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Abstract

A novel n-dimensional (n-D) CORDIC algorithm, for
Euclidean and pseudo-Euclidean rotations, is proposed.
The new algorithm is closely related to Householder
transformations. It is shown to converge faster than
CORDIC algorithms developed earlier for n = 3 and 4.
Processor architectures for the algorithm are presented.
The area and time performance of n-D CORDIC pro-
cessors are evaluated. For a comparable time perfor-
mance, the processors require significantly less area
than parallel Householder processors. Furthermore, ar-
rays of n-D Euclidean CORDIC processors are shown
to speed up the QR decomposition of rectangular ma-
trices by a factor of n—1 with respect to a 2-D CORDIC
PIOCESSOr array.

1 Introduction
1.1 2-D CORDIC Algorithms

The COordinate Rotation DIgital Computer (lCORDIC),

introduced by Volder [13] and extended later by
Walther [15], is an algorithm operating on 2-
dimensional (2-D) vectors to perform rotations using
simple arithmetic primitives. The algorithm has sev-
eral variants and can be used to calculate a variety of
elementary functions. While the traditional approach
to vector rotation calls for square-root extraction, di-
vision, and multiplication, the CORDIC algorithm re-
quires only additions and shifts. The algorithm approx-
imates a 2-D rotation R, (Euclidean or hyperbolic) by
the product [[_; Ra, of p elementary rotations

- bit;
Ryi= (14 0at})™2Us;, Uy = ( —aléit,- 1 > )
(1)

where Uy ; is called the unscaled part of Rs ;,

1 for a Euclidean rotation
o =13 =1 for ahyperbolic (or pseudo-Euclidean)
rotation,

and ¢; is a non-positive power of 2. When ¢;,1 = t;, two
consecutive rotations have the same magnitude; this is
called a ‘repetition’.

When evaluating the angle of a vector [z, z4]T with
the first axis, a sequence of unscaled rotations Uy is
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Figure 1: The architecture of a 2-D CORDIC proces-
sor.

applied to bring the vector along the direction [1 0]7
(evaluation process). The signs §; are selected ac-
cording to & = sign(zy;-1 - z2i-1), where ;j;_, de-
notes the jth component of the vector at the begin-
ning of iteration ¢ and, initially, z;0 = z;. The se-
quence §;,1 < i < p, thus obtained may be used
to rotate other vectors by the same amount (appli-
cation process). Like the multiplication by the un-
scaled rotations U3 ;, multiplication by the scaling fac-
tor [T5_,(1+0t#)=*/? is implemented by additions and
shifts, see e.g. [9]. While no repetition is needed
for the 2-D Euclidean CORDIC algorithm, it is nec-
essary in the hyperbolic case to have a repetition for
t; = 2742718 9-40  9-k 9-(3k+1) [15]. Fig. 1
illustrates the 2-D CORDIC processor architecture.

1.2 3-D and 4-D CORDIC Algorithms

One trivial way of rotating an n-dimensional vector
is to apply (n — 1) 2-D CORDIC rotations on +n/23
2-D CORDIC processors in the time of [log, n] 2-

CORDIC rotations. For example, in order to align
a 4-D vector with the [1 0 0 0] direction, two 2-D



CORDIC rotations are applied in parallel to zero out
the second and fourth components, followed by another
2-D CORDIC rotation to zero out the third component.
Delosme et al. [6][7] have proposed faster 3-D and 4-D
CORDIC algorithms which require a number of itera-
tions only slightly larger than for a single 2-D CORDIC
rotation. These algornithms are derived from the ratio-
nal representation theorem of Cayley. According to
that theorem, any n-D Euclidean rotation R, with no
eigenvalue equal to -1, can be expressed as

Ro=(-T)I+Tu) !

where T}, is an n X n skew-symmetric matrix.

The matrix T3 ; associated to a 3-D elementary rotation
matrix was selected in [6] as

0 —wt; ity
Tzi={ 7t 0 —vti |, % é&e€e{l,-1},
=8t yits 0
(2)

where t; is a negative power of 2. The corresponding
elementary rotation matrix is

Ra,,' = (I — Tgy,’)(l + T3,i)_] = (1 + 3tiz)_1 X
1- t? 2vit; + Qt? —26;t; + Qtiz
—2v;it; + Zt? 1- t? 2yt + Qt?
26t + 267 —2;t; + 2t2 1—1#2
(3)
Its rotation axis is [v; & v:]7, that is, either [1 1 1]7 or
[1-11]T. When evaluating a rotation bringing a vector
[z1 5 z3]7 along the first axis [1 0 0]7, the signs v
and §; are selected according to the control law

vi = sign(zy,i-1 - 22,i-1),
6 = —sign(z1i_1-23,-1), “

where z;;_1 denotes the jth component of the vector
at the beginning of iteration z.

In the 4-D case, the 4 x 4 skew-symmetric matrix 7T} ;
defined as

0 ity bt et
-t 0 —ety 6ity (5)
=0ty €t 0 -yt
—ati =6t viti 0
was selected in [6] [7]. Because the rotation matrix

Ray=(I-Ta;)(I+Ts;)™"

is the square of the matrix

. 1 —tivi -t ~tiq

T B 757 1 tie;  —1i6;

Rasi= 1+32 | b —tie 1 s | ©
P\ e 46—t 1

which has a simpler unnormalized part than RM’ the
matrices defined by equation (6) were selected as 4-D
CORDIC elementary rotation matrices in [6] [7].

To prove the convergence of an n-D CORDIC algorithm
over a given range, one must consider all the vectors
in that range, which is a cone with vertex the origin in
n-D space, and show that the sequence of cones which
consist of all the vectors after each iteration converges
toward the first axis. We wrote a program to com-
pute these cones, determine—in case repetitions are
needed—for which magnitudes t; rotations should be
repeated, and prove the convergence of the 3-D and 4-
D CORDIC algorithms [7]. In the 3-D case, at the first
iteration, the whole 3-D space Cj is partitioned into the
the 8 canonical orthants C},C%,---,C§, and each of
them is rotated by R3; with the controT signs selected
according to equation (4). The union of these rotated
orthants forms a cone C; with vertex the origin. At
the second iteration, C is partitioned into 8 sub-cones
C},C%,---,C3% corresponding to the 8 possible assign-
ments for the control signs. Each sub-cone is rotated by
R3 2 with the appropriate control signs. The union of
the rotated sub-cones forms a cone C3. The procedure
is repeated on Cy, and so forth for every iteration. The
convergence behavior can be characterized by the rays
of the cones C; which are the farthest away from the
first axis in some norm. The convergence of the 4-D
CORDIC algorithm is analyzed similarly except that
the cones C; are partitioned into 16, instead of 8, sub-
cones at each iteration. From these computations, we
found out that it is indeed necessary to perform several
repetitions to obtain convergent algorithms for Rg and
R4. In [7], the repetitions were selected to achieve the
fastest convergence rate.

These earlier studies did not provide a systematic
method for constructing the n-D CORDIC elemen-
tary rotation matrices for arbitrary n. In Section 2,
we propose a solution to that problem, applicable to
Euclidean and pseudo-Euclidean CORDIC spaces of
arbitrary dimension. The solution employs elemen-
tary rotations which are essentially Householder reflec-
tions. In Section 3, two CORDIC processor architec-
tures are proposed. Their performance compares fa-
vorably with that of a parallel implementation of the
Householder transformation. Section 4 develops an ex-
ample indicative of the increase in throughput achiev-
able in application-specific array processors when n-D
CORDIC processors, with n > 2, are used in lieu of
2-D CORDIC processors.

2 CORDIC Householder Algorithm
2.1 The 3-D Euclidean Case

As mentioned above, the 3-D elementary rotation Rs;
in equation (3) has either {1 1 1]T or [1 -1 1]T as rota-
tion axis. If instead the rotation axis is chosen to be
either [0 1 1]7 or [0 1-1]T, the matrix T3 is replaced
by

—ti81,:

) 0 —tisz
T31,- = t,’Sl‘,‘ 0 0 ’ (7)
152 0 0
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Figure 2: Domains after the first three iterations of Rj.

and the elementary rotation matrices become

R3;=(1+2t3)"1x

1-— Zt? 2t¢31’; 2t£32,i (8)
—2t;s) 4 1 ~2t%s1:804 |,
—2tis20 —2t¥s3i51,

with signs selected during the evaluation process ac-
cording to

81, = Sign(T1,i-1-L2,i-1), S2i = sign(21i-1- T3 4_1).

o (9)
The matrix Rj; is simpler than R3 ;. Moreover, as is
discussed next, no repetition is necessary with this new
family of elementary rotations.

Using the method outlined in Section 1, we can deter-
mine whether any repetition is needed and prove the
convergence of the new 3-D algorithm by determining
the cone C; of all the rotated vectors after each iter-
ation i. The cones C; have the origin for vertex and
surround the first axis. The intersections of the cones
C1,C3 and C3 with the plane z; = 1 are shown in
Fig. 2. The cones are invariant under a permutation
of z3 and z3. The new 3-D CORDIC algorithm, R3,
converges slightly faster than Rz since it does not re-
quire any repetition while Rz calls for the repetition
of the iterations with t; = 274, 2-7,2-12 9-22 ... [7],
Furthermore, the domain obtained by intersecting the
cone C; with the plane z; = 1 is bounded by a square
box with half-side 2¢; /(1 — 2t2).

2.2 The General n-D Case

The pseudo-norm ||z||,. of an n-D vector z in pseudo-
Euclidean space is defined as [|z]|2 = z7%,z, where
Y, is a signature matrix of the form

1 0 0 0
0 o3 O 0

Sa=| 0 0 o 0 |, oie{-1,1}. (10)
0 0 0 On-1

Without loss of generality, we will assume the values of
o; ordered according to:

-]

Hk=n, X, =1, and ||z||s, is the Euclidean norm
of the vector z. We shall view the Euclidean norm

1

~1 (11)

258

(and rotations) as a particular case of pseudo-Euclidean
norm (and rotations).

For an nxn matrix H, to represent a pseudo-Euclidean
rotation, it should preserve the pseudo-norm of an ar-
bitrary vector z,1.e.,

(H,,z)T):)n (Hpz) = 27Z, 2.

Since the above equation is true for any vector, H,
must satisfy

HTS.H, = Z,. (12)
i.e., it must be orthogonal with respect to ;.

If T3 ; in equation (7) is generalized to an n-dimensional
space with signature matrix X,, i.e.,

0 —t; -t —1;
t; 0 0 0
Toi=5.,8 | & 0 0 O 1 Sus,
i 0 0 0
(13)
where the signs in the matrix S, ;
1 0 0
0 S$1,4 0
Smi=1| . . , (14)
d 0 Sn—1,4

are selected during the evaluation process according to

(15)

the matrix Hy; = (I — T, ;) (I + T )~} is equal to
Hn’,' = (l +Cti2)_1>(

8ji = 0i - Sign(T1i-1 - Tj41,i-1),

1—ct? 2t; 2;
=2t 14 (c—2)t} —2t?
5 . —ét,- —2¢? 1+ (c—2)t?
i 2; 2t? . 2t?
2; 2t} e 2t?
2%; 22 2t?
1 2 k
2t; 2t;
—2t2 —2t2
—ét,? —étg S .
1+ (c+2)? 2t2 nis
2t2 2t?
212 1+ (c+ 2)t?
k+1 n

(16)



where ¢ = 2k —n — 1. H,; does satisfy equation (12)
and hence can be used as an elementary rotation ma-
trix. Equation (16) defines the elementary rotation ma-
trix for a general n-D CORDIC algorithm, applicable
to both Euclidean and pseudo-Euclidean spaces. When
Xn = I, Hy ; is an elementary Euclidean rotation ma-
trix and the more specific notation R, ; is used instead
of Hy, ;. If the signature matrix for an odd dimensional
pseudo-Euclidean space is such that k = (n + 1)/2,
t.e., ¢ = 0, no scaling is required to normalize the ro-
tated vectors. Elementary CORDIC rotation matrices
for n = 2,3 and 4 are exhibited below:

e n=2 o,=1:

1-12 24

- 1
Rz,:’ = Tt'?sz,i ( —2t; l—t,‘?‘ ) 52,:', (17)

e n=2 o0;=-1:
1 1+t2 2
H?,: - Tt?sz" < 2t,' ¢ 1+ti2 52,:', (18)

® n=3,01 =0 =1: Hy; = Ry; in equation (8),

e n=3, 01=1,09=—1:
1 2t; 2t;
Hy;i=S3;| —2t; 1-2t2 —22 ) Ssi, (19)
2t; 2t 14242

e n=4, oy=0y=03=1:

R4'i = (1 +3t?)_1)(

new algorithm with elementary rotations Ry ; is a ratio-
nal CORDIC algorithm whose unnormalized elemen-
tary rotations are only slightly more complex.

The convergence of the new 4-D CORDIC algorithm
can be analyzed and proved using the procedure out-
lined in Section 1. The cones C; have for vertex the
origin and surround the first axis, thus they are fully
characterized by their intersection with the hyperplane
z; = 1. Since they are symmetric with respect to
T2, 3, 24, these 3-D polytopes can further be projected
orthogonally onto the hyperplane z3 = 0 to study the
convergence behavior. Fig. 3 represents this projection
for the cones Cy, C, and Cs.

sl 1 I 1 i Rl o S B B |

g7 T

4

i_

1-3t2 2 2; 2t;
_ =2t; 142 —22 22
Sl o —wd 14 b | S
=2 =2t -2 14142
(20)
e n=4, o, =109=03=-—1:
Hq),' = (l - tf)‘lx
1+ t? 2t; 2t; 2t;
=2t; 1-3t2 —-2u? 22
Sa 1 ) .
R DTN 7 S W B R
2t; 2t 282 144}
(21)

The elementary rotations Rg‘,' and Hj; are the square
of the elementary rotations Ry ; in equation (1) with
o set to 1 and -1, respectively. We call the algorithm
of equation (1) a ‘square-root’ 2-D CORDIC algorithm
and the algorithms of equations (17) and (18) ‘ratio-
nal’ CORDIC algorithms. The rational 2-D Euclidean
CORDIC algorithm has been used in [5] [8] to speed
up the Singular Value Decomposition (SVD) compu-
tations and in [12] to obtain a redundant arithmetic
algorithm with constant scaling. For n = 4, while
the algorithm with elementary rotations R4 ; given by
equation (6) is a square-root CORDIC algorithm, the

) . s -3 [T o e a2 as 2 (s

Figure 3: Domains after the first three iterations of Ry.

Algorithm R4 does not require any repetition and con-
verges faster than R4, which requires repetition of the
iterations with ¢; = 273275 29 2-16  [7]. The
domain obtained by intersecting C; with the hyper-
plane z; = 1 is bounded by a 3-D cube with half-side
2t /(1 — 3t2).

2.3 Structure of the Elementary Rotations

The n-D elementary rotation matrix H,; in equation
(18) is the product of a reflection with respect to the
hyperplane z; = 0 and a ‘pseudo-Householder’ reflec-
tion. Indeed, H,; can be rewritten as

28, uuT
i = L | 22
Hyi=E (In uTE,,u) (22)
where
-1 0 0 0 1
0 1 0 0 tisy
E, = . B . and u= .
6 0 0 - 1 tiSn_1,i

The matrix I, —ZEnUSuTEnu)‘IuT is a reflection with
respect to the hyperplane normal to the vector u. It
Is orthogonal with respect to T, and has determinant
-1. It is a generalization of the Householder reflection
to pseudo-Euclidean spaces. The role of the multipli-
cation by the reflection Ey, is to transform the pseudo-
Householder reflection into a proper rotation, with de-
terminant 1. Thus, our new elementary rotation matrix
Hp ;i is essentially a Householder reflection in pseudo-
Euclidean space. This is the origin for the name given
to the new CORDIC algorithm.
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Figure 4: A possible architecture for a 4-D CORDIC
processor.

3 Processor Architectures

3.1 A 4-D Processor Architecture

A possible architecture to implement the 4-D CORDIC
algorithm in equation (20) is illustrated in Fig. 4. By
adding proper control inputs, ¢1, ¢y and cs, to the sign
operators, this 4-D CORDIC processor can also execute
the 2-D CORDIC algorithm in equation (17) and the 3-
D CORDIC algorithm in equation (8). More precisely,
in the (unscaled) rotation mode, the set of coefficients
(c1,c2,¢3) = (=1,0,—1) selects the 2-D CORDIC func-
tion if x3;_1 and z4 ;_; are preset to zero; (¢1, ¢2,¢3) =
(0,—1,0) selects the 3-D CORDIC function if 24,1 is
preset to zero; and (ci, ¢2,¢3) = (=1, —1,1) selects the
4-D CORDIC function.

Multiplication by a p-bit accurate approximation of the
scaling factor Sy = [T7_,(1 + 3¢?)~! can be performed
by shifts and additions using ¢ additional iterations,
where ¢ 1s small compared to p. However, the pro-
cessor in Fig. 4 must be slightly modified to also per-
form the scaling operations. Several 2-to-1 multiplex-
ers should be inserted at the input of the Carry-Save-
Adders (CSA). Fig. 5 shows the modifications of the
processor to enable scaling of the first and second com-
ponents. The modifications for the third and fourth
components are similar to those for the second compo-

. ’ 4 1
nent; the sign controls (sy ¢, $; 9, 81 3) are replaced by
’ 1, I ’ 4 7 ! .
(82,0, 82,1, 52,3) and (s3¢,53 1,53 2), respectively.

The scaling factor S; is approximated by Si =
(1 + ait; + bit?) where a; € {0,42} and b; €

2“14,:
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Figure 5: Modifications to the 4-D CORDIC proces-
sor architecture of Fig. 4 in order to perform scaling
iterations in the processor

{0, 41,42, +3, 44,45}, In the rotation mode, the mul-
tiplexers select data from the left-hand side inputs. The

sign controls s;c)“, 0 <k #1< 3, at iteration ¢ are se-
lected such that s;c 1i = Sk,isii where so; = 1. The
iteration index 7 is dropped for clarity in Fig. 5. In
the scaling mode, the multiplexers select the data from
their right-hand side input. The sign controls are such
that

! 1 7
Cp = C3, C2 = 813 = 833~ S3,2,
7 ! 7

1 7 I / ’
89,1 = 81,0 = 820 = S3,00 So,2 = 81,2 = 821 = 831~

We found that ¢ = 5 extra iterations are required to
perform the scaling operations in the 4-D CORDIC al-
gorithm for 32 bits of accuracy.

A custom chip implementing the rational 2-D CORDIC
rotation R, ; in equation (17) has been designed at Yale
and fabricated through MOSIS with a 24 CMOS pro-
cess. It operates on 32-bit fixed-point words with 5
extra guard bits. The 2¢; and t} shifters are realized
by trees of 2-to-1 multiplexers, providing higher per-
formance than barrel shifters. The area of two shifters
by t; and t?, A2, is about 1.4 times the area of a
single shifter, A,5, due to the possibility of overlap-
ping layouts. The adders in this chip are realized by a
variant of the Abraham-Gajski tree structure [1]. The
depth of the trees to realize both shifters and adders
is [log, b] where b is the word length, including guard
bits. The area of such an adder is about 1.6 times
A,n. However, it is possible to design a faster adder



with smaller area using multiple output domino logic
and carry-look-ahead [10]. The area of this smaller
adder, Aqqq, is about 0.6 times A,;. The area of a 3-
to-2 Carry-Save-Adder array, A.,q, is about 0.13 times
Asn. The area of a 2-to-1 word multiplexer, Ayz, is
about 0.08 times A,;. To sum up,

Ashz = 1.4A,5  Agaa = 0.64,,
Acsa = 0.13A,n  Aimep = 0.084,5.

Note that the sensitivity of these factors—1.4, 0.6, 0.13
and 0.08—to the bit accuracy is low since A,n, Agno
and Agqq increase with bit accuracy slightly faster than
linearly, while Ay, and A,,,, are proportional to the
bit accuracy.

The total area for the 4-D CORDIC processor, A4p,
is well approximated by the sum of the areas of the
adders, shifters, CSA arrays, multiplexers and inter-
connection wires. The area of the wires, A4p_yires, 1
about 2 times A, in this 4-D processor. Therefore

4A,p2 +4Asdd + As—2c54

+3A5—2CSA + 11Amuz + A4D—wira

>~ 5.6A;h +24A.¢h +052A3h
+1.17A,, + 0.88A4,5 + 24,

= 12.57A,,

A4D jad

Since the square-root 2-D CORDIC implementation in
Fig. 1 requires

Ap =~ Ashz + 2Aadd + 2Amur + A2D~wirc
~1.4A,,+ 1.2A,5 + 0.16A,5 + 0.584,,
o~ 3.34A3},,

the area of a 4-D CORDIC processor is about 3.8 times
the area of a 2-D CORDIC processor.

The delay of the 6-to-2 and 5-to-2 CSA, Tcsa, is about
three gate delays, 3T} 44, where Tyate denotes the aver-
age delay per gate. "i‘he delay of a 2-to-1 multiplexer,
Tnuz, is Tyate. The delay of a shifter, Tihigter, 1s about
c1[log, b] gates delay for b-bit internal wordlength,
where the factor ¢; accounts for the delay of the in-
termediate buffer stages driving the wires (¢; ~ 1.3).
The delay of an adder is about cs[log, b] gate delays,
where ¢, accounts for the large carry-look-ahead gates
(2 =~ 1.3). The delay to drive the interconnection
wires, Tyires, 1s about 2T4ate. Therefore, for 32-bit
accuracy, the delay of one 4-D CORDIC iteration is

T4D = Lshifter + Tmuz‘ + TCSA + Tadder + Twire:
~6.5 gate + Tgatc + 3Tgate + 6-5Tgatc + 2Tgate

= 19Tgate

while the delay for one 2-D CORDIC iteration is

T2D = Lshifter + Tmu:c + Tadder + Twirea

~ 6.5 gate + Tgate + 6-5Tgate + 2Tgate
=16 gate-

To evaluate or apply a single 4-D rotation the proposed
processor takes 60% of the time of two 2-D CORDIC
processors at the expense of an area increase by a factor
of 1.9. The gain in speed is thus obtained with a slight
increase in the area-time product.

3.2 n-D Processor Architectures

Turning now to general n-D CORDIC algorithms, we
found computationally that the first iteration (with
t; = 272) should be repeated twice for n = 5,6, 7 and 8
to ensure convergence. The architecture in Fig. 4 can
be easily generalized to implement an n-D CORDIC
processor. For instance, a 5-D CORDIC processor re-
quires an area Asp ~ 1.3A4p and a computation time
Tsp =~ 1.17T4p. Therefore, a 5-D CORDIC processor
takes about 40 % of the time (= 3Tp) of two 2-D
CORDIC processors to perform a 5-D rotation, with
essentially no increase in the area-time product.

An alternative architecture for an n-D CORDIC pro-
cessor, based on the the representation in terms of
pseudo-Householder reflection given in equation (22),
1s shown in Fig. 6. Because of an additional shifter de-
lay, this ‘CORDIC Householder architecture’ requires
a longer computation time for each CORDIC iteration
than the plain ‘CORDIC architecture’ exemplified in
Fig. 4. On the other hand, it requires less area for high
dimensional rotations (n > 8).

Tii-1 T2,i-1 Tn,i-1

A $1 i

[

Lett || [ett ] f 2]
| n-to-2 CSA
I 2t; | ‘ 2t2 2t2
I
(o] o] [tn=q*n-]
4-to-2 4-to-2 . 4-to-2
CSA CSA CSA
! | S
l ADDER | I ADDER | LADDER ’
$%,i T2, Tni

Figure 6: Architecture of an n-D pseudo-Euclidean
CORDIC processor (¢ = 2k —n — 1).

3.3 Area and Time Comparisons

Two architectures have been presented: ‘CORDIC ar-
chitecture’, which is the generalization of Fig. 4, and
‘CORDIC Householder architecture’ of Fig. 6. Since



the pseudo-Householder transformation is considered
to be the most efficient way to implement n-D vec-
tor rotations, we shall compare the two CORDIC ar-
chitectures to a highly parallel implementation of the
pseudo—Householder transformation. To any n-D vec-
tor ¢ = [zy 22 --+ z,]T in a space with signature
matrix X,, may be associated a pseudo—Householder re-

flection bringing z along the axis e; = [10 ---0]7:
H=1I, -2, u(uTZ,u) 1T,
where v = =z 4 sign(z1)||z||;, e1. The pseudo-

Householder transformation calls for division, square-
root and multiplications. Division and square-root ex-
traction can be implemented by the Newton-Raphson
method using multiplier and ROMs [14]. The multipli-
cations are performed using n multipliers in parallel.
For comparison purposes, the area and delay of a mul-
tiplier will be expressed in terms of the units A,; and
Tyate, respectively. The 32 x 32 multiplier presented
n (11}, which uses the Booth algorithm and a Wallace
tree, will be used for our comparison. Compared to the
32 x 32 adder in [10], its area and delay are

Ampy >~ 35Aadd ~ 21A,h,
Trpy = 5Aada =~ 5calogy b Tyate.

In Fig. 7, Ac,AcH, An,Tc,Ten and Ty denote the
respective areas and delays of ‘CORDIC’, ‘CORDIC
Householder’ and ‘Householder’ implementations for
the Euclidean rotation of an n-D vector. Fig. 7
compares the areas of these implementations, Fig. 7(b
their delays, and Fig. 7(c) their area-time products.
The two implementations of the new CORDIC al-
gorithm are clearly preferable in terms of area-time
product to the parallel implementation of the pseudo-
Householder transformation.

4 Application to the QR Decomposi-
tion on a Processor Array

Givens rotations are widely used in modern signal pro-
cessing algorithms and the square-root 2-D CORDIC
algorithm is often employed to implement these ro-
tations. Two well-known examples are the QR De-
composition (QRD) and Singular Value Decomposi-
tion (SVD)[2][3]. We shall examine here the QRD of
a rectangular matrix to show how higher dimensional
CORDIC algorithms can speed up array implementa-
tions of matrix computations.

The n-D CORDIC algorithm discussed in Section 2 en-
ables n — 1 elements to be zeroed out at each rotation
instead of a single element for a Givens rotation. To
triangularize an | x m matrix A with elements a;;,
an n-D rotation is applied at time step 1 to zero out
@21, ", Gn,1 in the first column of A. Simultaneously,
this rotation is applied to the other elements of rows 1
to n. At time step 2, another n-D rotation is applied to
rows 1 and n+1 to 2n—1 tozeroout apy1,1,-+, @an—1,1,
while an (n — 1)-D rotation is applied to rows 2 to n
to zero out agz,a4, - ,0n2. Proceeding with this
greedy approach, an | x m matrix is triangularized in

A wit Ash T wiv: T gate
A
AH 1100
200 1000
180 900
160 800
120 600
100 2 4 6 8 10
80 04 CHTCH
60 03 \\x_
20 Acy 041 CTC
AKTH
2 4 6 8 10 2 4 6 810 1

Figure 7: Area, time and area-time product as function
of dimension n (b=32).
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Figure 8: Array of n-D CORDIC processors for decom-
posing an ! X 4 matrix.



[(QRD | 2-D CORDIC_ | __4DCORDIC ]
16(1+m-2)x | 19([F]+m-1)x
time (®+q1) (P+1+q0)
period | 60— 1)(p+ ¢1) | 1005+ 1+ 22
area LTm(im +1) 6.4m(m + 1)

Table 1: Comparison, for the QRD of I x m matrices,
of the computation times for one problem, and of the
periods and processor areas. The time unit is Tyate and
the area unit is A,,.

l[(( = 1}/(n — 1)] + (m — 1) time steps on a triangu-
ar array of m(m + 1)/2 n-D CORDIC processors as
shown in Fig. 8. FEach time step allows for a whole
n-D CORDIC rotation. If several I x m matrices are
pipelined into the array, the pipeline period to compute
one QRD is [(I —=1)/(n — 1)] time steps. Note that the
ability of an n-D CORDIC processor to also perform
lower dimensional rotations is crucial in this context.

Table 1 compares the computation time, the pipeline
period and the processor area required for the QRD of
Ixm matrices using the square-root 2-D CORDIC algo-
rithm and the new 4-D CORDIC algorithm; 7 is the bit
accuracy, and ¢; and ¢y are the number of additional
iterations required for scaling operations in the 2-D and
4-D algorithms, respectively. The 4-D CORDIC algo-
rithm provides a speed up of 2.5 at the expense of an
area increase by a factor of 3.8. The time performance
is thus significantly improved with only a 50% increase
in the area-time product.

5 Conclusion

A general n-D CORDIC algorithm, applicable to ro-
tations in Euclidean and pseudo-Euclidean spaces, has
been introduced. In the 3-D and 4-D Euclidean cases,
the algorithm does not require any repetition and
thus improves on previously developed CORDIC al-
gorithms. The elementary rotations in the new al-
gorithm are essentially pseudo-Householder reflections.
Parallel implementations of the algorithm require, for
n < 10, much less area than a parallel implementation
of the Householder transformation to achieve roughly
the same computation time and, in addition, they are
simpler to design. Finally, the example of the QR de-
composition illustrates the use of the new n-D algo-
rithms in application-specific processor arrays in order
to speed up matrix computations.
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