Specifications for a
Variable-Precision Arithmetic Coprocessor

T.E. Hull, M.S. Cohen* and C.B. Hall**

Department of Computer Science
University of Toronto
Toronto, Ontario, Canada M5S 1A4

Abstract

The authors have been developing a programming
system which is intended to be especially convenient for
scientific computing. Its main features are variable pre-
cision (decimal) floating-point arithmetic and con-
venient exception handling. The software implementa-
tion of the system has evolved over a number of years,
and a partial hardware implementation of the arithmetic
itself was constructed and used during the carly stages
of the project. Based on this experience, the authors
have developed a set of specifications for an arithmetic
coprocessor to support such a system. The main pur-
pose of this paper is to describe these specifications.
An outline of the language features and how they can be
used is also provided, to help justify our particular
choice of coprocessor specifications.

Introduction

The general purpose of our project is to provide better
programming language facilities for scientific comput-
ing, especially in terms of precision control and excep-
tion handling. Early efforts were concerned primarily
with precision control and led to the development of
preprocessors, both for Algol and Fortran, which made
it easy to change precision dynamically between single,
double, triple, etc., precisions. Then an attached proces-
sor, called CADAC, which carried out variable preci-
sion decimal arithmetic was built and attached to a Vax
[3.4]. Finally, the present software system, which
implements the programming language Numerical Tur-
ing (NT) and which provides for variable-precision
decimal arithmetic and exception handling, was
developed [7,8,9]; special arithmetic capabilities are
also included, such as directed roundings and exponent

This work was supported by the Natural Sciences and Engineer-
ing Research Council of Canada.

* Present address: 141 North Meadow Crescent, Thomhill, On-
tario, Canada L4J 3C4.

** Present address: IBM Canada Limited, 844 Don Mills Road,
North York, Ontario, Canada M3C 1V7.

CH3015-5/91/0000/0127$01.00 © 1991 IEEE

manipulations. It runs under Unix on either a Vax or a
Sun 3.

Based on experience with these developments, the
language specifications have of course evolved. But
they are now at a stage where we have some confidence
in their appropriateness, and believe that it would be
useful to design and build the necessary hardware sup-
port. The main purpose of this paper is to describe the
corresponding specifications, for the arithmetic unit,
and also to indicate what other hardware features would
be most helpful to the systems programmer, especially
for implementation of the exception handling.

Precision control

We first describe the floating-point arithmetic (the real
arithmetic) and related functions. In this section we do
so in terms of the programming language, that is, from
the user’s point of view. Implications for the hardware
will be considered in the next section.

Real values are p-digit, decimal, normalized floating-
point numbers with exponents in the range [-10p, 10p],
where 1<p < maxprecision. (In NT the parameter
maxprecision is only 200, but it should be much larger,
at least 1000.)

A programmer specifies what precision is to prevail by
means of a precision statement. In NT the precision
statement is of the form

precision intexp

where intexp is any integer expression. The specified
precision is to prevail throughout the scope of the preci-
sion statement. For example, in Figure 1, the value of p
determines the precision in effect from immediately
after the precision statement to the end of the loop.

All declarations and floating-point operations (arith-
metic, elementary functions, procedures, etc.) within
this scope are carried out in precision p. In this example

var x : real
var p := currentprecision
loop

precision p

vary : real

solve(----, y)
if y ---- then
x:=y
exit
end if
pi=p+10
end loop

Figure 1. All declarations and floating-point operations
(arithmetic, elementary functions, procedures, etc.)
within the scope of the precision statement are carried
out in precision p.

p is first set equal to the value of the current precision
(in NT currentprecision is a function which returns this
value). The value of p is then increased by 10 each time
the loop is executed until the condition in the if state-
ment is true. Then y is assigned to x, and, if the preci-
sion of y is higher than that of x, the value of y will have
to be rounded to the precision of x before being
assigned. There must be a default precision in case no
precision statement is yet in effect (in NT it is 16).

Any value in any expression that appears within the
scope of a precision statement must be rounded or, in
effect, extended to the prevailing precision before it can
be used, if its precision differs from that of the prevail-
ing precision.

This example illustrates one way in which precision
control can be used. The procedure solve is executed in
higher and higher precision until some criterion,
presumably an accuracy criterion, is satisfied.

Basically this same idea can be implemented in
Aberth’s system [1), where the calculations inside the
loop would be done in interval arithmetic and the deci-
sion to exit is then based on whether the interval associ-
ated with the final result is small enough. This is possi-
ble also in NT with the help of the directed roundings.
(In a future version of NT, it is intended to have interval
arithmetic “‘built-in’*, but in either case the implications
for the coprocessor are the same: directed roundings
must be supported.)

A second example is shown in Figure 2. In this exam-
ple the increase in precision is used primarily to make
sure that no intermediate overflow or underflow can

---- % n and the array a must
---- % be known at this point
var x : real
begin
precision 2*currentprecision + getexp(n) + 1
var sum := 0.0
fori:l.n
sum := sum + a(i)*a(i)
end for
X = sqri(sum)
end

Figure 2. This program fragment computes the Euclide-
an norm of the array a. The precision is increased just
enough so that no intermediate overflow or undrflow
can occur, Overflow may however occur in the final as-
signment to x.

take place. (The exponent range increases with the pre-
cision.) In fact, the precision is increased by the
minimum amount that is needed to guarantee that no
intermediate overflow or underflow can occur. (The
function getexp returns the exponent of its argument,
which, for the purpose of this example, means that
getexp (n) + 1= ceil(log,on).) Of course, overflow
might occur in the final assignment, because the calcu-
lated value to be assigned must, at that point, be
rounded to the precision of x before being assigned to x,

In a third example one might use precision control to
run a calculation in two different precisions and subtract
the final results to measure the cumulative effect of
rounding errors. (Of course, care must be taken in the
use of any such technique; otherwise the results could
be misleading.)

In another example, the “‘exact dot product’’, which
plays an important role in ACRITH [12], can be imple-
mented in NT. The maximum precision must of course
be higher than it is in the current implementation of NT,
and this should be kept in mind in developing specifica-
tions for the coprocessor.

The available floating-point operations in all these and
other examples must of course include addition, sub-
traction, multiplication and division. The rounding in
these operations is important and it should be unbiased.
(In NT it is “‘round to nearest, or nearest even in case of
a tie’’, which is what is done in IEEE arithmetic
[10,11], but we are now considering a simpler rule, as
described in the next section.) The same rounding rule
should hold for the implicit rounding that occurs when a
higher precision value must be rounded down (coerced)
to some prevailing current precision, or when an assign-
ment to some lower precision variable is about to be
made.

As already indicated, directed roundings (round up and
round down) should also be available with the four
basic arithmetic operations. The functions floor, ceil,
and round (the latter being to nearest integer in case of a
tie) should also be available.

Other functions are required to determine quotients and
remainders, and also to determine and set exponents,
and to convert from integer to real. Of course com-
parison operators are also needed.

The operations and functions just described are suffi-
cient for the construction of other functions which
might be required, especially the elementary functions.
In fact, the elementary functions can be programmed
using these operations and functions in a quite straight-
forward and easily understood manner, especially when
it is possible to increase the precision at appropriate
stages in the calculations [5,6].

Other helpful functions, such as the nextafter function
recommended in the IEEE standard, can also be pro-
grammed quite easily with those described above, but it
may be that it is convenient to build some of them
directly in the hardware.

Besides the functionality of the language, the user’s pri-
mary concern is efficiency. Most of the computation
will be in the default precision, which of course must
therefore be as efficient as possible. But the other most
frequently used precisions are only at most a few digits
more than the default precision. For example, when dot
products are accumulated in higher precision they will
usually need only about two extra digits of precision
[6]. The requirements of the elementary functions are
more variable, but most of the time only two or three
extra digits are required to deliver results to within an
error of less than one unit in the last place [5,6 for
example]. It would therefore be desirable that preci-
sions slightly more than the default precision be the
second consideration in terms of efficiency.

The next most frequently used precisions are double
precision, and occasionally slightly more than double.
An example was shown in Figure 2. These precisions
should therefore be given third priority.

To support the ACRITH “‘exact dot product’ facility,
some consideration should also be given to making effi-
cient the accumulation of dot products in a very long
‘‘accumulator”’.

It should be acknowledged again that the higher preci-
sions will not be used very much of the time and the
overall efficiency of a program will therefore usually
not be seriously affected if efficiency in these precisions
is not very great.

In our experience, high precision calculations are quite

129

often used only as test programs. They are used to find
the ‘‘true’’ solutions of some problems (matrix calcula-
tions, or elementary function evaluations, for example)
in order to test the accuracy of programs running in
some standard precision. In such cases, the high preci-
sion program needs to be run only once for each test
problem, whereas there may be many test programs or
variations on a test program to be run on the same prob-
lem.

From another point of view, we have also found that the
availability of higher precision has often made our pro-
gramming more efficient. In such cases using higher
precision has enabled us to handle a problem in a direct
and relatively simple way, rather than in a roundabout
and relatively convoluted manner.

Arithmetic specifications

The functionalities described in the previous section,
provide all the requirements to be met by a hardware
floating-point unit, apart from what happens when
exceptions occur. Some further details about the arith-
metic, especially with regard to rounding, will be dis-
cussed in this section, and exception handling will be
considered in the next section.

It might be helpful to consider a possible representation
of floating-point numbers. We are not committed to the
following representation, but we did use it recently in
some preliminary design investigations. We used 4
bytes to store the following:

sign 1 bit
exponent 215bits (for exponents at least
in [-10000,100001)
precision 2 10bits (for precisions at least
in [1,1000])
extended 1bit (to indicate whether or not
the format is extended)
uninitialized 1bit (to indicate whether or not
the value has not yet been
assigned)

and this was followed by a sufficient number of 4-byte
words to represent the normalized significand (4 bits for
each decimal digit).

This representation is more compact than what is used
by the software implementation in NT, but is otherwise
equivalent. (The “‘extended’’ bit is there to allow for
the possibility of having an alternative format for even
higher precisions, which could be handled entirely in
software, but we have not yet tried to take advantage of
this idea, either in the original CADAC design or in the
present software implementation.)

Precision specifications for the arithmetic operations,
directed roundings, quotient and remainder, etc., have
already been spelled out in detail elsewhere [6], so they
will not be repeated here. The only new possibility has
to do with rounding, which up until now has always fol-
lowed the IEEE rule: ‘‘round to nearest, or nearest even
in case of a tie.”” We are now considering another rule,
like one suggested by von Neumann {2, pp 57-58],
which is easier to implement and is, at the same time,
also “‘unbiased’’. The rule is:

““if there is something non-zero following the
least significant digit in the true result, set the
last bit to 1 (so that the last digit will be odd)
and throw away the ‘‘something’’, otherwise
just throw away the zeros following the least
significant digit’.

With this rule, there is no possibility of a carry opera-
tion, or any subsequent renormalization. The only
disadvantage is that the maximum error can be almost 1
in the last place, compared to a maximum of 1/2 in the
last place with the earlier rule. But this disadvantage
seems to us to be one we need not worry about in a vari-
able precision environment where it is such a simple
matter to increase precision whenever one wishes. In
fact, the elementary functions can also be made accurate
to within an error of less than 1 unit in the last place
(just as they are in the current implementation of NT),
so that the elementary functions and the arithmetic
operations would then both meet the same accuracy
requirement.

Note that the requirement is less than 1 unit, not less
than or equal to 1 unit. This is important because we
can then deduce some convenient results, such as, for
example, that the square root of a perfect square will be
exact, or that sines and cosines cannot exceed 1 in
value,

Whatever the rounding rule, the arithmetic unit should
be designed so that the rounding operation is easily
implemented for the implicit rounding that can arise
with coercion or assignment, as mentioned earlier, as
well as with the usual arithmetic operations. Note that,
because of the coercion rule, any two numbers involved
in an arithmetic operation will always be, at least in
effect, in the same precision, the precision prevailing at
the time the operation is carried out.

Exception handling

The exception handling facilities are described in detail
elsewhere [8]. For the purposes of this paper, the key
feature is that handlers are attached to operators (arith-
metic operators, functions, procedures — including
assignments because a precision change can take place
with assignment, and this could result in overflow or
underflow). An example in NT is shown in Figure 3.

130

function norm (a : array 1..* of real): real
var sum := 0.0
for i:1.. upper(a)
sum := sum + a(i)**2
end for
result sqrt(sum)
end norm
---- % n and the array b are determined in
---- % these statements, where n is
---- % the number of elements in b
handler &
on failure:
precision 2*currentprecision + getexp(n) + 1
:= norm(b)
nextstatement
end h
var x := norm(b)@h

Figure 3. The function computes the Euclidean norm.
It is first invoked in the current precision. Any inter-
mediate overflow or underflow that might occur is not
handled, and this causes the function to raise the failure
exception. This in turn invokes the handler called A
which causes the calculation to be repeated in high
enough precision so that no intermediate overflow or
underflow can occur. An overflow might still occur on
assignment to x. For this to be handled, another handler
would have to be attached to the assignment operator
inside the handler h.

The advantage in this example, compared to Figure 2, is
that the norm is almost always done in the more effi-
cient lower precision, and the extra work in higher pre-
cision is done only when necessary, and presumably
only rarely. This illustrates an exception handling tech-
nique that can be applied quite generally.

There are only 4 built-in exceptions associated with
arithmetic operations — overflow, underflow, domainer-
ror, and uninitialized — plus one other, namely failure,
which is raised by a function or procedure in which an
unhandled exception occurs. (There are only 2 other
built-in exceptions, but they are associated with input.)
Users can also explicitly raise user-defined exceptions.
(For example, a user could decide to declare toonear-
singular 10 be an exception, and raise it in a procedure
for solving linear equations.)

The overflow exception can be raised by a floating-point
add, or an integer multiply, or the exponential function,
and so on. The user knows which operation raises the
overflow exception because the handler is associated
with the operation. (This is one of the advantages of
attaching the handler to an operator. Another is that
anyone reading the program knows which operators
have been modified by a handler, and which have not.)

Based on our experience in implementing these excep-

tion handling facilities on both Vax and Sun 3 systems,
we have been led to the following conclusions:

(1) The hardware should be designed so that it is easy
for the system to identify the location and type of
an exception. This means it must be possible to
provide precise interrupts and to provide for a
software mechanism equivalent to UNIX signals.

The system also needs to be able to restart com-
putations following an exception (that is, return to
a machine instruction following the location
where the exception occurred, as opposed to res-
tarting the instruction which raised the exception).
Besides being able to provide precise interrupts,
this means that it must also be possible to
preserve at least part of the machine state.

Tracing back from an unhandled exception
through what might be a sequence of failure
exceptions, due to a nesting of subprograms,
requires that the system be able to ‘unroll’ stack
frames and return to an arbitrary point after an
exception. This is mainly a software problem, but
the hardware can make it easier — for example,
the register mask saved by the VAX ‘calls’
instruction simplifies restoring the registers when
a stack frame is released.

@

3

Concluding remarks

On the basis of our experience with a software system
that supports variable-precision floating-point arith-
metic and exception handling which have been espe-
cially designed to facilitate scientific computing, as well
as experience with an earlier hardware unit with some
aspects of these features, we have described the specifi-
cations we believe are most suitable for an arithmetic
coprocessor that could support such a system.

Bibliography

(11 Aberth, O. and Schaefer, M., Precise Computa-
tion using Range Arithmetic, via C++, private
communication.

Burks, A.W., Goldstine, H.H. and von Neumann,
J., Preliminary Discussion of the Logical Design
of an Electronic Computing Instrument, Part I,
Yol.1. Report prepared for U.S. Army Ord. Dept.
(1946). Reprinted in John von Neumann Col-
lected Works, Vol.V (MacMillan Coy., New
York, 1963), 34-79.

Cohen, M.S., Hamacher, V.C. and Hull, TE.,
CADAC: An Arithmetic Unit for Clean Decimal
Arithmetic and Controlled Precision, Proceedings
5th Symposium on Computer Arithmetic (IEEE
Computer Society, Ann Arbor, Michigan, 1981),
106-112.

(2]

(3]

131

[4]

(5]

(6]

7]

(8]

9

(10]

[11]

(12]

Cohen, M.S., Hull, TE. and Hamacher, V.C.,
CADAC: A Controlled-Precision Decimal Arith-
metic Unit, IEEE Transactions on Computers,
vol. C-32, 4 (1983), 370-377.

Hull, TE. and Abrham, A., Properly Rounded
Variable Precision Square Root, ACM TOMS 11,
3 (1985), 229-237.

Hull, TE. and Abrham, A., Variable Precision
Exponential Function, ACM TOMS 12, 2 (1986),
79-91.

Hull, TE. and Cohen, M.S., Toward an Ideal
Computer Arithmetic, Proceedings 8th Sympo-
sium on Computer Arithmetic (IEEE Computer
Society, Como, Italy, 1987), 131-138.

Hull, T.E., Cohen, M.S., Sawchuk, J.T.M. and
Wortman, D.B., Exception Handling in Scientific
Computing, ACM TOMS, 14, 3 (1988), 201-217.

Hull, T.E. and Hall, C.B., Precision Control and
Exception Handling in Scientific Computing,
Proc. Symp. Scientific Software (ed. D.Y. Cai,
L.D. Fosdick and H.C. Huang), May 31-June 3,
1989 (China University of Science and Technol-
ogy Press, Beijing, PRC, 1989), 118-131.

IEEE Standard for Binary Floating-Point Arith-
metic, ANSI/IEEE Standard 754-1985 (IEEE
Computer Society, 345 East 47th Street, New
York, NY 10017, USA, 1985).

IEEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Standard 854-1987
(IEEE Computer Society, 345 East 47th Street,
New York, NY 10017, USA, 1987).

Kulisch, U.W. and Miranker, W.L., The Arith-
metic of the Digital Computer: a New Approach,
SIAM Review 28, 1 (1986), 1-40.

