A General Division Algorithm for Residue Number Systems*

Jen-Shiun Chiang
Mi Lu

Electrical Engineering Department
Texas A&M University
College Station, Texas 77843-3128
U.S.A.

Abstract

We present in this paper a novel general algorithm for
signed number division in Residue Number Systems
(RNS). A parity checking technique is used to accom-
plish the sign and overflow detection in this algorithm.
Compared with conventional methods of sign and over-
flow detection, the parity checking method is more ef-
fictent and practical. Sign magnitude arithmetic di-
vision is implemented using binary search. There is
no restriction lo the dividend and the divisor (ezcept
zero divisor), and no quotient estimation is necessary
before the division ts started. In hardware implemen-
tations, the storage of one table is required for par-
ity checking, and all the other arithmetic operations
are completed by calculations. Only simple operations
are needed to accomplish this RNS division. All these
characteristics have made our algorithm simple, effi-
ctent, and practical to be implemented on a real RNS
divider.

1 Introduction

Residue Number Systems (abbreviated as RNS) are
attractive to many people. A RNS is composed of
moduli that are independent of each other. A number
in the RNS is represented by the residue of each modu-
lus, and arithmetic operations are accomplished based
on each modulus. Since the moduli are independent
of each other, there is no carry propagation among
them, and it is easy to implement RNS computations
on a multi-ALU system. The operation based on each
modulus can be performed by a separate ALU, and all
the ALU’s can work concurrently. These characteris-
tics allow RNS computations to be completed more
quickly — an attractive feature for people who need
high speed arithmetic operations [1, 2, 3].

Overflow detection, sign detection, number compari-
son, and division in RNS are very difficult and time
consuming [4, 5]. These shortcomings limited most of
the previous RNS applications to additions, subtrac-
tions, and multiplications.

The general division algorithms can be classified into

*This research is partially supported by the National Science
Foundation under Grant No. MIP-8809328.

CH3015-5/91/0000/0076$01.00 © 1991 IEEE

76

two groups [6]: multiplicative algorithms and subtrac-
tive algorithms. The multiplicative algorithms com-
pute the reciprocal of the divisor; the quotient is ob-
tained by the multiplication of this reciprocal and the
dividend. Subtractive algorithms recursively subtract
the multiple of the denominator from the numerator
until the difference becomes less than the denomina-
tor. The multiple is then the quotient.

There are several RNS division algorithms that are
classified as multiplicative algorithms [5, 7, 8]. These
multiplicative algorithms use the mixed radix number
conversion to find the reciprocal of the divisor and to
compare numbers. Iteratively, the approximate quo-
tient is made closer to the accurate one. Due to the in-
volvement of the mixed radix number conversion, the
arithmetic calculation is very complicated and needs
a lot of stored tables. Among these multiplicative al-
gorithms, Kinoshita’s algorithm [8] uses mixed radix
numbers to approximate the quotient, and requires ei-
ther a decimal divider or the storage of a very large
table. Banerji’s algorithm [7] also uses the mixed
radix number approach and requires a lot of storage.
Chren [5] criticizes that the standard deviation of the
mean of the execution time needed in this algorithm is
high. Chren’s algorithm [5] is modified from Banerji’s.
Chren made some effort to reduce the storage and to
improve the standard deviation of the mean execu-
tion time, but the storage and the computation time
needed by the mixed radix number conversion are still
expensive.

On the other hand, there are several algorithms clas-
sified as subtractive algorithms [4, 9, 10{. These sub-
tractive algorithms use the conventional division ap-
proach, and no mixed radix number conversion is nec-
essary. Therefore, the arithmetic calculations are not
complicated. However, its number comparison and
sign detection consume a lot of time and hardware.
Szabo’s algorithm [4] is not a general division algo-
rithm but a scaling algorithm. Keir et al. [9] present
two algorithms, both of which involve the binary ex-
panston of the quotient. The speed of Keir’s first al-
gorithm is not desirable. His second algorithm uses
look-up tables so that the hardware requirements are
huge. Lin’s algorithm [10] is a modification of the



well known CORDIC division algorithm, but it needs
a lot of comparators, which is not practical for general
computing applications.

In this paper we use parity checking for sign and over-
flow detection. Compared to conventional methods,
the parity checking method is more efficient and prac-
tical. Based on the extension of overflow and sign
detection techniques, a new signed RNS division al-
gorithm is presented. Basically, this is a subtractive
division algorithm using an efficient method to detect
overflows and compare numbers. We use sign magni-
tude arithmetic for RNS division. In this division algo-
rithm, binary search is used. There are no restrictions
to dividends and divisors (except zero divisor), and
no quotient estimation is necessary before the division
is executed. In a hardware implementation, only the
storage of one table is required to perform the parity
checking, and almost all other correlated arithmetic
operations are completed by calculations. All these
characteristics have made our algorithm simple, effi-
cient, and practical.

2 Residue Codes

2.1 Residue Numbers and the Arithmetic
of Residue Numbers

The RNS representation of an integer is defined as fol-
lows. Let {my,ma,...,m,} be a set of positive num-
bers all greater than 1. The m;’s are called moduli and
the n-tuple set {m;, ms, ..., my,} is called the modulus
set. Consider an integer number X. For each modulus
in set {my, my,...,my} we have z; = X mod m; (de-
noted as |X|m,). Thus a number X in RNS can be
represented as

X = (z3,22,...,%n),
given a specific modulus set {m;, my, ..., m,}. In order
to avoid redundancy, the moduli of a residue number
system must be pair-wise relatively prime.
Let M = [];., m;. It has been proved, in [4], that
if 0 < X < M, the number X corresponds one to
one with the RNS representation. If the result of one
calculation exceeds M, we say that overflow occurs.
All the numbers should be within the dynamic range
M (ie, 0 < X < M). Then, the RNS arithmetic can
be performed.
If there are two numbers X and Y, the representations
in RNS are as follows,

X = (1?1,132, .4.,In)
and

Y = (y1)y27 “-yyn)v

We use ® to represent the operator of additions, sub-
tractions, and multiplications. The arithmetic in RNS
can be represented as follows,

X®Y = (21, 29, cs Zn)

where
zi = |2 @ Yilm, -

77

From the definition of the mod operation, all moduli
are positive. z; may be less than y;, which yields z; —
¥ < 0. In mod operation, if #; —y; < 0, then z; is
defined as

1)

2.2 Number Comparison for Unsigned
Numbers

As we know, number comparison and overflow detec-
tion in RNS are very difficult. It is necessary to find
methods that are efficient, practical, and easily imple-
mented.

Let parity indicate whether an integer number is even
or odd. We say two numbers are of the same parity
if they are both even or both odd. Otherwise the
two numbers are said to be of different parities. We
will use the properties of the parities of numbers to
accomplish the number comparison.

In a survey of Soviet research on residue number sys-
tems [11], Miller et al. defined a function called the
core function and explored its properties as follows:
Let my, ms, ..., m, be the relatively prime moduli of
a residue number system with product M. For fixed
integers wi, wa, ..., wy, the core Ry of an integer is de-
fined as follows:

zi = mi + (2 — ¥i)-

)

m
i=1 *

where | X | denotes the greatest integer function which
is not greater than X. The coefficients w; are fixed for
the moduli set and do not depend on the integer N.

Theorem 1 Let the moduli m; and the core Ry
be odd. Let (al,az,...,a,}) and (b1, bs,...,b,) be the
residue representations of integers A, B € [0, M).
Then A + B causes an overflow if

(i) (ar+b1,...,a,+by) is odd, and A and B have the

same parity; or

(it) (a1 + b1, ...,an + by) is even and A and B have
different parities.

Let the interval [0, M /2] represent positive numbers
and the interval (M/2, M) represent negative num-
bers.

Theorem 2 If the moduli m; and the core Rp; are
odd, and (ai,as,...,an) ts the residue representation
of a non-zero integer A € [0, M), then A is positive if

and only if
(|2a1|m‘y ey ]20n|mn)

18 even.

According to the theory of core functions, if the core
function of an RNS number is known, it is easy to
detect overflows and the sign of the number. How-
ever, it is very difficult to find the core function in
RNS by the method given in [11]. Discarding the
core function and revising the theorems mentioned by



Miller et al. [11}, the following theorems express the
properties we need for comparison of unsigned num-
bers. Consider the whole dynamic range, [0, M) of
positive numbers from 0 to (M — 1). Let all m;’s in
the modulus set (my, ms, ..., my,) be odd numbers, and
let X = (z1,22,...,2Zn) and Y = (Y1,Y2y -1 Yn) be two
RNS numbers. Suppose Z=X-Y = (21,22, ..., 21),
then we have the following theorem.

Theorem 3 Let X and Y have the same parity and
Z=X-Y. X>Y,iff Z is an even number. X <Y,
iff Z is an odd number.

Proof:

If X >Y,then X -Y > 0 and Z equals X — Y.
We know from the mathematical axioms that the two
numbers are with the same parity, and the result of
the subtraction should be an even number. Therefore,
X > Y implies that Z is an even number.

On the other hand, suppose that Z is an even number
and X and Y are with the same parity. If X < Y, then
X-Y < 0. Fromequation (1) wehave Z = X—Y+M.
Since M is an odd number and X —Y is even, Z must
be an odd number. This contradicts the assumption
that Z 1s even. Therefore, if Z is an even number and
X and Y are with the same parity, then X > Y.
If X <Y, then X —Y < 0, from (1) we have Z =
X —Y + M. Since m;’s are all odd numbers, M should
be an odd number. In addition, (X — Y') is an even
number and this implies that Z is an odd number.
Therefore, it is obvious that if X < Y, Z is an odd
number.

On the other hand, suppose that Z is an odd number
and X and Y are with the same parity. If X > Y,
then X —Y > 0. Since X and Y are with the same
parity, Z must be an even number. This contradicts
the assumption that 7 is an odd number. Therefore,
if Z i1s an odd number and X and Y are with the same
parity, then X <Y.

Theorem 3 shows us a method to compare two num-
bers if the parities of these two numbers are the same.
Similarly, if the parities of two numbers are different,
then the following theorem can tell us which one is
bigger.

Theorem 4 Let X and Y have different parities and
Z2=X-Y.X>Y,ff Z is an odd number. X <Y,
iff Z 1s an even number.

Proof:

If X >Y,then X —Y >0and Z equals X - Y. We
know that the two numbers have different parities, and
the result of the subtraction should be an odd number.
Therefore, X > Y implies that Z is an odd number.

On the other hand, suppose that Z is an odd number
and X and Y have different parities. If X < Y, then
X-Y < 0. Fromequation (1) wehave Z = X —-Y+M.
Since M is an odd number and X —Y is odd, Z must
be an even number. This contradicts the assumption
that Z is odd. Therefore, if Z is an odd number and
X and Y have different parities, then X > Y.

If X <Y, then X —Y < 0, from (1) we have Z =
X —-Y + M. Since m;’s are all odd numbers, M should

78

be an odd number. In addition, (X —Y) is an odd
number and this implies that Z is an even number.
Therefore, X < Y implies that Z is an even number.
On the other hand, suppose that Z is an even number
and X and Y have different parities. If X > Y, then
X —Y > 0. Since X and Y have different par1t1es A
must be an odd number. This contradicts the assump-
tion that Z is an even number. Therefore, if Z is an
even number and X and Y are with different parities,
then X < Y.

Table 1 is referred to when performing parity checking
for number comparisons. The decimal numbers under
the entry “#t” are corresponding to the residue num-
bers for modulus set (3,5, 7), and the parities of them
are given under the entry P.

The following is an example to illustrate the above
theorems.

Example 1

Let the moduli be m; = 3, my = 5, m3g = 7, and
hence M = 3-5-7 = 105. COIlSldel‘ X = (0 3,5)
and Y7 = (1,3,0). From calculation we have 7; =
X —-Y = (2,0,5). Look up Table 1, the parities of
X1, Yy, and Z; are odd, even, and odd respectively.
From Theorem 4 we know X; > Y;.

In the decimal number system, X; = 33, Y} = 28, and
7y = b, and the result is obvious.

Note that if the number M is big, the parity table may
be huge.

2.3 Signed Numbers and the Properties

The method used to represent negative numbers in
RNS is similar to that used in conventional radix num-
ber systems. Letting the dynamic range be M, we can
define the positive and negative numbers as follows [4].

Definition 1 If the dynamic range M = [[I_, mi,
then the range of a positive number X is defined as
0<X< L%J, and the range of a negative number Y
is defined as | M| <Y < M. Like the radiz number
system, the negalive numbers, —1, — , ——(L%—J —
1), 7|_%J, are represented by the numbers, (M — 1),
(M=-2), .., (I_%_I +2), (L—Ag—J + 1), respectively.

Notice here, 0 is considered as a positive number.
From Definition 1 we can find that the complement of
X is M — X. In a similar way, the representation of
the complement of a number in RNS can be found in
the following lemma.

Lemma 1 Let the modulus set be {m;, ma,...,m,},
and the corresponding modulus set of a positive num-
ber X in RNS be {z1,z3,...,an}. =X in RNS can be
represenied by the complement of X which is equal to
i,(ml — &1)my, (M2 — Z2)my, oo, (M — ZTn)m, }-
roof:

From Definition 1, —X in RNS corresponds to M — X.
Applying equation (1), the corresponding modulus set
of =X is {(m1—21)m,, (M2—22)my, oos (Ma—Tn)m, }-
The dynamic range of RNS can be divided into two
halves, one for positive numbers and the other for neg-
ative numbers, as described in Definition 1. If the



[#][@ 5 DIPT#TE 5 DHIP]T#[B 5 DIP]#[B 5 TH[P] #]3B 8§ D[P]
0 0 ¢ 0 0 21 0 1 0 1 42 o 2 ¢ ] 63 0 3 0 1 34 0 4 0 0
1 1 1 1 1 22 1 2 1 0 | 43 1 3 1 1 64 1 4 1 0 35 1 0 1 1
2 2 2 2 0 23 2 3 2 1 44 2 4 2 0 65 2 0 2 1 36 2 1 2 0
3 0o 3 3 1 24 0 4 3 0 | 45 0o 0 3 1 66 0 1 3 0 87 0o 2 3 1
4 1 4 4 0 25 1 0 4 1 46 1 1 4 0 67 1 2 4 1 33 1 3 4 0
5 2 0 5 1 26 2 1 5 0 47 2 2 5 1 63 2 3 5 0 39 2 4 5 1
6 0 1 6 0 27 0 2 6 1 43 0 3 6 0 69 0 4 6 1 90 0 0 6 0
7 T 2 0 1 28 1 3 0 0 49 1 4 0 1 70 1 0 0 0 91 1 1 0 1
8 2 3 1 0 29 2 4 | 1 50 2 0 1 0 71 2 1 1 1 92 2 2 1 0
9 0 4 2 1 30 0 0 2 0 51 0 1 2 1 72 0o 2 2 0 93 0 3 2 1
10 1 0 3 0 31 1 1 3 1 52 1 2 3 0 73 1 3 3 1 94 1 4 3 0
11 2 1 4 1 32 2 2 4 0 53 2 3 4 1 74 2 4 4 0 95 2 0 4 1
12 0o 2 5 0 33 0 3 5§ 1 54 0 4 5 0 75 0 0 5 1 96 0 1 5 0
13 1 3 6 1 34 1 4 6 0 55 1 0 6 1 76 1 1 6 0 97 1 2 6 1
14 2 4 0 0 35 2 0 0 1 56 2 1 0 Q 77 2 2 0 1 98 2 3 0 0
15 0 0 1 1 36 0 1 1 0 57 o 2 1 1 78 0 3 1 0 99 0 4 1 1
16 1 1 2 0 37 1 2 2 1 538 1 3 2 4] 79 1 4 2 1 100 1 0o 2 0
17 2 2 3 1 38 2 3 3 0 59 2 4 3 1 80 2 0 3 0 101 2 1 3 1
13 0 3 4 0 39 0 4 4 1 60 0 0 4 0 81 0 1 4 1 102 0 2 4 0
19 1 4 5 1 40 1 0 5 0 61 1 1 5 1 82 1 2 5 0 103 1 3 5 1
20 2 0 6 0 41 2 1 6 1 62 2 2 6 0 83 2 3 6 1 104 2 4 6 0

Table 1: Parity Table for Modulus Set (3,5,7)

moduli are all pair-wise prime and are all odd num-

bers, then the maximum positive number is Mz_l. A
negative number’s magnitude can be found by apply-
ing Definition 1 and Lemma 1; it must fall in the pos-
itive range. In this case, the unsigned number com-
parisons described in Theorem 3 and 4 are applicable.
The following definition is to define overflows in the
positive range of the RNS.

Definition 2 Suppose that there are two positive
numbers in RNS, X = (z1,29,...,2,) and ¥ =

(¥1,Y2+y,, Yn). Overflow ezists if X +Y > %

Notice that Definition 2 considers the case that both X
and Y are positive numbers. This definition is referred
to when we discuss overflow detection in the addition
of two numbers.

Corollary 1 The overflow detection theory in Defini-

tion 2 applies to the addition of only two numbers.
Proof:

The maximal number in Definition 2 is (#51), and

the maximal sum of two numbers is (M — 1) which is
within the dynamic range. If there are 3 numbers or
more, the maximal sum of those numbers is greater
than (M — 1) which is out of the dynamic range, and
by the definition of RNS the sum is not correct. There-
fore, the overflow detection theory described in Defi-
nition 2 is correct only for two-number additions.

2.4 Multiplicative Inverse
Consider the number [b],, Szabo and Tanaka [4] define
the multiplicative inverse as follows.

Definition 3 If0 < a < m and |ab|,, = 1, a is called
the multiplicative inverse of b mod m, and is denoted
as |67,

Notice that the multiplicative inverse of a number does
not always exist. The following theorem from [4] de-
scribes the condition of its existence and the proof is
omitted.

79

Theorem 5 The quantity |b™!|,, ezists if and only if
the greatest common divisor of b and m, ged(b, m), is
equal to 1, and bl # 0. In this case |b~1|m is unique.

We have already developed several efficient methods
(given in Theorem 3, Theorem 4, and Definition 2) for
number comparison and overflow detection in order
to perform the addition of two positive numbers. We
use these theorems to derive the division algorithm for
signed RNS numbers in the following section.

3 Division Algorithm

We now present a division algorithm in RNS using
sign magnitude arithmetic and binary search.

3.1 Descriptions of the Algorithm

Given two numbers, dividend X and divisor Y, the di-
vision in RNS is to find the quotient Z = L%J, where
[-X);J denotes the greatest integer which is not greater

than % As mentioned before, this algorithm is clas-
sified as a subtractive algorithm. Therefore, it is nec-
essary to detect the sign in the subtraction and the
overflow in the addition. Theorem 3 and 4 provide an
efficient way to perform the number comparison. The
absolute value of the dividend and the divisor are used
when performing the division calculation, and the the
overflow in the addition of two numbers is detected
by applying Definition 2. In addition, the signs of the
dividend and the divisor need to be detected, and the
negative numbers need to be complemented. After
finmishing the division on two absolute values, it is nec-
essary to transfer the quotient to the proper represen-
tation(positive or negative) in RNS. Given modulus
set (my, my, ..., my) with dividend X = (z1, zo, ..., 2p)
and divisor Y = (y1, y2, ..., Yn), we are to find the quo-
tient Z, where Z = L—’};J The dynamic range, M, of
the RNS is M = []_, m;. Corollary 1 tells us that
the overflow detection can be applied only to the ad-
dition of two numbers, a special case of which is the



addition of two equal numbers. In other words, mul-
tiplying a number by 2 is allowed, and our algorithm
is developed on this basis (see Part II below).

This algorithm can be divided into four parts. Part I
detects the signs of the dividend and the divisor and
transfers them to positive numbers. Part II finds 27,
such that Y -2/ < X <Y -2t1, and finds the differ-
ence between 2/ and the quotient. Part III deals with
the case Y -2/ < X < M=1 <y . 2741 which is from
Part II, and finds out the difference between 2/ and
the quotient. Part IV transfers the quotient to the
proper representation in RNS (positive or negative).

Part I.
The largest number in the positive range of the RNS

is Mgl, and for convenience we set a variable M, =

MZ_IA Using Theorem 3 and 4, we compare the div-

idend and the divisor with M,. If the dividend or
the divisor is less than or equaf to Mp, then the div-
idend or the divisor is positive, and nothing needs to
be changed. On the other hand, if the dividend or the
divisor 1s greater than M,, then the dividend or the
divisor is negative, and it should be complemented. If
either the dividend or the divisor is negative, we have
to set the sign variable, SIGN, to 1. SIGN will be used
to convert the quotient to a proper form in Part IV.
Part I1. ) ) )
We find the proper 2/ such that Y -2/ < X < 2/+1
in the following way. Two variables, LowerBound and
UpperBound, are set to record the range in which the
value of the quotient is to be found. The LowerBound
and the UpperBound will dynamically change, as the
algorithm is executed. In iteration j, LowerBound=
2 and UpperBound= 2i*!  we repeatedly compare
(27 -Y') with X and detect whether (271!.Y) is greater

than #, until we find some j, denoted as j, such

that Y -2/ < X <Y -2/+1 QuotientBase records the
LowerBound when the procedure halts, and it is un-
changed until the end of the division operation. Quo-
tientExt records the difference between the exact quo-
tient value and the QuotientBase, and the initial value
of QuotientExt is set to 0. The final value of the quo-
tient is equal to QuotientBase+QuotientExt.

In each iteration, the UpperBound is updated by
doubling its value. Two cases may occur when the
above procedure halts. In one case, (UpperBound-Y')
is smaller than #=1. Then a binary search starts
to find the difference between QuotientBase and
the quotient, and we need j — 1 steps to fin-
ish this part, since 2/ integers exist in the range
[27,22%'). In each step of the binary search, we

have to compare X with (Y . UpperBo“nd;LwerBO“"d) .

Here, <
[127Ym, < ¥ |m, - (|UpperBound|,

+|LowerBound|,,,)],,, , is to be found. Hence, the
multiplicative inverse of 2, |271,,,, needs to be pre-

Y. UpperBound;LowerBound) for each modulus,

80

pared.

If (X —v. UpperBound—;—LowerBound < 0’

UpperBound;—LowerBound and

then set UpperBound=
QuotientExt= 2-QuotientExt. Oth-
erwise set LowerBound= UpperBoundtLowerBound 4

2
QuotientExt= (2-QuotientExt+1). When this proce-

dure is finished, go to Part IV.
In the other case, UpperBound-Y may be greater than
M=1 and overflow thus occurs. Then we go to Part III.

Part I1I.
If there is an overflow, it means that (Z -Y) lies

between Y - 2/ and Ml,_l. We therefore update
UpperBound as UpperBound+LowerBound — 2]’ + 2j+1,

- 2
and LowerBound as 2. QuotientExt is updated
as QuotientExt—=(QuotientExt-2). Then we examine

whether (UpperB‘)u"d;LowerB“”"d -Y) overflows again.

Continue this
UpperBound+LowerBound Y
2

procedure until

does not

over-

flow. If (UpperBO"“d;LowerB"”“d ~Y> does not overflow

and (X _ UQQerBound;LowerBound Y Z 0,

UpperBound+LowerBound

set LowerBound= >
and QuotientExt=(QuotientExt-2 + 1), and detect

UpperBound+LowerBound
3 Y] does

overflow again. If (

not overflow and <X _ UpperBound;LowerBound Y)

UpperBound+LowerBound

< 0, set UpperBound= > and
QuotientExt=(QuotientExt-2), and perform the sim-
ilar operations as defined in the binary search in
Part II. As in Part II, after j — 1 steps go to Part 1V.
In the above procedure, if (UpperBound -
LowerBound) = 1, then the job is finished. Let the
quotient equal LowerBound and go to Part IV to get
the proper quotient expression (as a positive number
or a negative number).

Part IV.

The absolute value of Quotient equals the sum of Quo-
tientExt and QuotientBase. From Part I, the exact
quotient may be negative. Therefore, if SIGN=1, the
absolute value of the found quotient should be com-
plemented.

3.2 The Correctness of the Algorithm
The absolute value of a quotient is equal to the quo-
tient of the absolute value of the dividend and the
absolute value of the divisor. The sign of the quotient
depends on the signs of the dividend and the divisor.
If the signs of the dividend and the divisor are dif-
ferent, then the quotient is negative. Otherwise, the
quotient is positive.

The dynamic range of the positive numbers in RNS,
[0, M2—1 = Mp], can be divided into several subinter-
vals. The boundaries of the subintervals are as follows:

0, (2°Y), 1Y), (22Y), ..., (22.Y), ..., (2"Y), M,.
We are to find the proper j such that 29 .Y < X <




2/+1.¥Y i.e., to find the subinterval [2’ , 2“’1) in which
the quotient lies. Usually M, is not a power of 2,
therefore, if 2" - Y < X < M,, ie., when j = n,
the search for j has to be stopped, and a binary
search is to start. In this case two variables, Up-
perBound and LowerBound, are set as UpperBound=
2(n+1) "and LowerBound= 2. Then we continuously
calculate UpperB‘m“d;L"werBO“"d for the quotient es-

UpperBound+LowerBound | Y
2

timation, and compare (

with X. Recursively substituting the UpperBound
or LowerBound with this estimated value, we can
reduce the range in which the quotient lies, and fi-
nally find the quotient value. Notice that initially,
UpperBound= 2-LowerBound, hence

UpperBound + LowerBound

2
LowerBound

e (2)

If UpperBound is updated with this value, then the
new estimation is equal to

= LowerBound +

LowerBound + LowerBound + I"’L“ZBO—‘"E

2
L Bound
LowerBound + _____0wer4 oun
If UpperBound remains the same, as big as

2-LowerBound, and LowerBound is updated with the
value in (2), then the new estimation will be

L B d LowerBound
LowerBound + owerton 2+ 2 =

LowerBound = LowerBound
2 4 !

LowerBound +

and so on. It is easy to find that the quotient can be
represented by

LowerBound

5 , with A; =0or 1.

LowerBound + Z Ai
i

The first term is then recorded as QuotientBase
in the algorithm and the second term Quotien-
tExt. The quotient in the division is found as
Quotient Base+QuotientExt which is hence correct.

3.3 Division Algorithm

The flow chart of the algorithm is shown in Figure 1,
and the detailed division algorithm is as following.

/*
/*
/*
/*
/*
/*
/*

Suppose that mi, m2, ., and mN are

N moduli which are pair-wise prime and
all odd numbers. Let M=mil*m2*m3%*...*mN,
and Mp=(M-1)/2 be the largest positive
number. We use the equation
Dividend/Divisor=Quotient+
Remainder/Divisor, and the Quotient is

81

The symbols used in the flowchart are listed below
each followed by the corresponding variable used in
the algorithm.

X: Dividend,

Y: Divisor,

Z: Quotient,

UB: UpperBound,

LB: LowerBound,

QE: QuotientExt,

QB: QuotientBase,

B: Bounding,

7: COMPLEMENT(Z).

XeAXI
YA
SIGN=S(X) EXOR S(Y)

UB=2+%(j+1)
LB-QB=2**()
j=itl

X200 (<

Figure 1: Flowchart of the Division Algorithm

/* is to be found.

START PROCEDURE;
/* Check the signs of Dividend and Divisor
/* and set a register SIGN as
/* SIGN=[S(Dividend) EXOR S(Divisor)] to
/* save the sign of the Quotient, where
/* S(..) means the sign of .. . Define S(..)
/* =1 for a negative number, and S(..)=0 for
/* a positive number.

Mp=(M-1)/2

S(Dividend)=0, S(Divisor)=0

IF Dividend < O



THEN Dividend=COMPLEMENT(Dividend)
/* COMPLEMENT(Dividend)=M-Dividend
S(Dividend)=1
END IF;
IF Divisor < 0
THEN Divisor=COMPLEMENT(Divisor)
S(Divisor)=1
END IF;
SIGN=S(Dividend) EXOR S(Divisor)
IF Dividend<Divisor
THEN Quotient=0, GO TO FINISHED;
/* Find out which interval the quotient
/* falls in, i.e., find j, such that
/* 2%xj<Quotient<2¥*(j+1)
j=0, K=0, UpperBound=1, LowerBound=1,
QuotientExt=0, QuotientBase=1
WHILE (Dividend-Divisor*2#*(j))>=0
THEN DO
UpperBound=2**(j+1)
LowerBound=QuotientBase=2+*(j)
j=i*t
IF 2**(j)*Divisor>Mp
THEN
IF (UpperBound-LowerBound)=1
THEN Quotient=LowerBound,
GO TO FINISHED;
END IF;
OVERFLOW:K=K+1
Bounding=(UpperBound+LowerBound) /2
IF Divisor*Bounding>Mp
THEN
UpperBound=Bounding
QuotientExt=2*QuotientExt
ELSE
IF (Dividend—Divisor*Bounding)<O
THEN
UpperBound=Bounding
QuotientExt=2*QuotientExt
GO TO SEARCH
ELSE
LowerBound=Bounding
QuotientExt=2*QuotientExt+1
END IF;
END IF;
IF (UpperBound-LowerBound)=1
THEN
Quotient=LowerBound
GO TO FINISHED;
ELSE
GO TO OVERFLOW;
END IF;
END IF;
END WHILE;
/* Binary search for QuotientExt
SEARCH:E1=j-1
IF E1<>0
THEN
FOR J=K TO E1
DO
Bounding=(UpperBound+LowerBound)/2
IF (Dividend-Divisor*Bounding)<0
THEN
UpperBound=Bounding

82

QuotientExt=2*QuotientExt
ELSE
LowerBound=Bounding
QuotientExt=2*QuotientExt+1
END IF;
END FOR;
END IF;
/* The found quotient equals the sum of
/* QuotientBase and QuotientExt. If SIGN=1
/* it means that Quotient is a negative
/* number, then the final Quotient is the
/* complement of the found Quotient.
Quotient=QuotientBase+QuotientExt
FINISHED:IF SIGN=1
THEN Quotient=COMPLEMENT(Quotient)
END IF;
END PROCEDURE;

3.4 Example of the Division Algorithm
Suppose that moduli are m; = 3, my = 5, and ma = 7.
Given X = (2,1,1)= =34 and Y = (2,0,5) = 5, find
quotient Z = %

Since the moduli are my = 3, my = 5, and m3 = 7,
we can find M = m; - my - m3 = 105, M, :% =
52 = (1,2, 3). The multiplicative inverses of 2, which
are used in the calculation of Uppe'B°“"d;L°werB°“"d,
corresponding to my, my, and m3 are [271|,, = 2,
127, = 3, and |27Y,,, = 4 respectively. Parity
checking uses Table 1. The quotient can be calculated

in the following steps with the required variables. The
short notations of these variables are listed in Figure 1.

1. 5(~34) = 1, S[(2,1,1)] = 1,
S(3) = 0, S12,0.8)]=0;
SIGN=1, SIGN=1,
COMP(—34) = 34. COMP[(2,1,1)] = (1,4, 6).
2.34>5-20, (1,4,6) > (2,0,5),
j=0. 7 =0.
3.34>5-21 (1,4,6) > (2,0,5)-(2,2,2)
=(1,0,3),
=1. j=1
4.34>5-2% (1,4,6) > (1,0,3)-(2,2,2)
=(2,0,6),
5.5.23>34>5.22 (2,0,5)-(2,2,2):(1,0,5)
> (1,4,6) > (2,0,6),
QB=2? QB=(1,4,4),
J =0, J =0,
UB= 23, UB=(2,2,2)-(2,2,2)
(2,2,2) = (2,3, 1),
LB= 22, LB=(2,2,2)-(2,2,2)
=(1,4,4),
B= 232t22 - 6, B= (231 ;—!1,4,4 (0,1,6),
QE=2-0+1=1, QE=(0,0,0 +(L,1,1)
=(1,1,1),
Set LB=B. Set LB=B= (0, 1,6)
6.5-22>34>5.6, 1,0,5) > (1,4,6) >
2,0,5)-(0,1,6) = (0,0,2),
J =1, J =1,



UB= 2%, UB= (2,3, 1),
LB= 6, LB= (0,1,6),
B= 246 =7, B= @2LHOLO _ (1 9,0),
QE=2-140=2, QE=(2,2,2)-(1,1,1)
+(0,0,0) = (2,2,2),
Set UB=B. Set UB=B=(1,2,0).
7.1Z/=QB + QE  |2| =QB+QE= (1,4,4)
=2242=6. +(2,2,2) = (0, 1,6)
8. SIGN= 1, SIGN=1,
Z=COMP(6), Z=COMP(0, 1,6),
=—6. =(0,4,1).

3.5 Discussions

This algorithm requires four parts of calculation. Con-
stant time is needed in Part I to find the absolute val-
ues of the dividend and the divisor, and in Part IV to
transfer the absolute value of the quotient, |Z|, to the
proper form. In Part I and III, our algorithm needs
(2 - log, Z) steps to finish the division operation. The
first log, Z steps find the range which the quotient
falls in, and the second log, Z steps find the differ-
ence between QuotientBase and the quotient. Fach
step needs several RNS addition and subtraction op-
erations, one RNS multiplication, and a table look-up
for the parities. The RNS arithmetic operations do
not need quotient estimation, base extension, or mixed
radix number conversion, which makes this algorithm
very fast and easy to implement compared to previous
proposals.

4 Conclusions

We have presented a division algorithm which needs
only simple RNS arithmetic operations, and can be
easily implemented. This is a general division algo-
rithm, with no restrictions to either dividend or divi-
sor. No estimation of the quotient is required before
the division is executed. These characteristics make
the calculation less complicated, more efficient, and
speedier.

We also presented a very good and easy technique for
overflow detection and number comparison. In the
traditional way of detecting overflow and comparing
numbers in RNS, mixed radix numbers have to be
used. This is time consuming and requires complex
hardware. Our method is more efficient and less com-
plicated than the existing algorithms.

A parity-checking technique is presented in this paper
for number comparisons and overflow detection. With
today’s advanced VLSI technology, we will have no dif-
ficulty building a parity table that lists all the moduli
with parities. Some small tables may also be needed
to store data such as the values of the multiplicative
inverse of 2, |271],,,. Except the tables mentioned
above, no other table are required, and all we need is
simple arithmetic calculations. This algorithm can be

83

easily implemented on hardware and can achieve good
time performance which is logarithmic to the size of
the quotient.

Acknowledgements

The authors would like to thank the anonymous re-
viewer for his helpful comments.

References

[1] W. K. Jenkins and B. J. Leon, “The use of residue
number systems in the design of finite impulse
response digital filters,” IEFE Transactions on
Circuits Systems, vol. CAS-24, no. 4, pp. 199-
201, 1973.

F. J. Taylor, “A VLSI residue arithmetic multi-
plier,” IEEE Transactions on Computers, vol. C-
31, pp. 540-546, June 1982.

D. D. Miller and J. N. Polky, “An implementa-
tion of the LMS algorithm in the residue number
system,” IEEE Transactions on Circuits System,
vol. CAS-31, pp. 452-461, May 1984.

N.S. Szabo and R. I. Tanaka, Residue Arithmetic
and Its Application to Computer Technology. New
York: McGraw-Hill, 1967.

[2

—

W. A. Chren Jr., “A new residue number sys-
tem division algorithm,” Computers Math. Ap-
plic., vol. 19, no. 7, pp. 13-29, 1990.

S. Waser and M. J. Flynn, Introduction to Arith-
metic for Digital System Designers, ch. 5, p. 172.
New York: Holt, Rinehart & Winston, 1982.

D. K. Banerji, T. Y. Cheung, and V. Ganesan,
“A high-speed division method in residue arith-
metic,” in §th IEEE Symp. on Computer Arith-
metic, pp. 158-164, 1981.

E. Kinoshita, H. Kosako, and Y. Kojima, “Gen-
eral division in the symmetric residue num-
ber system,” IEEE Transactions on Compulers,
vol. C-22, pp. 134-142, February 1973.

Y. A. Keir, P. W. Cheney, and M. Tannenbaum,
“Division and overflow detection in residue num-
ber systems,” IRE Transactions on Electronic
Computers, vol. EC-11, pp. 501-507, August
1962.

M.-L. Lin, E. Leiss, and B. McInnis, “Division
and sign detection algorithm for residue num-
ber systems,” Computers Math. Applic., vol. 10,
no. 4/5, pp. 331-342, 1984.

D. D. Miller, J. N. Polky, and J. R. King, “A
survey of Soviet developments in residue number
theory applied to digital filtering,” in 26th Mid-
west Symp. Circuits Systems, August 1983.

(10]

(11]



