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1 Introduction

In designing binary adders, the computer architect has
many criteria to consider. Circuit speed, power con-
sumption, and cost are of prime importance. For VLSI
implementation, chip area must be kept low. In recent
years, carry-skip adders have often been the adders
of choice, since the best carry-skip adders (even the
simple one- or two-level ones) can be comparable in
speed to the fastest adders such as carry-lookahead
adders [4]; yet unlike the carry-lookahead adders, the
carry-skip adders remain quite low in cost, chip area,
and power consumption [10]'. We must mention,
though, that for extremely large operand sizes, Of-
man’s adders are faster than carry-skip adders?.

The present paper describes a method for design-
ing optimum-speed one-level carry-skip adders. This
method always yields the fastest adders if the assump-
tions of Guyot, et al. [4] hold - that is, if the ripple
lime (a circuit parameter) of a carry signal is a lin-
ear function of the number of bit positions that the
carry signal propagates through, and if the skip time
(another circuit parameter) of a carry signal is a lin-
ear function of the number of blocks of bit positions
skipped by the signal, or if these two parameter are
such mildly nonlinear functions that they can be mod-
eled by a linear function without any effect on any of
the results obtained. The circuit design method to be
described in this paper is useful because Guyot, et al.
have shown that in device technologies such as 2-Alu
CMOS the nonlinearities are often insignificant.

The skip time / ripple time ratio is called p. The
method presented in this paper gives the fastest cir-
cuit, no matter what p is. The method given by

10ne-level carry-skip adders may be as fast as carry-
lookahead adders, but are more likely to be 20%-30% slower for
operand sizes of 64 bits or more. However, this is offset by the
fact that these carry-skip adders are many times more efficient
in terms of power consumption and design and implementation
costs.

2If n is the operand size, then Ofman’s adder exhibit a to-
tal delay of O(logn), whereas carry-skip adders exhibit a total
delay of O(y/n). Carry-lookahead adders are often also faster
than carry-skip adders, though that isn't clear, since technolog-
ical limitations currently dictate that carry-lookahead adders
for operands of sizes larger than a few bits be in a modified
(multi-level) form. And in this form, those adders are slowed
down somewhat.
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Guyot, et al. [4] is only guaranteed to yield circuits
whose speeds are within twice the skip time of the
optimum. The author has programmed his own algo-
rithm, as well as the algorithm of Guyot, et al., and
has performed a comparison study of the resulting cir-
cuits by these two algorithms, which is presented in
Section 4 of this paper. There it is shown that Guyot,
et al.’s circuits can have total carry propagation time
that is more than 11% slower than those produced by
the algorithm of the present paper. Our algorithm
runs in polynomial time and takes about 8 seconds
to run on a Maclntosh II for a sample input with an
operand size of 128 bits and a p value of 2.0001. The
circuits obtained are always optimum-speed. Addi-
tionally, our algorithm yields optimum-speed circuits
for both integer and noninteger values of p, whereas
Oklobdzija and Barnes’ algorithm [9] only yields opti-
mum circuits for integer values of p. If p is, in fact, not
an integer, then their algorithm could still be run with
the nearest integer input as an approximate value for
p, but doing this would typically yield a circuit that
is far from optimum. In Section 4 we give an exam-
ple in which Oklobdzija and Barnes’ algorithm yields
a circuit that has a total carry propagation time over
16% slower than the carry propagation time of our
optimum-speed circuit.

Two relevant papers appeared in the previous IEEE
arithmetic circuit symposium. One of these papers is
by Chan and Schlag. Chan and Schlag’s work [3] al-
lows the ripple time to be a wide range of functions,
including any quadratic function of the number of bits
rippled through by the carry signal. For certain tech-
nologies, this assumption would be an improved model
for the ripple time, and could yield faster circuits.
However, their algorithm appears to be slower than
the one in this paper for practical operand sizes, al-
though the exact analysis of the speeds of both al-
gorithms seems difficult. Algorithm speed is impor-
tant in the cases where the circuit designer wants to
try different values of p to see which value gives the
best circuit for the technology and the application
at hand. It would be interesting to test the speed
of all the carry-skip circuit design algorithms for the
operand sizes for which carry-skip adders are fast.
Asymptotic algorithm analysis doesn’t seem very use-
ful, since the O(log n)-delay adders, such as Ofman’s
adder [8], would beat the speed of carry-skip adders for
extremely large operand sizes n. Guyot, et al.’s algo-
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rithm seems to be the fastest algorithm, even though
it doesn’t always yield the fastest circuits. The other
paper is by Silvio Turrini. Turrini’s paper {10] sug-
gests, without any convincing analysis, an algorithm
that supposedly computes an optimum circuit for any
combination of skip time and ripple time, with no re-
strictions on the number of skip levels. However, Tur-
rini’s work only covers a limited case of Guyot, et al.’s
Model 1 (a description of Model 1 exists in the next
subsection). The present paper, however, covers the
full range of Model 1.

Carry-skip adders were invented for decimal arith-
metic operations by Charles Babbage in the 1800’s,
and became quite popular in mechanical adding ma-
chines later that century. Modern interest in carry-
skip adders only began in the early 1960’s with the
publication of Lehman and Burla’s paper [6]. In the
next section, we will present a technical introduction
to carry-skip adders and then we will go on to survey
the modern literature pertaining to carry-skip adders.

The author hopes that this paper will help carry-skip
adders to gain the recognition they deserve for their
high speed, energy efficiency, cost efficiency, and ease
of implementation.

2 Technical Details

2.1 A Detailed Description of Carry-Skip
Adders

Let us now develop a detailed description of carry-skip
adders. Let the two binary operands be called X =
Tp_1Tn-z...222120 and = Yn—1Yn—2---Y2Y1Y0-
Call the carry into and the carry out of bit position ¢
respectively ¢; and ¢;4,. The result bit at position i
is to be called z;. The result can have at most n + 1
bits; zo up to z,. The following relations for z; and
ci+1 are well-known:

z = zi®yde (1
ciy1 = Iy +yici + 6T (2)
where @ and + respectively denote the EXCLU-
SIVE OR and the (INCLUSIVE) OR operations, and
when two variables are written next to each other they
are to be ANDed together. The carry input ¢ to the
circuit is 0 when the adder is used for adding two
numbers in the usual way, but this input can be con-
nected to the ¢, output of another adder to create a
multiple-precision adder.

Carry-skip adders are best understood by first look-
ing at the carry-ripple adder. The carry-ripple adder
is obtained by a straightforward implementation of an
adder circuit according to the logical relations (1) and
(2) for z; and ¢4+ given above. In this adder a carry
signal may have to propagate all the way from the
least significant position to the most significant posi-
tion. An example would be the case where Vi except 0,
z; = 0,29 = 1, and Vi,y; = 1. Note that in every bit
position i through which the carry signal travels, z;
and y; are different. This is a significant fact, because
in general, a carry signal will propagate through a bit

X 1010001011 {10100[01011

Y 01101 [10100]|01010]01100
block 3 block 2 block 1 block O

Figure 1: Dividing the bit positions into blocks

position i if and only if z; # yi. (To make this clearer,
note that if z; = i, then all carry signals to the left of
position i are independent of all inputs in positions 0
through i — 1.) Thus, the chances that a carry signal
travels a long way is small, because the probability of
having a long string of bit positions, all with z; # i,
is small. In fact, early electronic computer researchers
[1] have shown that the average time delay of a carry-
ripple adder is only O(logn). (See [1].)

In a carry-skip adder, we take advantage of the ob-
servations just discussed. The bit positions are to be
divided into blocks of contiguous positions®, as shown
in Figure 1. Let us number these blocks 0,1,2,...
from right to left. When a block has only positions i
with #; # i, like block 2 in Figure 1, then we know
that the carry out of that block is the same as the
carry into the block?. We also know that the carry
input to the bit positions in the block are either all
0’s or all 1’s, depending on whether the carry input
to the least significant bit of the block is a 0 or a 1,
respectively. Thus, no carry signal has to propagate
through this block in a position-by-position fashion.
Finding out if all positions ¢ in the block have z; # Y
is an easy O(logn) process, and will even be regarded
instead as a constant-time process for practical block
sizes. (For example, even when a block is as large as 16
bits, which is unusual, we can use a layer of EXCLU-
SIVE OR gates and 2 layers of 4-input AND gates.)
Similarly, it is a quick process to force the carry input
bits in the block to a uniform value. Aside from these
two types of time delays, there is also the delay caused
by the final addition step, which is constant, and the
delay due to carry propagation. Thus, in practical cir-
cuits this very last type of delay is the only type that
causes nonconstant total circuit delay, and is the quan-
tity to be minimized in order to obtain an optimum
circuit.

There are two kinds of carry propagation delays. First
there is the ripple time, r, which is the time it takes
for a carry signal to pass through a single adder cell

3We consider n + 1, not n, bit positions because the result
of the addition operation can have up to n + 1 bits.

40n the contrary, if for some position i in the block, z; = yi,
then we may correctly think of the carry signal into the block
(no matter it is 0 of 1) as stopping at the rightmost such bit
position inside the block. This is because the carry signals to
the left of that point is independent of the carry into the block.
The carry out of the block is completely determined by the value
of z; at the leftmost bit position at which z; = y;. In fact, the
carry out of the block is equal to z;.
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(a single bit position). Then there is the skip time, s,
which is the time a carry signal needs to skip a block,
i.e.; the time interval between the moment it is known
to the circuit that the carry into a particular block is of
a certain value and the moment when the carry out of
that block gets set to the same value. The ripple time
per bit is certainly constant, and usually the skip time
for each block doesn’t depend on the block size enough
to be regarded as anything other than a constant®.

Thus, minimizing the total circuit delay involves par-
titioning the bit positions into blocks in the best pos-
sible way. Lehman and Burla [6] found the best par-
titioning scheme, if one is to try only blocks of equal
size. The authors suggest, though, that unequal block
sizes may yield a faster circuit. This suggestion is, in-
deed, correct. Majerski [7] studied how to minimize
carry propagation time and the number of skips when
unequal blocks are allowed. In both these papers,
the ratio s/r (henceforth called p) was assumed to
be 1, which is often unrealistic. (This ratio p depends
on the particular circuit technology and the particu-
lar implementation involved.) Oklobdzija and Barnes
[9] gave a method for computing optimum block sizes
(block sizes that yield the fastest circuit), but only for
p=2,3,4,5,6,0r 7. Yet in practice p is usually a non-
integer, and sometimes less than 2. Recently Guyot,
Hochet, and Muller [4] showed how to compute near-
optimum block sizes for all rational values of p. The
block sizes computed by their method are guaranteed
to be such that the total circuit delay falls within 2s of
the best possible. In the present paper we compute an
optimum (guaranteed fastest possible, not just nearly
so0) circuit for any given p. Also, p can be any real
number.

2.2 Deriving the Optimum-Circuit Algo-
rithm

We will study a mathematical model for carry-skip
adders and compute the delay based on that model.
Two models for carry-skip adders are considered by
Guyot, et al. [4] - Model 1 was developed based on
the assumption that the skip time doesn’t depend on
the length of the block being skipped, whereas Model 2
was based on the opposite assumption. However, the
dependence of the skip time on the block size was often
found to be so small that Model 1 yields results that
are no different from those obtained by using the more
complicated Model 2. So in the present work we will
use only Model 1, which can be described as follows:

A Description of Model 1:

We have mentioned before that the only nonconstant
delay is that which is caused by carry propagation.
Suppose that in position i, ; = y;. Then there is a
carry out of either 0 or 1 from position i. The value
of this carry depends solely on the values of z; and
¥i, and not on the input bits at any other positions.
Because of this independence on other positions, the
carry is said to be generated at position i. Now let

5See [4] for a study of the effect of block size on skip time.

j be the first position to the left (left = more signif-
icant) of i such that ; = y;. Then the carry is said
to propagate through positions i +1,i+2,...,5 — 1,
and finally to be terminated at position j. We must
model and minimize the total carry propagation de-
lay, which is equal to the longest delay (taken over all
carry signals) caused by the propagation of a carry
signal from the moment after it is generated up until
when it is terminated. The delay caused by a carry
signal from generation to termination is called the life
of the signal. The life of a carry signal is divided into
3 parts:

1. Right after generation, the carry has to travel
left to the nearest boundary of a block, unless
the termination position j is reached first, and,

2. then the carry has to skip over as many blocks
as it takes to reach the closest block boundary
lying to the right of position j, and finally,

3. the carry travels to its termination at position
J-

The delay involved in parts 1. and 3. combined is equal
to the number of positions traveled multiplied by the
ripple delay, r, whereas the delay caused by part 2. is
given by the number of blocks skipped multiplied by
the skip time, s.

To achieve the objective of minimizing the longest pos-
sible carry signal life, we have to partition the n + 1
bit positions into blocks in the best way. (Recall that
we consider the total number of bit positions to be
n 4 1.) To see what “best” means, let us introduce a
method of representation of how the bit positions are
partitioned. This representation is equivalent to the
one invented by Guyot, et al. [4].

Imagine an X-Y plane such that the Y axis points up-
wards as usual but the X axis points to the left instead
of to the right. Again, let the blocks be numbered
0,1,2,... from right to left as in Figure 1. Now, if
block b contains m(d) bit positions, then put a special
marker at the point (b,m(b)f) on the X-Y plane. See
Figure 2. Let M be the set of all such markers, and let
1 be the set of all points b for which there is a marker
with X coordinate b. Note that 3 y,c, m(b) = n + 1.
Note also that the time needed for a carry signal to rip-
ple from the first to the last bit in a block of size m(bb)
is r(m&b) —1). Guyot, et al., however, used rm(b).
The difference doesn’t affect the results in any way.

Theorem 1 The longest possible carry life in a cir-
cuil is given by the expression

max {r(m(b2) + m(b1) — 2) + s(ba — by — 1)}.
Vb:.blbell
ba>b,

Proof. This theorem follows immediately from the
previous discussion on the life of a carry. I

Some important isosceles triangles will now be intro-
duced, because we’ll find the best partitioning of the
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Figure 2: A representation of blocks

bit positions into blocks by finding the lowest height
isosceles triangle that contains all the markers in the
set M.5 Let p = s/r, and let A, be the class of all
isosceles triangles such that the two sloped sides have
slopes p and —p, and such that the horizontal side (the
base) lies on the X axis. Let §,_,,be the minimum-
height member of A, that contains all the markers of
M. It is clear that 6, exists. That 6, is unique
will be shown in Lemma 1, below. Let H(6) denote
the height of any isosceles triangle 8.

Lemma 1 The triangle 6, 1s unique.

Proof. Assume the contrary — that there are at least
two distinct triangles of minimum height that contain
all the markers of M. Let two of them be called 6
and ;. Let 63 = 6, N §,. Note that 83 is a triangle
of smaller height than 6; and é;, has sides of slope
p and —p, and contains all the markers of M. This
observation contradicts the assumption made at the
beginning of the proof. 1

The following theorem is important because, as we will
later see, it implies that in most cases, é,,_,,completely
determines an optimum-speed circuit.

Theorem 2 If the sloped sides of §,_, each touch at
least one marker, and if at least one of these sides
touches a marker somewhere other than at the apex of

the triangle, then the worst carry signal life is given
by 2rH(b,,,.) —2r — 5.

Proof. Assume that the hypothesis of the theorem
is true. Then there must be natural numbers i and

8 This statement isn’t quite accurate, but serves as a good
intuitive explanation of the reason of existence of these isosceles
triangles. As the paper progresses, the reader will see more
accurately how these triangles are used for obtaining the best
partitioning of the bit positions.

am@) A

Figure 3: Two markers, one on each side of 6,;,

j such that the point (i, m(i)) lies on the right side
(right sloped boundary) of &,,,and such that the
point (j,m(jzi) lies on the left side of the same tri-
angle. In addition, at least one of those two points
lies off the apex. Without loss of generality assume
that (j, m(j)) does, as shown in Figure 3. Let us look
at the case in which (i,m(:)) is at the apex. Con-
sider the situation where a carry signal has to travel
from the rightmost bit of block ¢ to the leftmost bit
of block j. This situation obviously can occur. By
Theorem 1, the life of this carry signal is equal to
r(m(j) + m(i) — 2) + s(j — i — 1), which is the same as
r(m(j) + m(i) + p(j — 1)) — 2r — 5. From Figure 5 we
see that m(j) + p(j — i) = H(8,.;.)- It follows imme-
diately that the carry signal life is 2rH (6,,,,,) —2r —s.
The case in which both (7, mglz)) and ﬁj,m(j)) are off
8,...’s apex can be dealt with similarly. Note finally
that no carry signal can have a life longer than does a
carry signal discussed above. 1

If 8, touches no markers other than one (which
would be at the apex), then some definitions are
needed, as follows: (Refer to Figure 4.) Let {; and
l,, respectively, be lines parallel to the left and the
right sides of 6,_,. so that [; and I3 both touch some
markers, and the shaded triangle sided by I;, I3, and
part of §,.,.’s base contains all markers excepts the
one at the apex of 6,_... Assume that [j is farther
from the left side of 6,_;, than I3 is from the right side
of the same triangle. (The other cases can be treated
similarly.) Draw a vertical line V through the apex
of §,..., and let A, B,C, D, and G be points of inter-
sections among previously-defined lines, as shown in
Figure 4. E and F will be explained in the proof of
Theorem 3, coming up next. Let z(P) and y(P), re-
spectively, denote the X and the Y coordinates of a
point P.

Theorem 3 If$6,_,, touches a marker at the apez (D)
but touches no marker at any other place, then the
worst possible total carry propagation delay of the cir-
cuit is given by the expression r(y(C)+y(D))—2r—s.

Proof. By the definition of I; and I3, there must
be some marker on l;. Let E be the location of this
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F i%ure 4: The case where Spmintouches the markers
only at the apex

marker, and let F be the point on the X axis ver-
tically aligned with E. It is easy to see that the
longest carry life in the entire circuit is the life of a
carry signal that is generated at the rightmost bit po-
sition in the block numbered z(E) and is terminated
at the leftmost bit position in the block numbered
z(D). Thus, the longest carry signal life is equal to
r(Y(C) + y(E) — 2) + s(||FG]| - l?. Using similar ge-
ometric reasoning as in the proot of Theorem 2, we
can see that this expression is equal to the expression

r(y(C) + y(D))—2r—s. 1

Now define A2 to be the set of all members of height
hof A,.

Lemma 2 For every circuit with delay no more than
2rh—2r—s, there erists a member § ofA:,‘ such that at
most one marker of the circuit lies strictly outside 6.
In case that for every member ofA:,‘, there is at least
one marker outside the member, there erists a 6 € A;,'
such that there is ezactly one marker outside 6, and

such that the marker outside § is vertically aligned with
the apez.

Proof. Pick any circuit with no more than 2rh—2p—
units of delay. Draw an arbitrary member of Ag -
call it 6. If the circuit doesn’t have more than one
marker outside §, and the marker outside § is verti-
cally aligned with the apex, then the lemma is already
proven. Otherwise there are two cases to consider:

(a) There are two markers at positions ¢ and j such
that these markers are vertically above the right
and the left sides of §, respectively. (There might
be more than 2 markers outside 4.) One of these
markers may be vertically aligned with 6’ apex.

(b) All markers are above the same side of § and no
marker is vertically aligned with &’s apex.

In case (a) we can see, using a similar geometric argu-
ment as in the proofs of Theorems 2 and 3, that the
longest possible carry life is longer than 2rh — 21 — s,
So case (a) can’t occur.

In case (b), assume without loss of generality that all
markers are above the left side. Slide § to the left.
Eventually one of the following events must occur:

1. All markers are in 6.

2. Some marker, say (3, m(3)), which has always re-
mained outside 8, is now aligned with the apex
of 6.

In case event (1) occurs, the lemma is clearly proven.
In case event (2) occurs, it is easy to see that at the
time of such occurrence, no other marker than (4, mgi))
can be outside of é, or else the circuit’s maximum delay
would be greater than 2rh — 2r — s. Hence the lemma
is also proven in this case. I

Theorem 4 Let h be o positive real number such that
the members of A’; has base length at least 2. Then,
among all circuits with largest n (with s/r = p) of
delay up to 2rh — 2r—s, there is at least one with one
of the following properties:

- All the markers are contained in? some member § of

A:,', or,

. For some member 6 ofA:,‘, only I marker of the circuit

is strictly outside §. This marker is vertically aligned
with the apez of §, and is less than 1 unit above it.

Proof. Pick any largest circuit ¢ (largest = largest
number n of operand bits) with delay up to 2rh —2r —
s, and suppose that there is no member of A’; that
will contain all of ¢’s markers. Then by Lemma 2,
there must be a § ¢ A% that contains all but one
marker, and this marker is vertically aligned with the
apex of 6. We will modify ¢ to obtain a new circuit,
¢, such that ¢/ has the same size and delay upper
bound as mentioned above for ¢, but either has all the
markers in § or has only one marker outside é, such
that this marker is vertically aligned with the apex
and is less than 1 unit above it. If we can do this then
we will have proven the theorem., Understanding how
to modify ¢ involves looking at Figure 5. Figure 5 is
Jjust Figure 4 with 6 and its apex H added in, and with
unneeded labels G, F, and E removed, By Theorem 3,
the given circuit has delay r(y(C) + y(D)) - 2r — s.
Since the delay is at most 2rkh — 9 — s, we have h >

L(EL;&_Q)_ The strategy now is to shorten the block

numbered by z(H) (the X coordinate of the point H)

"Not strictly.
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Figure 5: Related to obtaining a new circuit with all
the markers or all but one in §.

Just enough so that |m(z(H))] < h, and then to put
the bit positions removed from that block elsewhere.
Since h > HERYD) it follows that y(H) — y(C) >
y(D) — y(H). This last relation is very important,

ecause it means that roughly, we can remove y(D) —
y(H) bit positions from block z(H) and insert them in
any other block. Exactly speaking, though, this is not
always the case, because y(D)—y?H) and y(H)-y(C)
are not necessarily integers.

There are 2 cases to consider. The first case is when
y(D) ~ y(H) < 1. Then there is nothing to do, since
the conclusion of the theorem is already true. So let us
consider the second case, in which y(D)~y(H) > 1. In
this case we can move Ly(D)—ys(H) bit positions from
block z(H) to some other block. From the geometry
of Figure 5, it is clear that if this other block exists,
then this move can be done. We have thus assumed
the existence of 2 blocks in all. This is fine, since we
have assumed that the base of § is of length at least
2, and so the base covers at least 2 integer points on
the X axis. 1

Our main goal is that when n is given, we would like to
design a minimum-delay n-bit circuit. But it follows
from Theorem 4 that for any delay d, some maximum-
n circuits of delay up to d have all or all but one of
their markers in some § € A® (provided that the base
of 6 is larger than 2 units). This will now be stated
formally as follows:

Theorem 5 Let a real number d be given. If d >
s — 2r, then among all the mazimum-n circuits with
the skip time/ripple time ratio equal to the given p,
there is one such that either

- all the circuil’s markers fit into some member of Az,
where h = (d+ 2r + 5)/2r, or,

2. there exists a member § of A:,' (again, where h =
(d+2r +5)/2r) such that only 1 marker is outside 6.
Moreover, this marker is vertically aligned with the
aper of §, and is less than 1 unit above it.

Such a circuit will be of delay at most d.

Proof. If d > s — 2r > 2pr — 2r — s then h = (d +
2r + 8)/2r > 2pr/2r = p. The base length b of each

member of A'; is given by the expression 3’7‘5 = p, and

so b = 2h/p > 2. Thus the corollary follows from
Theorem 4. 1

In the next section, we will use Theorem 5 and the
other theorems to design an algorithm that outputs
optimum-speed carry-skip adders.

3 The Procedure

We will now describe the algorithm such that, when
given the number n of operand bit positions, will com-
pute a partitioning of the positions into blocks® so as
to yield the minimum worst-case circuit delay. If the
number of blocks in all optimum circuits is less than
2 (the trivial and unrealistic case), then the optimum
circuit is simply the only existing circuit. Otherwise,
an optimum circuit can be found by using the results
of the previous section, which culminated in Theo-
rem 5. The trick is simply to find the minimum delay
dmin such that there exists a circuit of at least n bit
positions with delay dpin. The technique used will be
a “binary search” on the amount of delay. That is, we
will first start with a range of delays (real numbers)
[diow, dhign] such that we know that dmin is within this
range. Then compute what the size (size = maximum
number of result bits) of the largest circuit is that
will possess a worst-case delay of up to dn;q, where

dmid = d““’—zd"‘ﬂ. Then halve the range of delays at
dniq in such a way that the new range will still contain
dmin. It Temains only to show how to determine the
size of the largest circuit when a delay figure is given.
This will now be explained.

Let us suppose that we have drawn the picture of some
member é of Az for some arbitrarily chosen k. Then
the size of the largest circuit whose markers are all
contained in § is equal to the number of points in
the set 6 NS where S = {(z,y)|z € Z and y € Z,}.
Moreover, we can read off the design of one such circuit
from the picture by inspection! The circuit we mean
is the one whose markers correspond to the maximal
points® of S in §.

So if there is a largest circuit for the given delay figure
such that this circuit’s markers are all contained in
some triangle in A’; for the appropriate h, then to
compute this circuit we just have to find which triangle
contains the most points of S. This can be done by
starting with some arbitrary triangle § € A’;, and then
sliding the base of § along the X axis. During the slide,
points in S enter and leave 6. Is this slide a finite
process? To answer this question, notice two things:

8As noted earlier, we actually partition n + 1, not n, bit
positions into blocks, because we must accommodate the most
significant bit of the result.

9Points with maximum Y coordinate.
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First, |6 N S| is a periodic function of the position'® of
8, with period 1; and second, the events that points
of S enter and leave § are discrete events. The first
observation means that we only need to slide § by 1
unit, in either direction we choose. Because of this
and the second observation, the slide is indeed a finite
process.

Now there is a possibility that the largest circuits are
such that the markers are not all contained in the rel-
evant member of A’;. Then it is not hard to see that
in this case, there is only one largest circuit. This cir-
cuit can be computed by drawing a member 6 of A,
whose apex is vertically aligned with an integer point
on the X axis. Suppose the apex lies at the point
which we will call gi,y)‘ By Theorem 4, the apex is
less than 1 unit below the marker of block i. Since
the marker must be at an integer point, y can’t be an
integer. Let j = [y]. Then the circuit is simply the
one whose markers are the maximal points of S in §,
except that the marker for block ¢ is taken to be at
(i,7). Compute a circuit by this latter precedure any-
way whether its delay is within the amount specified
or not, and whether it is a largest circuit or not. If
the delay is too great, or if the circuit is not a largest
one, then just discard it.

The sliding part of the process is detailed in Table 1.

4 Test Results

4.1 Comparison of This Paper’s Circuits

with Guyot, et al.’s Circuits

As mentioned before, the author has programmed
both his algorithm and Guyot, et al.’s, and has run
them on a variety of inputs. Table 2 compares the
circuits resulting from some test runs. It is not really
understood when Guyot, et al.’s algorithm performs
well, and when it does relatively poorly, except that it
seems to perform poorly when p is only a small amount
away from a round number, like 1.01 or 1.0001. There
are times when the circuits produced by their algo-
rithm are as good as our results, and there are times
when their circuits possess carry propagation delays
that are more than 11% worse than ours, which are
guaranteed to be optimum-speed circuits. All circuit
delays are all calculated according to the formulas pre-
sented in this paper.

4.2 Comparison with Oklobdzija and
Barnes’ Result

As mentioned in the introduction, Oklobdzija and
Barnes’ algorithm gﬂ can be used for finding optimum-
speed carry-skip adders, but only for integer values of
p. If p isn’t an integer, then their algorithm can still
find a circuit, but such a circuit can be far from opti-
mum. In the following example, their algorithm pro-
duces a circuit which has a carry propagation delay
that is 16.08% slower than the carry propagation de-
lay of the optimum circuit, produced by the algorithm
in our paper:

10The X coordinate of the left end of the base.

begin
place 6 so that its left vertex is at 0;
pool := number of markers in §;
left1 := number of markers on left side of §;
left2 := 0; right := 0; oldmax := 0;
deltaposition := 0; {Initial position of §}
flag := true;
while flag do begin
{evaluate number of markers in triangle}

pool := pool — left2;

pool := pool + right;

if pool > oldmax then

begin
oldmax := pool;
deltaposition := X coordinate of
left vertex of 6;
end;

{slide triangle}

slide 6 to the right until a marker is hit;

if the left corner of § is at or

beyond z = 1 then flag := false;

left2 := leftl;

left1 := no. of markers on left side of §;

right := no. of markers on right side of é;
end; {while}
output the circuit determined by deltaposition;
end;

Table 1: Triangle sliding program

Suppose p = 1.334 and the number of bits is 32. Then
our algorithm produces the circuit 12 3 56 6 4 3
2, with a carry propagation delay of 10.3380r units.
They, on the other hand, must approximate p by either
1 or 2. If they were to use p = 1, then the circuit they
would obtainis 12345654321, with a carry delay
of 12.006r units. On the other hand if they were to use
p = 2, then the circuit they would obtain is 24 6 8 6 4
2, with a carry delay of 12.000r units. So they should
use p = 2, which gives a deterioration of 16.08% over
our optimum circuit’s speed. (We calculate all carry
delays according to our theorems. When calculating
the delays of Oklobdzija and Barnes’ circuits, we must
remember that p is 1.334, not 1or 2.)

5 Conclusion

In this paper, we have presented a method of designing
the fastest one-level carry-skip adders. These adders
are almost the fastest known adders, and are of clean
design. It is possible, however, to apply the carry-
skip principle once or several more times to obtain
even faster, but somewhat more complicated, circuits.
In [4] a procedure for finding near-optimum two-level
carry-skip circuits was presented. An important next
step in this research area would be to find a way
to compute optimum two-level carry-skip adders. It
shouldn’t be too difficult to see that the method pre-
sented in this paper can be extended for that purpose.
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This Guyot, ;‘iu,g’ of’y’f df:
bits paper’s cir- | et al.’s cir- | " ° This paper’s cir- | Guyot, et al.s
P cult’s carry | cuit’s carry ation from cuit circuit
delay delay optimum
32 | 1.0001 9.0005r 10.0000r 11.105% || 1 294506532 723466432
32| 1.025 9.1250r 10.0000r 9.589% [| ; 2242002 29460437
32 1.05 9.2500r 10.0000r 8.108% || ; #9420 92 123400432
32 55 19.0000r 50.0000r 52630% | 281372 510116 _
64 | 20001 | 19.0007r |  20.0001r | 5.2598% || 250 S 0 ITOTT357TUTIII0R
VELEBUBVEZ EIVE LR B BERE)
128 | 2.0001 28.0013r 29.0006r 3.5688% || 16141210864 | 16141210753
1
%26445078 122345677
128 85 18.8500r 19.0000r 0.7958% || 9101010987 { 8910109877
65443921 6543221
64 85 12.8r 12.8r 0.0000% || c25aanr ' |piaane v

Table 2: Comparing the circuits produced by the algorithms of Kantabutra and of Guyot, et al.

be

However, it seems that such an extension would
very complicated.
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