New Approach to Integer Division in Residue Number Systems

Dragan Gamberger
Rudjer Boskovié Institute
41000 Zagreb, Yugoslavia

Abstract

A new division algorithm substantially different from
the known ones, and especially appropriale for the
Residue Number Systems (RNS), is presented. It
makes use of the fact that multiplicative inverse ele-
ment of a divisor, that is relatively prime to system
moduli, can be easily determined in the RNS. The
number of its iterations depends only on the magni-
tude of the divisor and the moduli of the system. The
problems in the algorithm realization are analyzed in
detail and a complete solution using the incompletely
specified RNS is described.

1 Introduction

It is known that complexity of integer division in the
Residue Number System (RNS) represents one of the
main reasons for relatively seldom usage of this num-
ber system. Practically, the RNS is used only in the
applications where it is possible to avoid integer di-
vision at all, like digital filtering or number theoretic
transforms. Although two different algorithms for in-
teger division have been suggested already 23 years ago
[1], and although there have been some efforts to real-
ize them [2], not a single successful implementation of
integer division has been published yet.

One of the suggested integer division algorithms makes
use of the method similar to the conventional binary
division. The application of this algorithm and its
modifications have the main disadvantage that each
lteration requires magnitude comparison. This opera-
tion is very fast in weighted number systems but rel-
atively complicated and slow in the RNS 1[1,3]. Apart
from that, this algorithm requires a table of the residue
representations of the integer powers of 2. This table
is iteratively used at the beginning of the algorithm in
the computation of an approximate quotient, and later
in the iterative process of successive approximation in
the computation of the correct quotient [1,2].

The second integer division method suggested (division
by approximate divisor) does not have this disadvan-
tages. It makes use of the fact that in the RNS the
division by a product of some system moduli can be
realized relatively simply [3]. The idea is to substi-
tute the real divisor by an approximate one, i.e. by a
product of some system moduli and to use this division
lteratively until a correct quotient is found. Algorithm
correctness is assured only if for any divisor ¥ there

is an approximate divisor ¥ (Y €Y < 2Y), what

CHB3015-5/91/0000/0084$01.00 © 1991 IEEE

84

requires the RNS with specially chosen moduli. The
main drawback of this algorithm is its need for spe-
cial logic and look-up tables in the determination of
the best approximate divisor and that the rate of con-
vergence depends not only on the dividend and divisor
magnitude but on the quality of divisor approximation,
as well [1].

The objective of this paper is to present a novel di-
vision algorithm substantially different from the men-
tioned ones. In the section 2 of this paper the algo-
rithm is described and the proof of its correctness is
given. In the section 3 the problems of its realization
are analyzed and a complete solution is presented. The
unique algorithm characteristic, that the number of it-
erations depends only on the magnitude of divisor, is
analyzed in section 4.

In the presentation the realization by read only memo-
ries (ROM’s) as in (3] is supposed. Hardware and time
complexity of the presented algorithms is measured by
the number of necessary ROM’s for its realization and
the worst case number of successive memory accesses,
called modular steps, respectively.

2 General Algorithm Principles
The goal of the algorithm is to compute the quotient
A

[

where both X and Y are positive integers and where
la] denotes the greatest integer equal or less than a .
The trivial case is for Y = 1 when it holds Z = X.

For the non-trivial case Y > 1, the idea of the al-
gorithm is to compute a new dividend X’ and a new
divisor Y’, both positive integers so that conditions (1)
are satisfied

X' <X

1<Y' <Y

X X'
Z=|=|=1—=1.
] - 1%
It means that we are looking for new dividend and
divisor that are smaller than the original ones but have
the same quotient. Now if Y’ equals 1 , then Z equals
X', and if Y’/ > 1 then X’ and Y’ can be used as the

new starting dividend and divisor, respectively. The
process can be iterated. After a finite number of steps,

(1)

some Y’ must be equal to 1 and the corresponding X’
is the result of division.

The presented idea can be applied in any number sys-
tem but the problem is how to efficiently compute
X' and Y’ which satisfy conditions (1). A general
solution to this problem is not known. A solution
applicable only for the RNS defined with N moduli
mi,my,...,my, that are different prime numbers is
presented in this paper. In such RNS a number X is
represented by N-tuple X = (z1,22,...,zn), where
z; = X mod m; and there is a unique representation
for each positive integer in the range X < M, where
M is the product of all system moduli. We suppose
that the moduli are selected so that this condition is
satisfied both for the dividend and the divisor.

In the RNS thus defined the new dividend and the new
divisor can be computed in each iteration as follows:

A iteration: If ged(Y, M) = G > 1, where ged denotes
greatest common divisor function

T
vo= L ®

It is obvious that relations (2) and (3) satisfy condi-
tions (1) and that they can be relatively easily realized
in the RNS because they both are divisions by some
product of system moduli.

B iteration: If ged(Y, M) = 1, what means that the
divisor is relatively prime with system moduli, then
X' and Y’ can be computed by

- |57]
)

where D represents multiplicative inverse element of

Y mod M
(6)

X' (4)
_YD-1
T M

Y’ (5)

YD=1mod M

or in other words
YD =kM+1 (kisan integer).

D satisfying inequality 1 < D < M always exists, and
it is unique according to the theorem 2-2'in [1] and the
fact that conditions ged(Y,M) = land 1 <Y < M
are both true in this case. The proof that the relations
(4) and (5) thus defined satisfy conditions (1) is given
in the appendix.

Computation of the multiplicative inverse element in
the RNS is not a problem because its each modulus
defines a separate finite field and the operation can
be performed independently and completely in paral-
lel for different moduli. Because weighted number sys-
termns are indefinite fields the necessity to compute the
multiplicative inverse element in this algorithm is the

85

main reason that it can not be implemented in them.
Even if weighted number systems would be used for
representing finite fields, the presented algorithm could
not be implemented in them because multiplicative in-
verse element computation could be executed only by
iterative repetition of integer division itself. In order
to demonstrate only the ideas of the new algorithm, in
Example 1 we suppose for a moment that decade num-
ber system presents a finite field with M elements and
that we know how to compute multiplicative inverse
elements in it.

Example 1 Divide 502 by 15 in a decade number sys-
tem with M = 1024;

1. iteration X = 502, Y = 15, ged(15,1024) = 1
D = 751 because of 751 x 15 = 11 * 1024 + 1
X' =502 %751/1024], Y’ = (15 %751 — 1}/1024

2. iteration X = 368, Y = 11, ged(11,1024) = 1
D = 931 because of 931 x 11 = 10 % 1024 + 1
X' =|368%931/1024], Y’ = (11% 931 — 1)/1024

3. iteration X = 334, Y = 10, ged(10,1024) = 2
X' = [334/2), Y’ = 10/2

4. iteration X = 167, Y = 5, ged(5,1024)
205 because of 205 %5 = 1024 + 1 X'
205/1024], Y’ = (5% 205 — 1)/1024

5. iteration X =33,Y =1, Z = 33.

3 The Algorithm Implementation Ana-
lysis

Although at first glance it might seem that both A
and B iterations can be easily realized in the RNS,
practically it is not so. In the A iteration, for exam-
ple, both relations (2) and (3) include division by a
variable product of moduli. Realization of division by
any defined product of moduli is not a great problem
[3] but the complete solution should include hardware
for all possible combinations of product of moduli and
this number grows very fast with the number of mod-
uli. For example, in the RNS with 5 moduli 30 differ-
ent products of moduli are possible and according to
realization suggested in 3], 395 look-up tables stored
in ROM’s are necessary only for this operation. The
same problem exists in the integer division algorithm
by an approximate divisor. In this paper the problem
is solved so that the relations (2) and (3) are realized
by the same hardware as relations (4) and (5) of the
B iteration.

In the realization of the B iteration, as we have al-
ready noticed, the computation of the multiplicative
inverse element D and the multiplication by it are not
problems in the RNS. The division by M can be also
easily realized because it is a constant product of mod-
uli. The main problem is that the results of multipli-
cation XD and Y D should be presented in the RNS
in which variables of the magnitude (M — 1)(M — 2)
can be uniquely represented. The problem might be

solved so that we introduce the extended RNS that
besides N moduli m;, my, ..., my includes additional
R moduli p1,py,...,pr, where P, product of all the
additional moduli p;, is at least M — 1. In this case
all the computations should be done in the so defined
extended RNS except that the multiplicative inverse
element D is computed only for the moduli m; and
then transformed by the standard base extension al-
gorithm to the representation in the extended RNS.
The drawback of this solution is its relative great hard-
ware complexity and execution time. The execution of
the B iteration in the extended RNS requires at least
2N 4+ R+ 1 modular steps: N for the base extension
algorithm, N + R for division and 1 for multiplication.
Only division by M in an extended RNS system with
5 main moduli and 5 additional moduli would require
65 look-up tables in ROM’s.

To make the problem easier we suggest the following
modifications. The relations (4), (5), and (6) can be
rewritten as

XD — (XD)mod P

’_
X' = P)
YD-1
Y’ =
~ (®)
YD = 1modP. 9)

The first modification is that instead of the extended
RNS we have introduced a new RNS, called auxiliary
RNS defined with R moduli py, ps, . . .,Pr- Each mod-
ulus p; of the auxiliary RNS should be a prime number
different from all the moduli of the main system and
selected so that their product P is greater than the
product of all main moduli M. Multiplicative inverse
element of the divisor is now computed in the auxiliary
RNS and division is by the constant P. It can be eas-
ily verified in the Appendix that because of P > M,
relations (7) and (8) satisfy conditions (1), as well.

The second modification refers to the changes in the
relation (7) where we have introduced subtraction of
the quantity (XD) mod P. This modification ensures
that the difference is divisible by P without remainder.
This fact is important because now we do not have to
use division algorithm presented in [3] that requires N
modular steps but we can use algorithm for division
with zero remainder presented in [1,4] executable in
only 1 modular step. The second condition for the
application of this algorithm is also satisfied in this
case because of P is always relatively prime to all the
moduli of the main RNS.

We must also notice that relations (7) and (8), in con-
trast to the relations (4) and (5), do not have to be ex-
ecuted in the extended RNS although their numerators
can be out of the range of uniquely defined numbers
for the main RNS [4]. The reasons are that we know
in advance that the final results are integers uniquely
representable in the main RNS and that direct division
as defined in [5] is used.

The main advantage of the suggested modification is
that B iteration can be executed now in N + R +2

86

block | number of Took-up tables
a N(N-1)/2 + R(N-1)
b N(N-1)/2 + R(N-1)
d R
e R(R-1)/2 + N(R-1)
f R(R-1)/2 + N(R-1)
g N
h N
i N
Table 1: Number of look-up tables in the blocks

modular steps. The disadvantage is that magnitude
(XD)mod P = (X/Y)mod P = Z’ must be com-
puted and subtracted in relation (7). The complete
B iteration based on relations (7), (8), and (9) is pre-
sented in Figure 1.

The iteration execution starts with the conversion of
magnitudes X and Y to the auxiliary RNS. A dis-
tinct hardware is used for each conversion (blocks ‘a’
and ‘b’) so that after N modular steps both variables
are presented in the auxiliary system. Thereafter the
multiplicative inverse element D in this system is com-
puted and immediately transformed back to the main
RNS in R modular steps by the block ‘e’. Multipli-
cation Y by D in the main system is executed by the
block ‘h’. In the same block subtraction of 1 and divi-
sion by P is incorporated and it is possible according to
[3] because they both are constants. In parallel to the
transformation of D to the main system, X is directly
divided by Y in the auxiliary RNS and the result Z’ is
transformed to the main system by the blocks ‘d’ and
‘P, respectively. The block ‘g’ waits the number D to
be computed in the main RNS and then executes mul-
tiplication X by D. The final value of X' is computed
by the i’ block.

Execution time in the form of the modular steps numn-
ber is given in Figure 1 on the right-hand side of each
block. One can easily verify that the total is N + R+ 2
for the computation of X’ and N+ R+1 for Y’. Neces-
sary number of look-up tables for the block realizations
as functions of the moduli number in the main and the
auxiliary systems is given in Table 1.

The total is N(N +2R)+ R(2N + R—2) look-up tables
in ROM’s for the whole B iteration. In the system with
5 main and 5 auxiliary moduli, for example, it makes
140 look-up tables.

Example 2 Let us show how iteration B would look
like in a concrete example. The task is to compute X’
and Y’ from X = 502 and Y = 16 in the RNS with
moduli 7,11,13 and M = 1001 using auxiliary RNS
with moduli 5,17,19 and P = 1615.

X Y
a b
CONVERSION TO [(N) CONVERSION TO [(N)
AUXILIARY RNS AUXILIARY RNS
x ¥
x v o
d e
1) 1/¥ AND
DIRECT CONVERSION (R)
DIvIsSION TO MAIN RNS
2 |
X w%‘i D
f g h
conversion 1o |(R)
HAIN RNS nuLtirLicarron | (1) (YD1 /P (1)
2° %\ Ix D ﬂ
¢
i ¥’
SUBTRACTION
AND (1)
DIVISION BY P
IX' Fig. 1. Realization of the B iteration
main RNS aux. RNS of the fact that the multiplicative inverse element is
my=7,my=11,m3=13 p; =5,py = 17,p3 =19 by the suggested modification computed in the auxil-
input iary RNS, the test whether the divisor is relative prime
X =(5,7,8) =502 with the moduli, must be also executed in this system.
Y =(2,5,3) =16 If ged(Y,P) = G > 1 then the A iteration follows.
output of block Relations (2) and (3) can be rewritten as:
a: X =(2,9,8) = 502
b Y =(1,16,16) = 16 X,=X*P/G~(XmodG)*P/G (10)
d: 7' =(2,8,10) = 637 P
e: D = (3,2,10) = 101
£ 2'=(0,10,0)= 637 y = Y2 P/G (11)
g XD =(1,3,2) = 50702 P
h: Yy’ = (253 3'52'91% QLD —(1,1,1)=1 The differences are that the relation (2) is transformed

i X' = 029- (0100 (3,9,5) = 31 .

Now, we would like to show how the same hardware
with slight modifications can be used for the A iter-
ation, as well. We should firstly notice that, because

87

so that division without remainder can be used and
that division by a variable G is substituted by the mul-
tiplication by P/ and division by the constant P .

The computation problem of the variable P/G can
be solved by application of the base extension algo-
rithm for incompletely specified numbers presented in

[5]. This algorithm is qualified by the same time and
hardware complexity as the normal base extension al-
gorithm presented in [3] when the prime moduli greater
than 2 are used. The operations of both algorithms are
equal for completely specified numbers and the com-
pletely specified version in blocks ‘e’ and “” can be
substituted by the more general incompletely specified
version without any change in the B iteration execu-
tion. An additional characteristic of the algorithm pre-
sented in (5] is as follows: if the starting value is an
incompletely specified number X in an RNS system,
the result is a completely specified number X M, pre-
sented in an other system, where M, is the product of
moduli of the starting system in which number X had
unspecified value.

Figure 2 shows the realization of the complete algo-
rithm including both A and B iterations. Each iter-
ation starts with both values X and Y being trans-
formed by blocks ‘a’ and ‘b’ to the auxiliary RNS.
Thereafter, by a simple AND/OR logic, it is tested
whether Y is relatively prime to P. The variable F is
set if this is true. The value of variable F influences
the operation of block ‘h’ and the new introduced block
‘c’. If F =1 then the block ‘¢’ output is Y = Y and
the same operations, as previously described, are per-
formed by blocks ‘d’-‘h’.

If Y is not relatively prime to the moduli of the auxil-
lary system, then F = 0 and Y is substituted by Y in
the ‘c’ block. Number ¥ has the value 1 for the mod-
uli in which number Y had value equal to 0 and the
unspecified value '+’ for the moduli in which numbe}'
Y had a value different from 0. Thus the number ¥
represents an incompletely specified value 1 with the
product of unspecified moduli equal P/G.

In Figure 2 it is supposed that the ‘c’ block is realized
by a set of R look-up tables in ROM’s and that its ex-
ecution requires one modular step although it could be
also realized by simple random logic circuits. The total
time for the execution of one iteration has increased to
N + R+ 3 modular steps and the total hardware re-
quirement is now N(N +2R)+ R(2N + R — 1) look-up
tables in ROM’s.

The multiplicative inverse element of ¥ is it itself. Af-
ter conversion to the main system in the block ‘e’ the
result is D = P/G. The value Y’ can be computed
in the block ‘h’ in a single modular step by the mul-
tiplication Y D and division by the constant P. This
function is slightly different from the one in the block
‘b’ for the B iteration where subtraction of constant
1 was also included. Because of that in the block ‘h’
both expressions should be realized and the appropri-
ate one selected by the variable F.

Block ‘d’ executes in both iterations the operation of

direct division of X by Y. In the case when V has
incompletely specified value 1 with the product of un-
specified moduli equal P/G then the result of division
is Z' = (X) mod G with the same unspecified moduli.
After conversion to the main system in block ‘f* the
result is 2/ = ﬁX mod G) * P/G. The result of mul-
tiplication in block ‘g’ is’ XD'= X P/G. This way

88

we have prepared all the values according to (10) that
the same operation in block ‘i’ as in B iteration can
calculate the value of X’.

Example 3 Let us show the iteration A appearing in
a concrete example. The task is to compute X’ and
Y’ from X = 502 and Y = 15 in the RNS with mod-
uli 7,11,13 and M = 1001 using auxiliary RNS with
moduli 5,17,19 and P = 1615.

main RNS aux. RNS
m; = 7,m2 = ll,ms =13 P11 = 5,p2 = 17,[)3 =19
input
X =(5,7,8) = 502
Y =(1,42)=15
output of block

a: X =(2,9,8) = 502

b: Y =(0,15,15) = 15
P20

¢ Y=1,uu)=1

d: Z'=(2,u,u) =

e: D=(1,4,11) = 323

f: Z'=(2,8,9) = 646

g XD=(50610)= 16214

he oy = GAA0ID - (33 3) =3

...
ImoH
(e
o
ol
alo
AT
W)
[~
0
©
1l
—~
3]
—
©
=
I
—
[l
o

Figure 2 presents other necessary elements of the divi-
sion hardware, as well: input registers X and Y, output
register Z, control logic, and test logic for Y = 1. The
division begins with the START signal which loads
starting values into the input registers and triggers
control logic. Afterwards this logic generates a series
of L signals with a period of N + R + 3 modular steps.
Their function is to load values X’ and Y’ into the
input registers. At the end, when condition ¥ = 1 is
detected, the S signal stops this series of pulses and
generates STOP signal that loads the output register.

It follows a complete division example in the RNS.

Example 4 Divide 502 by 15 in the RNS with mod-
uli 7,11,13 and M = 1001 using auxiliary RNS with
moduli 5,17,19 and P = 1615.

L. iteration X = (5,7,8) = 502, Y = (1,4,2) = 15,
S=0
in aux. RNS X =(2,9,8), Y = (0,15, 15),
F=0,Y=(1,u,u), Z' = (2,u,u),
D= (1,u,u)

in main RNS Z' = (2,8, 9) = 646,
D= (1,4,11) = 323,

X' = £5,7,82§1,54§1§%—£2,8,92 =(2,1,9) = 100,

y'= LA20LAI0 - (3,3,3) =3

2. iteration X = (2,1,9) = 100, Y = (3,3,3) = 3,

{

i

AND

SUBTRACTION

DIVISION BY P

1)

]

x*

x STOP Y START
% %
REG REG — REG
x U
S
L
STOP CONTROL
a b LOGIC
(N) CTINER)
CONVERSION TO (N) CONVERSION TO
AUXILIARY RNS AUXILIARY RNS
x !
AND
(1
¥~ = ¥ if F=1 F
¥~ = 414 if F=0
~ o~
X L' = vt
d e
(1) 1/97 AND)
D?éREf; CONVERSION (R
s N TO MAIN RNS
2’ “D
X D %k’ D
f I h 6D
CONVERSION TO (R) MULTIPLICATION (1) (YD—1)>/P if F=1
MAIN RNS ¥YD/P if F=@
2’L========== ’x D [*

Fig. 2. The complete division hardware

89

in aux. RNS X =(0,15,5),Y = (3,3,3),
F=1Y =(3,3,3), 2 = (0,5,8),
D =(2,6,13)
in main RNS 2’ = (4,10,5) = 1110,
D = (6,10,11) = 1077,
X' = GLAELIN-(1108) — (3,0,1) = 66,

Y= RAAEILL-001 - (59 9) = 9

3. iteration X = (3,0,1) = 66, Y = (2,2,2) = 2,
S=0

in aux. RNS X = (1,15,9),Y = (2,2,2),
F=1Y=(222),2 =(3,16,14),
D = (3,9,10)

in main RNS 7' = (5,0,7) = 33,
D =(3,5,2) = 808,

X7 — gs,o,qgas,:r.éyzsz—gs,oy) =(5,0,7) = 33,
_ (2,2,2)(3,5,2)=(1,1,1) _ _
y = GRAGSISULD - (1,1,1) = 1
4. iteration X = (5,0,7)=33,Y = (1,1,1) = 1,
S=1,2=(50,7)=33 .

4 The Unique Characteristic of the Al-
gorithm

In all known division algorithms the number of itera-
tions depends on the magnitude of the quotient Z . On
the contrary, the number of iterations in the presented
algorithm depends only on the divisor magnitude. It
follows the fact that in relations (3) and (5) the value
of the new divisor depends only on the value of the
previous divisor.

Theoretically, the maximum number of iterations
needed for the division by the divisor ¥ might be ¥ —1.
The real number of iterations for the divisor Y de-
pends on the magnitude of the number system used.
Generally, the same divisor needs different numbers
of iteration in various number systems. Although a
great divisor might possibly need less iterations than
a small one, it is normal that the number of iterations
grows with the magnitude of the divisor. An exact
method to determine the real number of iterations for
a given system is not known. Table 2 presents results
obtained by simulation in an auxiliary RNS with mod-
uli 43,47,53,59,61 and P = 385499687 .

The described algorithm characteristic can lead to time
and hardware savings in the cases when all divisors
are of a small value or when more numbers should be
divided by the same divisor.

The theory of the presented algorithm presents a base
on which fast division by constant (scaling) can be
realized in both, the RNS and weighted number sys-
tems. Actually, if the multiplicative inverse element
of a number can be computed in advance and mem-
orized, then division by this number reduces to one
multiplication and one division. This division is in the
RNS division by a product of system moduli and for a
weighted systems it is division by a product of bases,
both easily realizable.

90

mean max.

divisor number of | number of

range iterations | iterations
10-19 2.2 4
100 — 109 49 9
1000 — 1009 6.2 9
10000 — 10009 10.4 15
100000 — 100009 9.9 19
108 —105+9 13.1 18
10710749 14.7 18

Table 2: Mean and maximum number of iterations in
the RNS with P = 385499687 for divisors of different

magnitude.

5 Conclusion

As it is true that some simple algorithms in weighted
systems are hard to realize in RNS, it seems that some-
times the opposite is true, as well. Such an example is
the computation of the multiplicative inverse element
in the RNS of a number relatively prime with all the
system moduli. It can be realized in only one step by
small independent look-up tables, as fast and simple
as addition, subtraction, and multiplication. A new
approach to integer division in the RNS makes use of
this fact.

The presented algorithm can be realized in a few dif-
ferent ways and among them the described one has
some significant advantages: both iterations are real-
ized with the same hardware, each iteration can be
executed in the N + R+ 3 modular steps, and the nec-
essary control logic is very simple. Although in the
presented realization we succeeded to significantly re-
duce the number of necessary ROM’s, a great hardware
complexity is still the main problem of all the integer
division algorithms in the RNS.

Regardless of the way the new algorithm is realized,
its disadvantage is that, except by simulation, we do
not know the way to estimate the mean and maximum
number of necessary iterations. At the same time the
fact that the number of iterations depends only on the
divisor magnitude might be very interesting in some
special purpose applications.

Appendix

Proof that the relations (4) and (5) satisfy conditions
(1).

The conditions X < X and Y’ < Y are satisfied be-
cause of the fact that D < M. The third condition
[X'/Y' = Z] is also satisfied if we can prove that in
relation

X' = Zyl+Ql

condition 0 < Q' < Y’ is true where X’ and Y/ are new
dividend and divisor, respectively, and Z the correct
result of division of the original dividend and divisor.

From XD
X ==
5]
1+Y'M
D_T
X=ZY+Q (0<Q<Y)
follows

o | XH2ZYY'M 4 QY'M
= YM
o= | XM
- =

Obviously, @' > 0 and because of X < M — 1 and
Q<Y -1

o' M-—1+YY'M-Y'M|
< Vi =
M-1-Y'M
= Y+ —].
T

Because of Y/ > 1 it follows

Q' < lY’~—Y}—MJ =Y -1

So it is proved that condition 0 < Q' < Y is satisfied
and that the presented algorithm is correct.

91

References

{1

2l

N. S. Szabo, R. 1. Tanaka, Residue Arithmetic
and Its Applications to Computer Technology,
McGraw-Hill, 1967.

E. Kinoshita, H. Kosako, Y. Kojima, “General Di-
vision in the Symmetric Residue Number System,”
IEEE Trans. on Computers, Vol. C-22, pp. 134-
142, 1973.

G. A. Jullien, “Residue Number Scaling and Other
Operations Using ROM Arrays,” IEEE Trans. on
Computers, Vol. C-27, pp. 325-336, 1978.

R. T. Gregory, E. V. Krishnamurthy, Meth-
ods and Applications of Error-Free Computation,
Springer-Verlag, 1984.

D. Gamberger, “Incompletely Specified Numbers
in the Residue Number System - Definition and

Applications” Proceedings of the g Symposium on

Computer Arithmetic, pp. 210-215, Santa Monica,
U.S.A., 1989.

