating point numbers
h,l or g,r, respectively, such that the above specifica-
tions are fulfilled — unless an exception occurs.

Proof:

Addition, Subtraction:

Without loss of generality, let us assume that e(z) >
e(y). Two cases have to be distinguished. If e(z) —
e(y) < p, their sum (difference) can be represented
with 2p digits even if a carry occurs. Taking the
first p digits for h and the last p digits for I makes
e(h) — e(l) > p. Note that ! may have to be nor-
malized, making e(h) — e(l) > p, or I may be 0. On
the other hand, if e(z) — e(y) > p, then A = z and
I = y (or I = —y for subtraction) obviously satisfies
the specification.

Multiplication:

The exact product of two floating point numbers
can be represented with 2p digits. From the leading
non zero digit choose the leading p digits as the high
order part h and the balance of at most p digits as the
low order part .

Division:

For division of z by y, we term a partial quotient ¢ to
be the result of rounding the exact result z/y towards
positive or negative infinity to a certain length. The
corresponding remainder is defined by r = z~gqy. The
traditional long-hand division of by y can be used
to determine at each step a partial quotient ¢ and the
corresponding remainder r.

In the trivial case, the exact quotient z/y is exactly
representable as a floating point number, so choose
q to be the exact quotient and » = 0. For the gen-
eral case, let us assume that ¢ > 0 without loss of

24

generality. Choose ¢ to be the round-to-zero (trun-
cated) result, that is ¢ < z/y < ¢ + ulp(q). Then
0 <z/y—q <ulp(g) and thus 0 < |r| < |y| - ulp(q).

Any floating point number z # 0 is an integral mul-
tiple of ulp(z), that is z = n - ulp(z) for some integer
n with |n| < b*. Thus ¢y is an integral multiple of
ulp(q) - ulp(y). Since |z| > ¢ - |y| by assumption, z is
also an integral multiple of ulp(g) - ulp(y), and so is
r =2z —qy. Since |r| < |y| - ulp(q) = i - ulp(y) - ulp(q)
where |y| = i - ulp(y), r can be represented by a
floating-point number.

Square Root:

For the square root of z > 0, we term a partial root
g of £ to be the result of rounding the exact result
VZ towards positive or negative infinity to a certain
length. The corresponding remainder is defined by
7 = ¢ — ¢°. The traditional long-hand square root
process can be employed to visualize the selection of
the partial root ¢ and the corresponding remainder r.

Let ¢ be the round-to-nearest value of \/z, and as-
sume that » = £ — ¢® does not underflow. It is read-
ily noted that e(q) cannot be of opposite sign as e(z)
and can be of no greater magnitude unless e(z) = 0,
e(q) = 1. ¢ can never overflow or underflow and » can
never overflow, but can underflow.

By the same argument as for division, = as well
as ¢ must be integral multiples of ulp?(g). Hence
7 = ¢ — ¢? is also an integral multiple of ulp?(q), say
r = i*ulp?(g). We can also write ¢ = j * ulp(q)
for some integer j. Our proof will be completed by
showing |i| < |j].

Since g is the round-to-nearest value of \/z,

¢ Yp(a) < VE < g+ Upl@)
2 2
So now
r = r—g°
and then
Il < (2g+ 200Dy, ulp(q)
2 2
ulp?
= g¢=xulp(q) + __p4(q)‘
Since r = i % ulp®(q),
ulp®(q)

[i] % ulp?(q) < || * ulp®(q) + -

so then [¢| < |j| since i and j are integers, and thus r
must be representable in the same format as q.

Given that a result pair ¢,r for the exact square
root of x exists, we wish to specify that » must cor-
respond to less than ulp(q). Note that if the re-
mainder r is positive, must fall between ¢g*> and
(g+ulp(q))? = ¢>+2q-ulp(q)+ulp®(q). Therefore, r <
2q- ulp(q) + ulp?(g), and since r is an integral multiple
of ulp?(q), we obtain r < 2¢-ulp(g). Similarly, a nega-
tive remainder must satisfy r > —2q - ulp(q) + ulp*(q).

3 High Order Part Rounding

For all five exact floating point operations +,—,*,/,
and /", the preceding specifications require that the
exact answer lie in the interval [h— ulp(h), h + ulp(h)]
or [g — ulp(q), ¢ + ulp(q)]. A consistant way of imple-
menting these operations is to always choose the round
to-nearest result as the first floating point number of
the returned result, that is, the second component (I
or r) can then be shown to always be exactly repre-
sentable as a floating point number.

Note that if |e(z) — e(y)| > p + 1 for addition, the
only way to exactly represent the sum is to return
the original operands z and y as result, and this is
obtained only by round to-nearest. The situation is
analogous for subtraction. For multiplication, on the
other hand, any one ulp rounding will work since the
product can always be represented with 2p contiguous
digits.

In +, —, *, note that the condition e(h) — e(l) > p
is equivalent to the requirement |I| < ulp(h). This
further guarantees that for I # 0, h will be one of the
two floating-point numbers bracketing the exact result
of the add, subtract or multiply operation unless h is a
power of the base. In a two digit decimal floating-point
system, we may obtain for z = 0.98 and y = 0.005
the result £ + y = 0.985 = h+ ! with h = 1.0 and
! = —0.015. Rather than disallow such results, we
have chosen the criterion corresponding to |I| < ulp(h)
as sufficient in view of its simplicity and reasonable
extension to the divide and square root operations.

In 4, —, *, if the round to-nearest result is chosen
for h, the stricter requirement |I| < %ulp(h) is al-
ways satisfied. Similarly, in division, if the round to-
nearest result is chosen for ¢, the stricter requirement
Ir] < %ly|ulp(q) is satisfied. In this and the follow-
ing examples, we will use a two digit decimal floating
point system. Consider the following problem. The
division 99/120 may produce ¢ = 0.82 and r = 0.60
or ¢ = 0.83 and r = —0.60, where the rounding is of
1/2 ulp accuracy in both cases, and where the limit
for r is attained in both cases.

Note that in division, the difference e(z)—e(r) must
sometimes be allowed to be p — 1. At other times it is

25

required to be at least p. Essentially, this means that
the required relationship must be |r| < |y| - ulp(q) and
not |r| < ulp(z), as seen below.

For 99 divided by 6.0 we should obtain either ¢ = 16
or 17 with » = 3.0 or r = —3.0, respectively. Thus
the exponent difference p — 1 = 1 must be allowed
between z and = in this case. For 110 divided by 6.0,
we should obtain either ¢ = 18 or 19 with » = 2.0 or
—4.0, respectively. In this case an allowed exponent
difference between z and r of p— 1 = 1 would not rule
out the result ¢ = 16, r = 14 and many other such
undesirable results.

For the square root, simply choosing ¢ as a partial
root of the floating-point number « does not always
lead to a corresponding remainder r representable
in the same floating point format. Consider that
/9200 = 95.91... , and the partial root ¢ = 95 has
a corresponding remainder r = 9200 — 95% = 175.
Here though, the partial root ¢ = 96 would yield a
corresponding remainder r = 9200 — 962 = —16.

4 Exception Handling

The following table gives a brief overview of the ex-
ceptions that can occur in each of the five exact float-
ing point operations. The appearance of an argument
name in the table indicates that this output argument
can overflow or underflow, respectively. X’ indicates
an invalid operation can occur.

operation overflow underflow invalid
operation
+, — h 1 h &l
* hfh&l]|1] h &1
/ q rlgqlaq&r X
N2 T X

There are different ways of treating an exception.
Without requiring any specific actions, we propose
that overflowed and underflowed arguments are scaled
appropriately. Additionally, we propose that for
+, —, %, both output arguments are scaled simultane-
ously in such a case so that their sum also appears
scaled. The exception handling defined in the IEEE
standard 854 may be followed [2].

5 Applications and Conclusion

The described exact floating point operations can be
used as elementary tools to control and increase the ac-
curacy of numerical computations. For example, they
can be used to implement multiple-precision arith-
metic.

Exact addition and subtraction operations are ex-
tremely useful in applications employing repeated
add/subtract operations. In particular, the ill ef-
fects of leading digit cancellation can thus be avoided.
This may be of great advantage in iterative refinement
methods. Together with the exact floating point mul-
tiplication as presented, this allows the implementa-
tion of an exact dot product which will not be rounded
until the final exact result has been computed, thus in-
curring only a single rounding error. Such a dot prod-
uct is an invaluable tool in matrix and vector compu-
tations.

Certain exact floating point operations were previ-
ously available in hardware in the late 60’s, e.g. on
UNIVAC 1100 series computers for single precision.
‘The operations described here are (at least partially)
supported by hardware on many existing architectures
including IEEE 754 [1] and IBM /370 arithmetic. The
multiply and add instruction of the IBM RISC 6000
allows recovery of the low order term for multiply and
the remainder for divide and square root. On proces-
sors which do not support these operations in hard-
ware, they can be simulated in software using methods
from (3, 4, 5, 6].

The inclusion of these operations in new program-
ming languages such as Fortran 90 would serve to en-
courage manufacturers of floating point processors to
fully incorporate these operations in future hardware
designs. By placing such exact floating point arith-
metic in the floating point unit, hardware designers
could relegate integer multiply and divide to the float-
ing point unit, and then for the rest of the processor
adopt a simplistic RISC oriented design.

26

References

(1] ANSI/IEEE Standard 754-1985: IEEE Standard for
Binary Floating- Point Arithmetic, ANSI/IEEE, New
York (1985)

[2] ANSI/IEEE Standard 854-1987: IEEE Standard
for Radix-Independent Floating-Point Arithmetic,
ANSI/IEEE, New York (1987)

[3] Dekker, T. J.: A floating-point technique for extend-
ing the available precision, Numerical Mathematics
18, 224-242 (1971).

Kahan, W.: Further Remarks on Reducing Trunca-
tion Errors, Commun. ACM 8, 40 (1965).

Linnainmaa, S.: Analysis of some known methods of
improving the accuracy of floating-point sums, BIT
14, 167-202 (1974).

Mgller, O.: Quasi double-precision in floating-point
addition, BIT 5, 37-50 (1965).

(4]
(5]

