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Abstract

In this paper, various algorithms for finding the greatest
common divisor (GCD for short) and extended GCD of
very large integers are explored. In particular the trade-off
between computation time and area is examined. Two of
the algorithms, from which the method to derive variants
is straightforward, are detailed. Then the architecture of a
VLSI processor dedicated to GCD as well as multiply,
divide, square root, ... of very large numbers (> 600
decimal digits), using an internal radix 2 redundant
representation and supporting multiple precision, is
devised.

Index terms : GCD, extended GCD, redundant number
system, most significant digit first algorithm, very large
integers

1. Introduction

Computation of the GCD of two integers is used in
integer arithmetic (e.g. normal form) as well as rational
arithmetic [1] either to get the canonic form or perform
rounding. Extended GCD is necessary for multiple
precision GCD [2] and to work over Z/pZ. Computer
algebra programs (reduce, macsyma, ...) reportedly spend
85% of their time in GCD [3] for some applications
because of the frequency and the comparatively high cost
of this operation. So, while all the algorithms studied in
this paper have a complexity of O(n), it is important to
find a good one.

2. Background

The "binary algorithm" proposed by Stein [4] relies on
shift, subtraction, exchange and comparison; all operations
except comparison suitable for large integers. For
convenience, right shift n position(s) is noted "/2"" and
left shift "*2n"
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function GCD (A,B) ; { assume A odd )
begin

while B #0 do
A
imeod2=0then( )3=( ){Biseven}
B B/
N
i A> = B
else if A > B then B (A-B)2 (A adBaeodi}
()| )
else = ;
B (B-A)2
GCD:=A;
end { GCD } .

This algorithm gives the GCD because 1) every transfor-
mation preserves the GCD(A,B), and 2) GCD(A,0) = A.

It is not very far from Euclid's algorithm [5] when binary
non restoring division is developed:

function GCD (A B); (asumeAaBod] A>RB 2N<A<2n+1)
begin

while B#0do »
Al [ A
if B <20 then =
B B*2
[ e rmeace
else if A2B then | (ABY*2 (<A™ )
(3l
else B B-A*2)
while Amod2=0doA:=A/2;GCD:=A;

end (GCD ).

Basically, Stein's algorithm tests and forces to zero the
LSB of B while Euclid's does the same with the MSB.

Brent and Kung [6] have built a systolic algorithm based
on Stein’s one that, instead of comparing actual numbers,
compares an estimate of their number of bits, and uses
serial binary addition/subtraction. Due to the estimates,
addition becomes necessary to ensure stability [6].
Komerup and Matula [1] use signed binary digits for a



carry propagation free addition/subtraction and only the
sign, as in the SRT division. Purdy [7) proposed use the
same notation [1] and the same evaluator as Brent's [8].
Yun and Zhang [9] later improved their algorithm to make
it about twice as fast and to include as well the extended
GCD.

Those algorithms rely on the affectation B := (B - q*A)*

2P, and it is easy to build new algorithms by changing the
ranges of q and p. Since we want one hardwired
addition/subtraction per cycle but we can afford several
shifts we will limit Iql to powers of 2. In this paper,
depending on the realization, the transistor cost of another
shift varies from 2 (parallel) to 10 (serial) transistors, the
cost of an adder is from 20 (2's complement) to 40
(redundant) transistors per digit.

3. LSB first approach

Let us give in pseudo-Pascal, as a first example, an
algorithm that divides the greatest of the two numbers by
4 at each iteration by forcing to two of its LSBs 0
whenever necessary, where q € {-1,0,1,2) and p = -2.
This algorithm simplifies when conventional binary
notation is used since then ag+bp=0 never happens and
absolute value is no longer needed as an operation and of
course the adder is simpler in term of gates as we will see
later.

function GCD (A, B, 8, .5p) ;

{mumeAod] 8,=[log,Al Sp=llog,B1, # of bits of A and B)

begin
while 8, > 0do (B0}
begin
if bgp =0 then
begin

if bj=0 then B :=(B+0)/4 {q=0}
else B := (B+2*A)/4 ({q=2)
end

else if 8, >38p then

begin swap ( 6, ,6p); { exch}

if (ap+bg=0 and a;+b;=0) or

(ap+bg#0 and |aj+b1| = 1) then {q=%1}
[ e S () m e
- else =
B (A+B)/4 B (B-A) /4
end else
if ( ag+bp=0 and a;+b;=0) or
(ag+bo#0 and |a;+bq| = 1) then
HEPE= RN
- else =
B/ | (A+B)/4 B/ 1 (B-A)/4
Sp:=0p-2;
end ;
GCD:=A;

end.

4. MSB first approach

The second example forces the MSB of B to 0 and tries to
predict if the 2"d MSB will also turn to be 0. To test the
MSB, redundant notation must be used whether the
addition/subtraction is done in serial or in parallel. Let us
note 1, 0 or 1 the values of a signed binary digit. Due to
the many ways of writing integers in redundant notation,
the numbers of digits 8, and 8y, of A and B alone are

useless for comparison. For example A=11111 is in fact
smaller than B=10 despite 8,=5 and 8p=2 . So besides 0,
and 8p we use also the first k digits |, and py, of A and
B. A normalization forces the 15t digit of y15 and pp to be
non-zero, and all the k digits to have the same sign (0 has
both signs), pa and pp € [-2K+1..-2K-17 4 2k-1.2k.q)
They are stored as the common sign and the absolute value
of the digits.

281 28k 20
H n |4————(8-k)digits ———>|
normalimd redundant parl
part

Of course the larger k is, the more digits in [, and Up ,
the more accurate the predictors and the quicker the
convergence of the GCD algorithm, in number of cycles.
But since there is a carry propagate to normalize W, each
cycle would also last longer. So in the present paper we
propagate the carry on 3 bits because it is the minimum
allowing us to perform another operation of interest:
division [10,11], and we try also propagation on 4 bits.
When [, and pp are normalized A and B are
seminormalized, that is we always have:

(ud-1)2% 5 A< 120 &g 1)2 0 B+ 120K

’
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Since A and B are only seminormalized, for the following
GCD algorithm, values |upl = 2k-1 and Inal = 2k.1
deserves special attention. Let us take as an example k =
3, B=10010 ( 8y =5, up=4 ) and A= 1110 (35=4, H=7
). If B:=B-A*20b-0a is performed, the result will be
B=10010, that also is seminormalized and negatif, so the
next operation will be B:=B+A*28b-9a that gives back the
previous value, and the algorithm pever ends. By rewriting
B when necessary before swapping A and B, the algorithm
prevents |, from taking the values 7 or -7. A similar loop
forever is reported in [1] and treated by forcing a shift in
the loop. The table on next page summarizes the new
range of up from the value piy and the previous value of
Up after B:=B-A, in bold the values that should not be
taken, and in italics the column p,=7 that is avoided. A
symmetrical table can be drawn for B:=B+A.



Wb\ Ha| 4 5 6 7
1 -1,+1 20 | -3,-1 | 4,-2
5 042 | -1+1] -20 | -3,-1
6 +143 ] 0,42 | -1,+1 | -2,0
7 +2,+4 | +1,4+3 | 0,42 | -1,+1

The following pseudo-Pascal program is the behavioral
description of a chip for the GCD with q € {-1,0,1} and p
€ {0,1,2}. The program manipulates four integers: 8,
and &y with logo(logy ( max. value of A or B)) bits, pa
and pp, with k bits (unsigned) plus one bit sign.

Let n be 8y-k-1, by, be the most significant signed digit of
B and by, o denote the string by,by-1, -..,bo.

function GCD (A, B, k, 8, ,8p) ;
{ 8= logyAl 8p=log,B1, number of bits of A and B }
begin
while &, > 0do
begin
if lp! < 2K-1 then
begin
if ((82>8b) or (8= 3p) and Ip,l > 2k-1)))
and ( by * pp) = 2K-1-1 then

begin Uy :=pup+ by ; bypi=- by end
else if |upl < 2K-2 then

{B#0)

else begin b=}y +Hp+bn; b 1=bn1.0; & =& -lend
end else begin

begin swap ( 82,8p); swap (A,B)end;
if |ty + upl < 252 then

beginB:= (B+A)*4;8,:=08p-2end
else if | 1 - pp | < 2K-2 then

begin B:= (B - A) * 4; 3, := 8p - 2 end
else if | g + pp | < 2K-1 then

begin B:= (B + A) * 2; 8, := 8, - 1 end
else beginB:= (B-A)*2;8,:=8p-1end;
end;
end ;

GCD:=A;

end.

5. Generalization

One addition/subtraction can force to 0 at least either the 2
least significant positions or the most significant position
of B, and sometimes more positions. To take advantage of
the Os in more positions, that is to shift them out, is
more costly in term of transistors. On the contrary forcing
just one LSB position makes the circuit slower but the
operation part and the control simpler. In a systolic
approach, with a distributed control, the control part
becomes preponderant [6]. Thus the time/area of different
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approaches has been plotted, where the time is
approximated by the number of cycles and the area by the
number of transistors. Distributivity of
addition/subtraction and shift as well as serialization of
less frequent operations were used to keep the number of
transistors low.

Approaches with examination of the LS digits

begin pp=4%pp+2* by + byps by 2= 2.0 &= & -2end

if (64 >dp) or ((8a =3dp) and (Ipal > Iupl ) ) then

## q (quotient)  |p (position) bl:(;);ﬁ:egéts
L1 -1, +1 -1 b
12 -1,0, +1 -1 ai,by note 1
L3 -1,0, +1 -1,-2 ag,a1,bg,by | note 2
14 -1,0,+1,+2 -2 ag,a,bg,b; | note 3
L5|-2,-1,0,+41,+2,+4 | -2,-3 ap,a1.bg,b1.b2
note 1: This is the Brent-Kung [6] variant
note 2: This is the Yun-Zhang [9] variant
note 3: This is the first example detailed in this paper
Approaches with examination of the MS digits
+# q (quotient) p (position) | k
M1 -1,0,+1 1 3
M2 -1,0,+1 1,2 3 |note4d
M3 1,0, +1 1 4
M4 -1,0,+1 1,2 4

note 4: 'ﬁs is the second example detailed in this paper
A

Some of the approaches were realized in serial, in parallel

or both:
A
gl MM
Stein 8 Euclide
. Jcast significant bits = most significant bits
Brent Kung %‘
Lzl

m

Pseudo Pascal description of the variants, as well as the
corresponding hardware are detailed in [12] available
through the IMAG librarian.

6. Extended GCD

Now we want the time/area trade off of a circuit that
computes a pair of integers R and S that follows the
Bezout's equation, A*R - B*S = H, H denotes the
GCD(A,B). This is done by executing in the reverse order
a sequence of operations corresponding to the ones that led
to H (15t column of the tables of next page) while
preserving Bezout's identity (3% column). For that phase,
the initial values of (A,B,R,S) are (H,0,1,1).
Unfortunately, for the LSB approach, that leads toR and S
that may not be integer, so for this approach we first
preserve ASR-BS =H*21 (4th column) and then simplify R
and S while keeping them integers.



Let us give the table for the LSB example bit was forced to be non-zero. The trade off of each variant

compute H restore Preserves Preserves has been locally optimized. The time to load in the
=GCD(A,B) AandB A*R-B*S=H| AsR B+ =H#2n| operands was not counted.
B:=B/4 B:=B*4 | S:=S/4 R:=R*4 =
. . R:=R-§/2 . ] lel Ml
B := B/4+A/2| B:i=B*4-A*2| ¢._.5/4 R := R*¥4-S%2 1 g\l J/ MSB ﬁrst\}vfg,m ” u.q\?_l/lr?
A B\[[A B\|[{ R} _{-S Ry._(-S = M3 L5 al
= = = = g & Y M1 seria
B All\B/ VATI\S R/} \S R |8 °
R:=R-S/) SRR ¢ 13
B:=(B+A)4|B:=B*4-Al g._.g/4 R:=R*4 -§ -E LSB first
R‘;R-S/Z % 7] serial L 531»311 .
= - 3 - = Cl
B: (BA)/4 B:=B*4 + A S:=S/4 R:=R*4+8S g 0.6 W ngl L'SB first
hs
and the table for the MSB example & ¥
compute H restore preserves A*R - B¥x§ =H — — —
=GCD(AB)| AandB when restoring A and B 0.4 4 - ——f y —
B:=B*2 B:=B/2 S =S*2 0 100 trans/dlgﬁ 200 300
BI=B*4 BZ=B/4 SZ=S*4 COSt INCTreases e
A B A B R -S . . .
= = = Algorithm LS5 that removes an average of 2.5 digits from
B A B A S -R the least significant position of B at each cycle happens to
B:=B+A)*2| B=B2-A| R:=R-8*2;8:= S*2 be slower than algorithm M1 that removes 1 digit at the
B-(B-A*2| B=B2+A[R:=R+8*2;8§:=5*2] most significant position when it is not stalling to rewrite
B.— (B+A»4] B:==B/A-A | R:=R-S*4:8:= S * 4 B. The size, or number of significant digits, of the result
B=(BA*4| B=BA+A|R:=R+S*4;8:=8%4 of an addition/subtraction is not deductible from the size of

Simplification of R and S is straightforward, but adds
cycles and transistors, since it is necessary o keep A and
B in registers, to the extended GCD computation in the
LSB approach. Since A,B and H are odd, R and S exibit
the same parity.

while n > 0 do

begin n := n-2;

if rg = O then begin if r1 = 0

(R ) 3( R/4 ) (R ) j(R/4+B/2)
then - else - end
S S/4 S S/4+A2

else begin if (ag+rg =0 and aj+r; = 0) or

the operands, and errors tend to accumulate. After several
wrials, we settled on no size adjustment, the size of the
result being the size of the biggest operand.

Having computed the GCD in n cycles, the number of
additional cycles required for the extended GCD is n minus
the cycles when the algorithm was stalling for the MSB
approaches, and n plus the number of cycles to simplify
the result in the LSB one.

The LSB first serial approach is very cheap for the GCD,
and the GCD only. Otherwise the MSB approaches are far
more interesting for the extended GCD, as shown on the
following plotting the cost of extended GCD.

(ag+ro # 0 and laj+r1] = 1) 2 -
R\ [R+B)4 R\ [ R-By4 § parallel MSB first
then - e end B “ i
ST \(S+A)/4 S/ \(S-A) 3 M4 MSB first
end . 0,50] gﬂ M3 serial ?
If we have only one adder, the two additions/subtraction M2 M
that are presented here in parallel must be done serially. {1 | M1 el
paralle
035 LSB
7. Measures " first L5
-]
The first plot below shows the performance-cost ratio of 4 13
the different approaches and variants for the GCD L2 ;7
computation, The cost was obtained by carefully designing 0,20 a
an operation part for each algorithm [12], and the 150 20¢ wrans/digi 250 300
performance by running a simulation of each of the s/digit

operation parts with the same set of 200 samples of
randomly generated 2,000-bit integers whose first and last
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8. Coprocessor for high precision

This VLSI circuit is designed to be placed close to a
microprocessor and plugged into the memory bus, in order
to significantly reduce the time required for high precision
software computation. Due to the limited word size of the
memory and pad limitation of the circuit, long numbers
have to be transmitted serially in time O(n).

3 32 bits 332 bits

Data
L. Addresses
o serialize generator | /O processor
deserialize
-ShitSpg- = = == = = = = 2048 bitSe = = = = = = =
1< B B—— p—
- — |+ — — — Shift — — — —
& T T T T Tregistes — — T ]
2--—____ bank — — — -
o~ — 1T — — — —|= — — — -
H 2048 bits
L > Result converter
’ A<=(A+B*q*2P
—>propagate <=(A+B%Q)
Lol adder C<=(C+D¥s)* 2!
¢ selection| computation processor

The goals of the architecture are:

1- To overlap computation and communication, so on line
computation is desirable, but also pipelining of load in,
execution and store back [13].

2- To minimize external bus occupancy by keeping
intermediate results or local variables in an on-chip
register bank

3- To benefit from a very large operator to avoid multiple
precision operations. Internal redundant notation keeps the
carry propagation path short [14,15]. The operator must
take advantage of the parallel transmission of internal
variables with the register bank and of the serial
transmission of external variables.

4- To offer add, subtract, multiply, divide, GCD, extended
GCD, square root [16,17] and also provide support for
rational numbers [1] and matrices.

5- To efficiently use the silicon. So the datapath and the
operator are configurable to perform several operations in
parallel on short operands and/or on operands transmitted
in parallel.

The 1/O processor acts as a DMA. It spies on the buses for
the address and the value of the first word of the operand,
and then requests the bus and generate the addresses
sequence for the next words [13]. Whenever available it
uses the burst mode to speed up the exchange. It can
interleave two loads and one store.
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Each register of the bank is accessible in parallel or in
serial mode. The most significant bit occupies the
rightmost position. One parallel and six serial accesses can
take place simultaneously. A crossbar allows to serially
load or store registers while computing on others in the
pipeline mode, or to bypass the bank in on line mode. The
crossbar includes a serial adder. For the extended GCD,
three of the registers are used as a stack to record the
sequence of operations.

Two adder/subtractor-shifters, each with two registers for
redundant numbers, compose the computation processor.
For multiply, divide [14] or square root [16,], they are
used together in the on line mode or independently in the
parallel/serial mode to perform two different operations.
On the figure, A,B,C,D represent registers for large
numbers, q,s € {-1,0,1} and r,t € {0,1,2}. Registers B and
D can be loaded serially, from the left to the right
position[14]. A pair of register converts on the fly serial
signed binary result into conventional representation (-1 or
0 in the most significant position, 0 or 1 elsewhere) [18]
and into a representation with no 0 (only -1 and 1). This
late representation is useful for matrix triangularization by
Givens' rotation method since it does not change the scale
factor [19] .

9. Conclusion

By simulation we have found that, in the GCD
computation, algorithms that decimate the most
significant positions are faster than the ones that decimate
the least significant positions and are even faster for the
extended GCD, while at the same time demanding a lower
transistor count.

This has led to the architecture of a VLSI coprocessor for
high precision arithmetic that support the GCD and the
extended GCD on top of standard operations. The overall
complexity is expected to be about 700 K transisors with
a density of 5 Kymm? in 1.5 and a very high regularity.
It will be linked to a software package [20,21] which is
now used to tune the circuit.
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