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Abstract

Numeration systems the basis of which is defined by a li-
near recurrence with integer coefficients are considered.
We give conditions on the recurrence under which the
function of normalization which transforms any repre-
sentation of an integer into the normal one — oblained
by the usual algorithm — can be realized by a finite au-
tomaton. Addition is a particular case of normalization.
The same questions are discussed for the representation
of real numbers in basis 0, where 0 is a real number
> 1. In particular it is shown that if @ is a Pisol num-
ber, then the normalization and the addition in basis §
are computable by a finite automaton.

1 Introduction

Numbers are used through a symbolic expression and
the way they are represented plays an important role in
computer science, in arithmetic and in coding theory.
The research of numeration systems adequate to specific
problems, and in which the arithmetical operations can
be accelerated is far from being achieved. The interest
for parallel architectures has led to algorithms like the
“weak addition” ([1], [12]) where an integer has several
representations.

We present here some theoretical results about the pos-
sibility of realizing the addition of numbers represented
In some non-classical numeration system (extending the
usual ones) by means of finite automata.

Finite automata are a “simple” model of computation,
since only a finite memory is required. It is known that
in the standard k-ary numeration system, where k is
an integer > 2, the addition is computable by a finite
automaton (cf [4]).

In this paper we study numeration systems the basis
of which is not a geometric progression but a sequence
of integers given by a linear recurrence relation, which
paradigm is the sequence of Fibonacci numbers. These
numeration systems have also been considered in [5] and
(13]. In the Fibonacci numeration system every integer
can be represented using digits 0 and 1. The represen-
tation is not unique, but one of them is distinguished,
the one which does not contain two consecutive 1’s (cf

(15], [11]).
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More generally, let U be a strictly increasing sequence
of integers such that 1 € U. By the greedy algorithm
every integer has a representation in basis U, that we
call the normalrepresentation. The normalization is the
function which transforms any representation on any al-
phabet onto the normal one. The addition of two inte-
gers represented in basis U can be performed that way:
Just add the two representations digit by digit, without
carry, which gives a word on the double alphabet. Then
normalize this word to obtain the normal representation
of the sum. Thus addition can be viewed as a particular
case of normalization.

Our purpose is to study the process of normalization
in numeration systems where the basis is defined by a
linear recurrence relation with integer coefficients. We
call these numeration systems linear numeration sys-
tems.

In previous works we considered particular cases of li-
near numeration systems which generalize the Fibonacci
numeration system and we showed that normalization
is computable by a finite automaton which is obtained
by the composition of two sequential machines, one pro-
cessing words from left to right and the other one from
right to left ([6], [7] and [9}). Here we first prove that
if the set of normal representations is recognizable by a
finite automaton, then the normalization is computable
by a finite automaton if and only if the set of words
having value 0 in basis U is recognizable by a finite au-
tomaton (Proposition 2.1). To every word one associates
a polynomial. Then we consider words which can be as-
sociated to polynomials belonging to the ideal generated
by the characteristic polynomial P of the linear recur-
rence. Obviously every word of this set is equal to 0 in
basis U. We give a construction which links recogniza-
bility by a finite automaton and division of polynomials
by P. We prove that the set of words associated to the
ideal (P), on any alphabet, is recognizable by a finite
automaton if and only if P has no root of modulus 1
(Theorem 2.1). If P has one root of modulus 1, then
there exist alphabets on which the normalization is not
computable by a finite automaton.

In a similar manner we discuss the representation of real
numbers in basis § where  is a real number > 1. The
normal f-representation of a real number is called the



8-development or the 0-ezpansion in the literature f14).
The -developments of real numbers, when 4 is not ne-
cessarily an integer, have been used for fast computation
of elementary functions (cf [12]).

The notion of normalization is defined for the 6-
representation as for the integers. If 6 is an algebraic
integer then a construction similar to the one given for
the integers links the recognizability of the set of infinite
words equal to 0 to the property of the minimal poly-
nomial of @ of having no root of modulus 1 (Theorem

3.1).

We prove that the normalization is computable by a fi-
nite automaton if and only if the set of infinite words
equal to 0 in basis @ is recognizable by a finite auto-
maton (Proposition 3.2). Thus the normalization in ba-
sis § is computable by a finite automaton on an al-
phabet if and only if the minimal polynomial of § has
no root of modulus 1 and if 3 ,508.0"" = 0 implies

Yaposna™" =0 for every conjugate a of medulus > 1
(Theorem 3.2).

Let 8 be an algebraic integer > 1; 8 is a Pisot number if
its conjugates have modulus < 1;0 is a Salem number
if its conjugates have modulus < 1, and it is not a Pisot
number. Thus, if 6 is a Pisot number, then the norma-
lization in basis 8 is computable by a finite automaton
on any alphabet — and addition also. If 8 is a Salem
number, there exist alphabets on which normalization is
not computable by a finite automaton Corollary 3.1).
These results have strong connexion with symbolic dy-
namics, that we do not discuss here.

The integers and the golden mean li?ﬁ being Pisot
numbers, our results cover the most standard numera-
tion systems. All proofs can be found in [8].

2 The integers
Representation of integers

Only positive numbers are considered. Let U = (4n)n>0
be a strictly increasing sequence of integers with ug =
Every positive integer N can be written with respect to
the basis U, i.e. it is possible to find n > 0 and integers
dg,--+,dy, such that N = dotg +--- + dnto by the fol-
lowing algorithm (folklore):

Given integers z and y let us denote by ¢ z,yl) and
r(z,y) the quotient and the remainder of the Euclidean
division of z by y.

Let n > 0 such that u, < N < tnp and let
do = q(N,uy) and ro = r(N,un), di = q(ri-1,Un-i)
and r; = r(ric1,tp_;) for i = 1,---,n. Then N =
dotp + - - - + dntio.

For 0 < i < m, d; < *2=itb; thus if the ratio =2t is
bounded by a positive constant K for all n > 0 (K mini-
mal), then 0 < d; < K—1. The set A = {0, 1,---,K-1}
is called the canonical alphabet of digits associated to the

basis U, and Sl]], A) is the canonical numeration system
associated to U.

The word dg - - -dn, of A* obtained by this algorithm is
called the normal representation of the integer N in ba-
sis U. It is denoted by < N >=do---dpn. The normal
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representation of 0 is the empty word €.

More generally, a numeration system is given by a
strictly increasing sequence U = (tn)n 30 of positive in-
tegers, with ug = 1, called the basis, and a finite subset
C of N, the alphabet of digits. A representation of an
integer N in the system (U, C)isaworddg---dn of the
free monoid C* such that N =dottn +---+ dnuo.

The normal representation of an integer N has maximal
length among the representations of N not beginning by
a 0. It is also the greatest (for the lexicographical orde-
ring) of all the representations of N of this same length
in basis U. Given (U,C), the mapping = : C* — N is
defined by x(do - - -dn) = dotin +- - -+ dn¥o- The norma-
lization ve is the mapping which associates to a word
f of C* the normal representation of the integer repre-
sented by f.

The normalization is linked to the problem of addition
of two integers written in basis U. To add twointegers N
et P of respective representation f = fo---frandg=
go---g; in (U, A) weadd f and g digit by digit from the
right and without carry. Let f&g = fo- fij—1(f-jt+
go) - (fe +gj) (if k 2 j). Then f®g is a word written
on the alphabet {0,---,2K —2}. The addition of N and
P reduces to the normalization of f ® g.

In this paper we study numeration systems where the
basis is defined by

Up4m = CG1Un4m-1 +---+amtn

a;,€Z,1<i<m, am #0.

These systems are called linear numeration systems.
The ratio =it is bounded for all n > 0 and the ca-
nonical alphabet is included in {0,---,K — 1} with
K < max(ay + - - - + Gm, max{ =5 j0<i<m—2}).

If m = 1 and a; > 2 the system is the standard a;-ary

numeration system with A = {0,---,a1 — 1} for cano-
nical alphabet.

ExAMPLE 2.1 . — The Fibonacci numeration system F
is defined by the sequence of Fibonacci numbers gene-
rated by the linear recurrence tn42 = UYn41 + up, with
uo = 1and u; = 2. The canonical alphabet is {0,1}. The
representations of the integer 24 in ¥ on {0,1} are the
following : 101111, 110011, 110100, 1000011, 1000100.
The normal representation of 24 is 1000100. The nor-
mal representation of an integer in F is the one that
does not contain two consecutive 1’s (cf [15]). o

Normalization of finite words

First let us give some definitions. More details can be
found in [4] and }2] Let M be a monoid. The family
RatM of rational subsets of M is the least family of
subsets of M containing the finite subsets and closed
under product, union and the star operation.

A finite automaton A= (E,Q, I, T) is a directed graph
labelled by letters of the alphabet E, with a finite set Q
of vertices called states. I C Q is the set of initialstates,
and T C Q is the set of terminal states. A path in A



is said to be successful if it starts in I and terminates
in T. The set of successful pathes is the bekavior of A.
A word w of E* is recognized by A if it is the label of
a successful path of A. A subset of E* is recognizable if
it is the behavior of a finite automaton on E. The reco-
gnizable subsets of E* are exactly the rational subsets
of E* by Kleene Theorem (¢f [4]), and we shall use both
denominations.

Let E and F be two alphabets. A transducerT is a finite
automaton with edges labelled by couples of E* x F*.
A relation R C E* x F* is rational if and only if it is
the behavior of a transducer. From now on we shall use
the denomination rational.

We assume that the characteristic polynomial P(X) =
X™ —aq Xm™1 _...—a,, of U has a real root § > 1
which dominates strictly the modulus of its conjugates.
A is the canonical alphabet and L(U) C A* is the set
of normal representations of the integers in basis U.

If c > 0 is an integer, let C = {0,---,¢}, C =

{-¢,---,¢} and
Z(U!c)={f=f0"'fn Eé' lfoun+"'+fn"'0=0}

be the set of words on C equal to 0 in basis U.

PROPOSITION 2.1 . — If the sel of normal represen-
tations L(U) is rational, then the normalization vc :
C* — A* is a rational function if and only if the set

Z(U, c) of words of C* equal to 0 in basis U is rational.

To prove that if vc is rational then Z (U, ¢) is rational,
it is necessary to give a precise characterization of the
normalization.

Let E and F be two alphabets. The length of a word f
is denoted by |f]. The set of words on E of length < k
is denoted by E<¥. Recall that a relation R C E* x F*
is length-preserving if, for every (f, g}ve R, \f| = lgl (¢f
[4]). This is equivalent to R C (E x F)*.

DEFINITION 2.1 . — A relation R C E* x F* is said
to have bounded length differences if there ezists k € N
such that, for every (f,g) € R, | |f] - |g| IS k.

PROPOSITION 2.2 . — [8], [10] A rational relation of
E* x F* which has length differences bounded by k
is equal to the behavior of a transducer T = (E x
F,Q,a,T) with edges labelled by elements of E x F,
equipped with an initial partial function o : Q — (E<*x
g)U(e x F<F).

The behavior of a transducer of this kind is defined as
follows. A couple (f,g) € E* x F* is recognized by T if
there exist ¢ € Q and t € T, such that a(i) = (u,v) is
defined, f = uf’, g = vg’ and (f’,g’') is the label of a
path from i to ¢.

Coming back to the linear numeration systems we have
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PROPOSITION 2.3 . — The normalization in basis U,
restricted to words not beginning by 0, has bounded
length differences.

Define a mapping between words of C* and polynomials
of Z[X] by :
f=fofa€C* — F(X)=foX"+: -+ fu, [i €
C. The Gaussian norm of F is ||F|| = maXizo...n | fi]-
This gives a correspondence between words of C* and
polynomials of Z[X] of norm at most c.
Let us denote by (P) the ideal of Z[X] generated by P,
and by I(P,c) the trace on C* of (P), that is I(P,c) =
=fo--- * =foX*+---+ fa P)}.
ek sft'}iftl? cloind m S0t Jn € (P}
Let f = uvw. Then u is a left factor, v is a factor and w

is a Tight factor of f. The set of left factors of elements
of a language L is denoted by LF(L).

PROPOSITION 2.4 . — The set I(P,c) is recognizable
by a finite automaton if and only if the number of re-
mainders of the Euclidean division by P of polynomials
associated o words of LF(I(P,c)) is finite.

Denote by [f] the remainder of the division by P of the
olynomial associated to the word f. When the num-
ger of remainders by P of the words of LF(I(P,c)) is
finite, the explicit construction of the minimal finite au-
tomaton A = (C, Q, ,{) which recognizes I(P,c) is the
following.
(i) the (%inite) set of states Q is equal to the set of re-
mainders by P of the elements of LF(I(P,c))

ii) the initial state i is equal to {1}

iii) the terminal state is defined by : {[v] | v €

=i

(iv) the transitions are of the form [f] -2 [fa) where

(Pre)}
aeC.

EXAMPLE 2.2 . — Let P(X) = X?— X —1 be the cha-
racteristic polynomial of the Fibonacci sequence. The
following finite automaton recognizes I(P, 1).

Since the polynomials considered belong to Z[X] the
number of remainders is finite if and only if the coeffi-
cients of the quotient by F are bounded. We thus set
the

DEFINITION 2.2 . — A polynomial P of C[X] satisfies
the bounded division property (in short (BD)) if, for



every ¢ > 0, there ezists a constant B(P,c) such that

for every polynomial F of C[X), F = PQ, Q € C[X],
IFII< ¢, implies that [|Q]| < AP, c).
PROPOSITION 2.5 . — [3] The polynomials satisfying

the bounded division property are ezactly the polyno-
mials having no root of modulus 1.

From the characterization supra we deduce

THEOREM 2.1 . — The set of words of C* the associa-
ted polynomial of which belongs to (P) is recognizable
by a finite automaton for every positive integer c if and
only if P has no root of modulus 1.

ExAMPLE 2.3 . — The Fibonacci polynomial P(X)
X? — X — 1 has no root of modulus 1, thus I(P,¢) i
recognizable for every ¢ > 1.

O&

EXAMPLE 2.4 . — Let #5492 = uny1+2u, and P(X) =
X2 - X -2 = (X + 1)(X — 2) be its charac-
teristic polynomial. One can verify that I(P,3) N
DA IBEIN = (CHB-HFIE=3)P2 |
p > 0}. Since this set is not rational, I{P,3) is not ra-
tional either. ]

We give now a necessary condition for the rationality of
the normalization in basis U.

THEOREM 2.2 .— If P has one root of modulus 1,
then there exists co > 0 such that for every c > cq , the
normalization vc 1s not rational.

The question whether P has no root of modulus 1 im-
plies that the normalization in basis U is rational on
any alphabet is still open.

3 The real numbers

Representation of real numbers

Let § > 1 and # > 0 be two real numbers. Every in-
finite sequence of positive integers (2n)n>0 such that
T =73 .5020"" is a O-representation of z. A particu-
lar §-representation called the 6-development or the 6-
fzjl'n[llnzﬁi)on can be computed by the following algorithm
C, .

Denote by [y} and by {y} the integer part and the frac-
tional part of a number y.

Let zo = [z] and ro = {z}, and, for i > 1 : z; = [fr;_,]
and r; = {fr;_1}. Then ¢ = 3", , zx0~*.

Fori > 1,z; < 6. If @ € N, the canonical alphabet
is A={0,---,6—1} and if 8 ¢ N, A = {0,---,[6]}.
We write £ = zo.z;23.-- where z¢ is the integer and
.Z1Z3 - - - is the fractional part of z. The #-development
of z is the normal f-representation of z and it is greater
f(}r the lexicographic ordering than any #-representation
of z.
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It is clear that if # = to.t1¢5 - - - is the -development of
6, then 1 = 0.tgt; - - -. The sequence tgt; - - - is denoted
by d(1) and called by extension the §-development of 1.
Let z € [0, 1] of 8-development 0.z,23 - - -. The sequence

Z21Zg--+ € AN s also said to be the #-development of
z.

EXAMPLE 3.1 . — Let 8 = (14+/5)/2. Then d(1) = 11.
Let 8 = (3 4+ v/5)/2. Then d(1) = 21%. ]

Normalization of infinite words

Let C be any finite subset of integers. As for the integers

the normalization function v¢ : cN . AN, where A is
the canonical alphabet, maps a sequence (yn)n of nume-
rical value z in basis # onto the #-development of z. We
characterize the numbers @ such that the normalization
in basis # is rational on any alphabet.

Let us fix some definitions. An infinite path in a finite
automaton A = (E,Q, I, T) is successful if it starts in
I and goes infinitely often through T'. The infinite be-
havior of an automaton is the set of all its successful
pathes. A subset of EN s said to be recognizable if it is
the infinite behavior of a finite automaton, that is if it
is Biichi-recognizable (cf [4]).

A relation R C EN x FN is rationalif it is the infinite
behavior of a transducer.

As for the integers we first consider the set of infinite
words on CN equal to 0 in basis 6, Z(B,c) = {s =
(8n)n>0 € ¢N | Enzo s,0—" = 0}.

To every infinite word 8 = (sn)n>0 of CN is associated
a formal power series S(X) = Y 508 X" in Z[[X]]
which Gaussian norm is ||S|| = sup, 5 |sn| < e.

One can show that it is not a restriction to suppose
that @ is an algebraic integer. A construction similar to
the one given in Section 2 links the recognizability of
Z(8,c) and the division of polynomials by the minimal
polynomial M of 8. Let us denote by LF(Z(8,c)) the

set {we C*|3s e CN, ws € 2(8,¢)}.

PROPOSITION 3.1 . — Let 0 be an algebraic integer
> 1. The set ZSO, c) is recognizable by a finite auto-
maton if and only if the number of remainders of the
division by the minimal polynomial M of 6 of polyno-
mials associated to words of LF(Z(8,c)) is finite.

ExAMPLE 3.2 . — The Fibonacci polynomial P(X) =
X2— X —1 is the minimal polynomial of § = (1++/5)/2.
The finite automaton constructed in Example 2.2, with
every state terminal, has for infinite behavior the set of
infinite words on {—1,0, 1} equal to 0 in Fibonacci basis

(1+Vv5)/2. a

As above, the number of remainders is finite if and only
if the coefficients of the quotient of the division are



bounded since the polynomials belong to Z[X]. With
a result similar to the one expressed in Proposition 2.5,
we prove that.

THEOREM 3.1 . — Let 0 be an algebraic integer > 1,
M its minimal polynomial. The set Z(0,c) is recogni-
zable for every c if and only if M has no root of modulus
1, and if for every infinite word s = (sp)n>0 of Z(6,c),
one has 3 sna~" = 0 for every root a of modulus
>1of M.

Using the same tools as in Proposition 2.1 we are able
to show

PROPOSITION 3.2 . — The normalization vc
CcN _ AN s rational if and only if Z(8,c) is reco-
gnizable.

The proof uses the following property of the normaliza-
tion (¢f [10]).

PRroPoSITION 3.3 . — If the normalization in basis 0
is rational, it has a bounded delay.

The previous results can be put together into the follo-
wing statement.

THEOREM 3.2 . — The normalization vc in basis 8 is
rational on any alphabet C if and only if the minimal
polynomial of § has no root of modulus I and if |s,| < c,
Yons0Sal0™" = 0 implies 3,5 5,0~" = 0 for every
conjugate o of modulus > 1.

COROLLARY 3.1 . — Let 8 be a Pisot number. For
every alphabet C, the normalization ve in basis 0 is
rational (and in particular the addition also).

Let § be a Salem number. There exists an integer cq
such that for every integer ¢ > co the normalization vc
in basis 6 is not rational.

EXAMPLE 3.3 . — Let § = (1 + v/5)/2. Then 0 is a
Pisot number, and the normalization is rational on any
alphabet. 0

EXAMPLE 3.4 . — Let 6 = (3 + v/5)/2. The minimal

polynomial of 8 is X2 —3X +1 and 6 is a Pisot number.
The normalization is rational on any alphabet. o

EXAMPLE 3.5 . — Let 0 be the dominant root of the
polynomial X* — 2X3 — 2X2 - 2X + 1. 6 is a Salem
number and d(1) = 2(211)“. There exists ¢y such that
il'gr every ¢ > ¢p the normalization on C is not rational.
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