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Abstract

In this paper, we present a new redundant representation
for complex numbers, called polygonal representation.
This representation enables fast carry-free addition (in
a way quite similar to the carry-free addition in signed-
digits number systems), and is convenient for multiplica-
tion. Then we generalize our technique in order to handle
n-dimensional vectors.

Introduction

Complex numbers and vectors are used in various fields
of Computer Science. We need to represent these objects
as efficiently as possible. The most common way is of
course to represent them as arrays of real numbers: here
we shall study an other way, using complex digit sets
(in the real case, digit sets have been widely studied,
for instance by Matula [1], Petkovsek [2], Carter and
Robertson [3]).

Our goal is to generalize the carry-free addition technique
of Avizienis [4] for signed-digit arithmetic to complex
and vectorial arithmetic. As in Avizienis’ number sys-
tems, we need redundancy in order to enable carry free
addition. In the first part of this paper, we deal with
manipulation of Complex Numbers. Then we shall gen-
eralize our technique to the manipulation of vectors.

1 Polygonal representation of
complex numbers

1.1 Usual representation

The most common way is of course to represent the com-
plex number a + i.b by the couple (a,b) of real num-
bers. This representation has some drawbacks: the sets
of numbers of the form a-+ib with a and b in real intervals
(rectangles) are not stable by complex multiplication:

for example E = {a +1.b/(a,b) € [-1, 1]2} is repre-
sented in Fig. I with the set F = {zy/(z,y) € E*}
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Fig. 1: Sets E and F

Some other representations have been previously pro-
posed:

«  Radix iy/2 with digits in {0,1}

o Radix i — 1 with digits in {0,1} [5].
These two representations use as radix a 8** root of 16
(of modulus v/2). Both representations use a complex
radix and integer digits: in a dual way, we shall use here
an integer radix and complex digits.

1.2 Use of p™ roots of unity and
zero as digits
Assume that we are in radix 2. We shall consider the

case where the digits are chosen in the set containing the
p** roots of the unity and zero:

D, = {O,I,w,wz,-u,w”'l} where w = ¢*

As in conventional number systems, a number z is repre-

sented by a digit sequence (d;), d; € D, which satisfies
> .

r= Y di2.

i=-00



i. p=1: Itis the usual representation of real numbers in
radix 2 with digits in {0, 1}. Each positive real number
is representable.

ii. p=2: We obtain the binary signed-digit representa-
tion of real numbers, with digits in {—1,0, 1} [4]. Each
real number is representable.

iii. p=3: The digits are taken in {0,1,j,52}, with

j = e¥7/3, The set of representable numbers has

a fractal structure. Fig 2 presents the set of numbers

representable only with “fractional” digits, i.e. the set of
222 .

numbers of the form z = Y d;2-".

1=0

Fig. 2: Numbers representable in
radix 2 with digits in {0,1,j,?}

iv. p24:  If p > 4, every complex number can be
represented in radix 2 with digits in D,. As a proof,
we give for p = 4 an algorithm which computes a
representation of a given number. This algorithm may
be easily extended to higher values of p (see [6]).

Assume that we want to compute a representation of a
number z. Since from a representation of z, a repre-
sentation of 2¥z may be obviously deduced, we assume
without loss of generality, that z lies into the square S
delimited by numbers 2, 2i, —2, —2i (see Fig. 3). We di-
vide this square into the 5 areas labelled 1, —1, 7, —¢ and
0 depicted in Fig. 3.

Let us denote z(°) = z. The sequence d; of digits of a
representation of z is defined by induction as:

e d; = k if 2" lies in the area labelled k
o 20+ = 9(20) — )

Fig. 3: The square S

1.3 Hexagonal binary representation

i. Definitions: Now let us consider the representa-
tion of complex numbers in radix 2 with digits in
Ds. This representation will give us a compact en-
coding of complex numbers. Moreover, it offers the
ability of performing fully parallel addition in con-
stant time (i.e. independent from the length of the
operands). Let us denote H(1) = Dg. By extension,
H(n) is the set of the points which are sum of n el-
ements of H(1) (examples are shown Fig. 4). Then
H(m)+ H(n) = {z+y/z € H(m),y € H(n)} satis-
fies H(m) + H(n) = H(m + n), and H(m) » H(n) =
{zy/z € H(m),y € H(n)} C H(m*n). Finally, we
define H(o0) = H.

Let us denote h(a) = {0,1,2,---,a}. Since D¢ =
H(1) = {0,1} + j.{0,1} + 52{0,1}, we deduce that
H(a) = h(a) + j.h(a) + j2.h(a). Therefore H may be
written as N + jN + j2N. Therefore any element of
H may be represented in radix 2 with digits in H(1).
(Notice that H is a lattice of the complex field C.)
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Fig. 4: Sets H(1) and H(2).



ii. Representation of the elements of H: In asimilar
fashion, we can represent any element z of H in radix
b with digits in H(b — 1):

r=Y db, die Hb-1)

i=0

In the following, we deal with representations of H in
radix b with digits in H(a), a < b — 1. We shall study
what conditions must be satisfied by a and b in order
to represent H and to perform fully parallel additions
without carry propagation. Before doing that, let us
propose a convenient way to represent the “hexagonal
digits” of H(a): an “hexagonal digit” d of H(a) is
represented by 3 elements d!, d? and d® of h(a) =
{0,1,2,---,a}, satisfying d = d' + d?j + d2j2. This
representation has some advantages, including:

e Ifd=d'+d%* + d%? then —d =
(0 - &) + (a - @)+ (a— )7

. Ifd:d’+d2j+d3j2men3:d1+
d3j 4+ d?j2 (d is the complex conjugate
of d)

Theorem 1.
H can be represented in radix b with digits in H(a),
a<b-—1,if3(a+1)>2. (@€N, beN)

Proof:

We just need to prove that each element of H(b) can
be represented, since a representation of a number r.b*
is deducible immediately from a representation of z. It
suffices to show that H(b) is covered by the seven sets
H(a), H(a) + b, H(a) + wb, H(a) +w?b, H(a) + w5b,
H(a) + w*b and H(a) + w’b (see Fig. 5).
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Fig. 5: Covering of H(b)

Therefore, from geometrical reasons, it suffices that a >
2b/3, as depicted Fig. 6. Since the sets H(b) and H(a),
H(a)+b, H(a)+wb, ... are discrete sets, the condition
a > 2b/3 is equivalent to the condition a > 2b/3 — 1.
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Fig. 6: Majoration of a

iii. Fully parallel addition in radix b with digits in
H(a): We give an algorithm derived from the technique
of Avizienis [4], in order to add elements of H written
in radix b with digits in H(a).

N X N .
Let Xand Y bein H, X = Y, z;d' and Y = 3 y;b'.

For each integer ¢, z; + y; bék;)ngs to H(2a): 'wg find
ciy1 € H(2) and s; € H(a — 2) such that z; +y =
b.cit1 + si. The value t; = ¢; + s; belongs to H(a),
and X + Y is obviously equal to Y t;b¢, therefore, if
we are able to compute the values c¢;4, and s; (ie.
if H(2a) C bH(2) + H(a — 2)), then we are able to
perform an addition.

Theorem 2.

If 3((a—2)+1) > 2b, then H(2a) C bH(2)+ H(a—2),
therefore a fully parallel addition is possible in radix 2
with digits in H(a).

Proof:
Since a < b then H(2a) C H(2b). From geometrical
considerations, H(2b) is equal to bH(1) + H(b) (see
Fig. 7).

Fig. 7: H(Zb):bH(1)+H(b)

If 3((a — 2) + 1) > 2b then from theorem 1, H(b) C
bH(1)+H(a—2). Therefore H(2a) C bH(2)+H (a—2).
From a < b—1 and 3((a— 2)+ 1) > 25, we deduce that
if b > 6 there exists a fully parallel addition algorithm.



1.4 Hadwired fully parallel adder in H

We present in Fig. 8 an hadwired fully parallel adder
for hexagonal binary representation, divided in slices.
We can notice that in fact, this adder works in radix
8. We perform the addition Z = X + Y with z; =
ai+bij+cif?, v = a;+bij+c;i% 2 = Ai+ Bij+Cij?
In Fig. 8, the terms a;, b;, ¢; are permuted in order to
obtain 3 identical slices.

€ ¢y &8

by i by by
;

..................

Fig. 8: A 3-digit (or 1-radix
8 digit) slice of the adder.

This adder uses the elementary cells described below.
One of these cells is well known (it is a Full Adder), and
the other cell is quite similar.
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Fig. 9: The elementary cells of the adder.
Those cells compute a+b+c=2c+s

2 Addition of vectors

In this part, we define techniques for adding n-
dimentional vectors in time independent from the number
of digits used to represent each component of the vectors.

We define redundant representation of vectors and carry
free addition algorithm.

2.1 Definitions

We define a redundant representation of an n-dimentional
vector as a decomposition of this vector in a system
e = (e1, €3, ..., en41) satisfying two conditions:

1. e1+ex+...4+ep41 =0
2. n vectors of the system e are always a
basis.

Each vector of R" is defined by n+1 non umque positive

real numbers z!, ..., z"+1 such as z = Zze. If 2* =
i=1
+o0 '
>, zib/,thenz = Z X;b, whereX_Exe,
J:—OO i=1

1s called a “vectorlal dlgnt

We denote H the subset of vectors of R™® whose coor-
dinates are integers:

n+1
H= {z =Y ale/Vizt € N}

i=1

These notions generalize those presented in part A, where
n=2ande = (l,j,jz)‘

n+1
The norm of a given z = Z z'e;, where z* is positive

i=

or negative, is defined as
i ]
|z] = maxz' — minz
1 1

We define a distance d as d(z,y) = |z — y|.

If each real is written in radix b with digits in
h(w) = {0,1, ...,w}, then each vector is written in radix
b with vectorial digits in H(w) = {x € H/|x| < w}.
The set H(a) satisfies the property H(a) + H(b) =
H(a+b). 'a’ is called radius of H(a)

Our addition algorithm is a generalization of Avizie-
nis’ algorithm [4]: the sum of two vectorial dig-
its X; and Y; in H(w) must be decomposed as a sum
bCiy1 + Si, where Ci4yin H(c) is a carry and
S; in H(s) is a partial sum, and ¢ + s = w. We have to
solve two problems: first, we need to find ¢ and s such
that H(2w) C bH(c)+ H(s) and ¢+ s = w; second, we
need to find an algorithm to decompose each vectorial
digit of H(2w) in bH(c) and H(s).

If we call “interior radius” of a set X the highest integer
a such that X contains H(a),

rint(X) = maz{a/H(a) C X}



then H(2w) C bH(c) + H(s) iff
2w < rint(bH(c) + H(S)) = ript.

We call “recover radius” of a set X = {z!,...,27} the
value:

il

rrec(X) = min{a/[X] C X + H(a)}

d(z, X
:nelft}(](z )

where [X] is defined by

(X] = {z € H/FA1, .0 > 0, ﬁ:lx.- —land e =
i=

i:ilAizi}.

2.2 Preliminary results

We have the following results:

Theorem 3.

(l) Trec = rrcc(bH(C)) = [%J
(2) rine=sifs < reec
B3) rine 2 beif s > reee
@) if n> 2 then
H(2w) CbH(c)+ H(s) = ¢>2
(5) if n=1then
$ 2> Tree = Tint = be+s

Proof

We have an immediate result: [bH (c)] = H(bc) and
Tint 2 8

(1) is proved if we show:
i Vze[bH(c)d(z,bH(c)) < [ﬁ%J
i 3z € PH(O)), d(z,bH(c)) = | 2|
To this purpose, we first show the following lemma:
Lemma
Let 2 € [bH(¢c)]
3P = (P, ..., P} C bH(c) such that

z € [P]
d(z,bH(c)) = d(z, P)

Z”: d(z,P;) =nb

i=0
n+l | .
Let 2 = Y z'e; with 2 > 0
i=1

and z* = bo; + B; where 0 < o; <c—1, 0< B <b

then, reordering the §; such that b > f;, > f;, > ... 2
Binya» WE Oblain

n+1 n+l
Z:P°+zﬂiieii where Py = Zba.'e,-
i=1 i=1
n n+1
=P+ Z (Bi; — Biny )ei; since Ze;i =0.
j=1 ji=1

Let i, — Binyn = bAn,
ﬂi_,' - ;Bi',w.; = (ﬂij+1 _ﬂi..p) + b’\J

Bi; = Bijpn 20 = A >0

Biy = Binyr <b = A+ A+ .+ A <1
Let \o =1 — (A1 +Ad2+...+ )

then

n i n
z= Z/\j (P0+bzeiu) = E/\ij
j=0 k=1 j=0
J
where PJ =Fy+ bzeh =F_+ be;j.
k=1

By induction we can show that:

j—1 j—1
1= P = b % (;:A,)ei.+

k=1,j>2 \I=k
n+41 ji-1 n
b Z ZA1+ z A] €ip -
k=j4+1 \I=0 1=k ,k<n

If we set d; = d(z, P;) then, using the previous formula,
n

d,:bEAsz(l—/\,)andz/\,=1=>
J#s =0

n 7 n

S d;i=nb. Thepointz = Y NP =) (1-%)Pis
i=0 i=0 i=0

zzompletcly defined by the scit Panda cl;oicc of dy, ...,dn
such that }" d; = nb

=0
An other point Q in bH(c) can be written:
7
Q = Po+ Y v;(P; — Po) where the v; are all integers.
i=1

We always have d(z, Q) > min(d;) = d(z, P), and the
result d(z,bH(c)) = d(z, P) holds.

We denote P(Po, b;ei,, €y, ...,€i,) = {Po, ..., P}

Let z € H(bc). Applying the lemma
AP = {Py,..., P} C bH(c), d(z,bH(c)) = d(z, P).

Let d; = d(z, P;)



d(z,bH(c)) = d(z,P) = min(d;) < |;2%;| and the
point z defined by

nb
do=..=d,_1 =
0 q—1 [n+1-l
dy=..=dp= || where nb = d(n +1)
¢ = =dn= | nb=q mod(n+

satisfies d(z,bH(c)) = min(d;) = [%J So (1) is
proved.

To prove (2) we show that if s < r... — 1 then
3z € H(s + 1), d(z,bH(c)) > s.

z € [P0, b;ey, ..., e,)] defined by

do=s+1
di=..=dy= [W]
b~ 1

where nb — (s + 1) = ¢ mod(n)

is such that d(z,bH(c)) > s since d(z,bH(c)) =
min (d;).
1

(3) is a consequence of the result [bH (c)] = H(bc)

To prove (4) we show that H(2w) ¢ bH (1) + H(s). In
order to do that, let us consider the point z = (b + s)e; +
(s + 1)ez, which belongs obviously o H(2w). Let us
show that for any y € bH(1), d(z,y) > s. y may be
n41
written b 3 €;e; with ¢; = 0, 1.
=1

Ife;=1thend(y,z)>20—be; —1>b—5>s
Ife;=0thend(y,z) >bez+s+1>s+1>s
(5) is obvious.

2.3 Determination of b, w and s

Now we can determine b, w, s such that H(2w) C
bH(c) + H(s).

The relation H(2w) C bH(c) + H(s) is equivalent to
2w < ring. Since 2w = 2(b—1) > s, rin may be
greater than s, so s may be greater than r,..:

82 Trec
H(2w) C bH(0) + H(s) ¢ {5 e
Ifn > 2 2w = 20—2 < 2b < be: the relation
2w < rin: always holds. The relation s > r... gives
(s+1)(n+1)>nb Withc+s=w=>b—-1andc> 2,
we obtain s+ 1 < b—2 and then b > 2n + 2. This result

shows again that in the complex field the basis should
be greater than 6 (theorem 2).

We can choose
b>2n+2
szl nb J c=b—s
n+1

If n = 1, we have a second relation 2w < ri,; = bc+ 5
and we deduce b > 3.

2.4 Circult bullding method

Now let us deal with a circuit able to compute the sum
of two vectors. We generalize the circuit used to add
complex numbers presented in figure 8.

We want to add two n-dimensional vectors z and y,
written in radix b = 2"+! with p vectorial digits in
H(b-1):

p(n+1)=1 /nt1 ) )
i=zty= ) (Z(x;+y;)e.-)2’

j=0 i=1
We use a matrix Z whose term Z;; counts the number
of terms in ¢;2/ we need to add. So Zi; =2 ¥i,j.

For instance:
b? b! b°
——— e N— N
2 2 2 2 2 2 2 2 2)es
Z=12 2 2 2 2 2 2 2 2|e;
222 222 22 2/e¢

We split this matrix into p blocks: The i** blocks cor-
responds to the terms in »°. Each block is equal to a
(n+ 1)(n + 1) matrix Z°

92 21 20

2 2 2\ e3
2°=12 2 2)e
2 2 2/ e

We can apply the following transformations:

1. Vertical transformation:
In a column, one term is redistributed
from its place to the other places of the
same column. This tragiflonnation is
based upon the relation 3 e; = 0

2. Horizontal transformation:
A term equal to 3, may be transformed
in a term equal to 1 in the same place,
and a carry transferred to the same
place in next column.



For instance tllne xécrti:;:al transformation transforms Z°

intoWw®= |3 1 3|, while the horizontal transfor-
3 3 1

mation transforms W° into

141 141« 1
Zl =1+ 1 141 141 ) =
141« 1 1+1

1

2 21
1 2 2
2 1 2

These transformations are implemented using PPM or
FA Cell (see figure 9). It leads to the circuit Fig. 10.

—

0
columnl(22) column 2 (21)]column 1 (2%)

me ] line | ine fine [lne [line [line | line| Iine
1 2 3 2 3 1 2 3
e3) | (e2)] (e1) ke3 ‘ e2) |(el) [(e3) | (e2)] (el

Fig 10: Circuit implementing
horizontal and vertical transformations
We use horizontal and vertical transformations in order

to build a sequence Z/ which converges to the matrix
whose all terms equal 1.

2.5 Examples

i. A parallel adder of real numbers: n =1, b =
21+l = 4

We obtain the circuit shown Fig. 11

Fig 11: A real redundant adder

jii. A parallel adder of two-dimensional vectors:
n=2 b=22=28

The sequences Z7 and W7 are:

2 2 2 1 33
j=0 2 2 2|=(313
2 2 2 331
2 21 330
j=1 1 2 2)=(0 33
2 1 2 30 3
2 11 30 2
j=2 1 2 1)=(230
11 2 \0 2 3
103
j=3 3 10
0 3 1

.
1]
>
AN
—
—
— e
\-/

We obtain the circuit presented in figure 8.

jii. A parallel adder of three-dimensional vectors:
n =3, b= 2% The sequences Z/ and W/ are:

2 2 2 2 13 3 3
o 2 2 22|_(3133
7= 22 2 2] 13313
2 2 2 2 3331

2 2 21 3330

_ 122 2)|_{03 33
J= 212 2}={3 033
2 21 2 330 3

2 2 1 1y 330 2

9 122 1)_[2330
)= 11225102 33
2 11 2 3023

2 1.0 3\ 301 4

5 3 210)_[4301
)= 0321—k1430
10 3 2 01 4 3/
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We obtain the circuit presented fig. 12.
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Fig. 12: A 1 radix-16 vectorial
digit slice of the adder.
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