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Abstract

In order to get an insight on the perturbations generated
by running algorithms on a computer, one may stmulate
them by random perturbations on the data. For linear
systems, we find that such a statistical estimation gives
results which compare favorably with those given by the
backward analysis of Wilkinson and Skeel. We intend
to use such a technigue mainly for nonlinear problems
when no theoretical analysis is available.

1 Stability, backward error and condi-
tion number

Consider in the finite dimensional space R™ the linear
system Az = b. In order to solve this problem, we choose
a direct method implemented on a computer. Because
of the finite precision arithmetic, the algorithm gener-
ates a perturbation, so that the computed solution is
not z but z,, where ¢ is a parameter associated with the
arithmetic (¢ tends to zero means the precision tends to
infinity). In exact arithmetic, z. is the exact solution of
the linear system A.z, = b.. The algorithm generates
a perturbation (A — A,,b — b,) on the initial problem.
It is usually the case that this perturbation is neither
unique nor easily computable.

In order to estimate the arithmetic error = — z,, one
needs to have a model for the perturbations generated
by the algorithm. This can be done by means of a back-
ward error analysis.

1.1 Backward error

In the context of computational stability analysis, we
consider that the computed z. is the exact solution of
a perturbed problem :

(A+AA)z, = b+ Ab.

where AA and Ab belong to the class of perturbations
generated by the algorithm. The backward error is
the minimal relative amplitude w of the perturbations
(AA, Ab) of a given class, for which z, is still a solution
of (A+ AA)ze = b+ Ab.

We recall here the two well-known models of perturba-
tions used to study Gaussian elimination. First, Wilkin-
son [7] used a global model based on matrix norms and
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a global backward error of the type :

AAL | flAs]

Al 1ol
which leads to the normwise perturbations {||AA|| <
w||A]l, ||Abl| < w||b||}. Then, Oettli and Prager (4] intro-
duced a more local model, focused on matrix elements.
Skeel [6] studied it in detail. He defines the class of
componentwise perturbations i.e.

{AA Ab|AA] S wE, |Ab S wf},

where E and f are given as respectively a matrix and
a vector of positive elements and where the inequalities
are componentwise. For this class of perturbations, the
relative backward error is

n = min{w; (A + AA)x, = b+ Ab
with |AA| <wE,|Abl <wf}.

E and f are respectively a matrix and a vector to be
defined by the user. As noted by Skeel, they may be
seen as the maximal uncertainty on the data (tolerance),
the special structure of external perturbations ...The
choice (E = |A|, f = |b]) seems to be a good model for
Gaussian elimination.

Once the backward error is computed, one may want to

estimate the error £ — z, of the solution. This is where
the condition number plays a role.

1.2 Condition number

A problem is said to be stable if a “small” variation
of the data induces a “small” variation of the solution.
Consider a problem (P) with data & and solution ® (¢).
The stability of this problem (P), when subjected to
a certain type of perturbations, can be quantified by
means of the relative condition number C:

relative distance from @ (£) to @ (€)

C = lim - - =
relative distance from € to &

£—¢
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if this limit exists, which is always the case for a non-
singular linear system.
The definition of C' majorizes, to the first order, the
relative error:
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where 7 is the relative backward error associated to the
chosen type of perturbations. Of course, C' depends on
the model of the perturbations and on the metric. The
condition number also depends on the choice of the data
to be perturbed.

Below is a table of the condition numbers (or upper
bounds) of a linear system for Wilkinson’s global model
and Skeel’s structured model.

data global structured
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Table 1: Some condition numbers or upper bounds for
a linear system

2 Statistical estimation

A simple way to get a statistical estimate of a condition
number 1s to perturb the data with random perturba-
tions taken inside the class of perturbations one wants
to study. Then, one measures the induced variation on
the solution. One can estimate the condition number by
computing the ratio of the size of the induced variation
and the size of the perturbation [1].

Of course, this method is very costly for linear systems
where theoretical tools are already available (explicit
formulations of condition numbers). But it allows one
to estimate a condition number even when its mathe-
matical formulation is unknown. Therefore, it will be
very useful for nonlinear problems where theory has not
provided yet such formulations. Then our aim is to test
IEihe reliability of the method in the “simpler” linear case

rst.

2.1 The method and its implementation

Ge F
data 4,6 — X — Y =AX-b"

Perturbing randomly the data of the algorithm G, we
estimate:

o the relative condition number K, of F~! by mea-
s A(X
suring ﬁ%’
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¢ the relative condition number L, of G, by measur-
. A (X)
ing Ar(data)’

o the relative condition number I, of Z, = F, o G, by
. ALY
measuring #(da_t_%

where A, (z) is a measure of a relative variation around
z, with an appropriate norm. One can show that I, ~
£=. We call I the partial arithmetic stability. If I,
is close to one, then Z, is a good approximation of the
identity. If I is too large, it means that the algorithm is
more ill-conditioned than the mathematical problem. I,
is useful to distinguish between the contribution of the
algorithm and of the problem itself, to an instability.
We introduce two kinds of perturbations:

e type-1 perturbations are global. We define them by
Ai3)er = Asy + allAllt and (b:),, = b + bl
o type-2 perturbations are structured. We define
them by (A,'J' )per = A,‘j (1 -+ at) and (b‘)per =

bi (1 -+ C!t),

where ¢ controls the amplitude of the perturbations and
a is a discrete random variable such as, for example
pbla = 1) = pb(e = —1) = 1/4, pb(a = 0) = 1/2.
From now, when not written explicitely, ||.|| is ||.||co
For each type of perturbation, we vary the amplitude
of this perturbation from machine precision to 10~! (or
more if it is relevant for the problem): this is a way to
simulate perturbations of different origins (arithmetic,
numerical approximations, physical measurements ... ).
After applying the algorithm G, to the randomised
data, we collect a sample of computed solutions X and
their associated sample of residuals Y. Let z, be the
computed solution of the linear system Az = b.

Let m (resp. p) be the mean and o (resp. v) be the
standard deviation of the sample X (resp. Y). Let o,
be the norm of the relative variation of the data. We
define the estimators for the condition numbers follow-
ing Wilkinson’s definition for type-1 perturbations, and
Skeel’s definition for type-2 perturbations. Tables 2 and
3 present formulae which estimate the condition number

T;z"‘ . B takes the value

and the relative error
o [|A]|llzc|| + {[b]] when both A and b are perturbed,
e ||A||||z¢]] when only A is perturbed,

o ||b]| when only b is perturbed.
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Table 2: Statistical estimators for type-1 perturbations.
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Table 3: Statistical estimators for type-2 perturbations.

For more details on the method and for proofs, see the
appendix and [2].

2.2 General behaviour of the condition
number

Figure 1 shows the standard behaviour of the condi-
tion number estimate for the problem Az = b when the
matrix A is perturbed with our type-1 or type-2 pertur-
bations, and when only the right-hand side is perturbed.
t controls the amplitude of the perturbations. For per-
turbations of A and possibly b, and for ¢ < tg, the con-
dition number K is constant, smaller than the classical
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condition number for type-1 perturbations, and close to
Skeel’s condition number for type-2 perturbations. For
t > to, K varies like 1/t (which appears as a line with
slope -1 on the log-log scale of figure 1). For t > t;, the
perturbed system is seen as singular by the computer
and no estimate is reliably available.

For perturbations of b only, K is constant for all . This
experimentation is very useful because in many cases it
allows to make an estimation of the error, by definition
of the condition number.
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Figure 1: Behaviour of the condition of a linear system
with the size of the perturbation (log-log scale).

3 Results and comments

We present here the results when Gaussian elimination,
as provided by the LAPACK library, is applied to the
linear system DDz = b whose coefficient matrix and
exact solution z are given by:

DD(, j) —ii;il,i;éj
DD(i,i) = n
() = V(@),i=1n

For each plot, the value of the parameter ¢, which con-
trols the amplitude of the perturbation, is on the hori-
zontal axis. On the vertical axis are plotted the relative
condition number of the identity I, the relative condi-
tion number of the algorithm L, the relative condition
number of the mathematical problem K, the exact rel-
ative error Eex and the estimated relative error Eest.

Classical and componentwise condition numbers of the
unscaled matrix are all close to 1 and lead to very good
estimations of the error which is around 10716, All sta-
tistical experiments show constant condition numbers
(and thus stability) for type-1 and type-2 perturbations.
We “descale” this diagonal dominant matrix by mul-
tiplying each even row by 10° and each odd row by
1078, We modify the right-hand side in the same way,
so that the descaled system has the same solution as the
original one. The exact arithmetic error is now around
10~'%. This has no influence on row-scaling indepen-
dant condition numbers (i.e Skeel’s condition numbers)
but the classical condition numbers are multiplied by
102, Nevertheless, Skeel’s condition numbers still pro-
vide a very good error estimation where the classical



condition numbers are far too large.

We observe on figures 2 and 3 that type-2 perturbations
do not generate any instability. When the condition
number of the identity is one, our estimate of the con-
dition number of the mathematical problem is close to
that defined by Skeel and yields a very good estimation
of the error (figures 2 and 3).

On the contrary, with type-1 perturbations, the prob-
lem is unstable for values of ¢ smaller than 10~ !3 when
both A and b are perturbed (figure 4). When only b is
perturbed, the condition number of the mathematical
problem is constant as expected. But the estimation of
the arithmetical error is not good at all: it is largely
overestimated. This means that type-1 perturbations
are not a good model for the perturbations generated
by the LU algorithm: they are too “large” (figure 5). We
are actually measuring the error for a different problem
which would be a type-1 perturbation of the initial prob-
lem. Figure 6 illustrates this point. Let (A,b) be the
original “descaled” matrix and vector, and let (4, V') a
given type-1 perturbation of (A4,b). Let ¢ and z' such
that : Az = b and A’2’ = . If K, is the condition
number of the linear system Az = b subjected to type-1
perturbations, then we can make the following estima-
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The results shown on figure 6 are now very good.
The conclusion of this example is in threefold:

1. it is very important to have a good model of the
perturbations generated by an algorithm if one
wants to estimate reliably the arithmetical error,

2. given a model of the perturbation, the statistical
method allows one to measure the condition num-
ber of a linear system subject to these perturba-
tions and estimate the error generated by this kind
of perturbations,

3. the perturbation generated by the LU algorithm
seems to be row scaling independant. This is in
agreement with the insistence in the literature for
building condition numbers which are independent
of row scaling.

More extended results, using different matrices are pre-
sented in [2].

Appendix

Type-1 perturbations

We perturb A and/or b in the following way:

(Aij)ye, =

(bi)per

where ¢ controls the size of the perturbations. We have
[[AA[l < nt||Al and [|Ab]| < t||b]| where n is the size of

the matrix.
We are then simulating a discrete version of the global

Ai; + o |Ale,
b; + o|b||t,
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perturbations of Wilkinson. Therefore we use the ap-
propriate formulation of the relative backward error
stated by Rigal and Gaches [5, 3]: if Ay is an absolute

variation of the residual, T |";”+"b” is the associated
relative variation when both A and b are perturbed,

‘ﬁﬁz—” ( resp. ||Ab"|£[ ) when only A (resp. b) is perturbed.

We would like to estimate A, (z.) by IIUIIQIIEIm—;”: but

we dot not know z, the exact solution. That is why we
have to take away the term ||m — z|| called the bias

and use A,(z) ~ H The estimation will be justified

when ||o|| < {[m — z||, which will happen as the size of
the perturbation grows.
Nevertheless, we know the exact residual which is
y = Az — b = 0. We can then estimate A(y) by
[lv[I2 + ||pl]?>. That is what we do for computing the
condition number of the identity I“St). But since the
condition number of the mathematical problem involves
both Argz) and A,(y) and that we have to take away
the bias for A, (z), we decide to use A(y,) = ||v|| in the
computation of K;(t). This choice is heuristic but we
obtained our best results with it. We can also consider
that the absolute condition number of the mathematical
problem is estimated by ”Z” )
IIEX) is the ratio of A,(y¢) and on, Li(t) is the ratio
of Ar(z.) and o, and K;(t) is the ratio of A.(z,) and
Ar(ye). All the estimates were given in table 2.

Type-2 perturbations
We perturb A and/or b in the following way:

(Aij ) per Aij (1+ at),
(Bi)per = bi(1+at),

where ¢ controls the size of the perturbations.

We have: |[AA| < t|A| and |Ab| < t]8].

In this case, we are simulating a discrete version of the
structured perturbations of Skeel [6]. Therefore we use
the appropriate formulation of the relative backward
error: if Ay is an absolute variation of the residual,

FaN N . . . . .
MaXi=1,n TATITT0; 1S the associated relative variation

Avs
when both A and b are perturbed, and max;=1 ,, mﬁ;m
(resp. max;=1, ]A—b}f,i ) when only A (resp. b) is per-
turbed.

Like in the previous paragraph, we will estimate Ar(ze)

by .

Ze
When computing the condition number of the identity,
vi4p?
z|+8), "
puting the condition number of the mathematical prob-

we will use A,(y) = Maxigi<n o When com-
. v,
lem, we will use maxi<i<n (—Hﬂju_llﬂ—).'

Le(t) is the ratio of A,(ye) and o, Lac(t) is the ratio
of Ar(z,) and oy, and Ky (t) is the ratio of A, (z.) and
Ar(ye). The estimates were given in table 3.
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