Fast Hardware Units for the Computation of Accurate Dot Products

Andreas Knofel

Institute for Applied Mathematics
University of Karlsruhe
W-7500 Karlsruhe

1. Motivation

Matrix and vector operations based on dot product
expressions occur in almost all scientific and engineering
applications. The lack of the popular programming
languages and computer architectures to provide operators
for these data types and corresponding accurate hardware
instructions forced users to emulate the vector operations
by constructing loops with scalar floating point
instructions. Cancellation and immediate rounding in these
loops cause uncertain and inaccurate numerical results and
aggrevate an error analysis.

The investigation of these effects at the Institute for
Applied Mathematics lead to the definition of scalar and
vector operations by semimorphism [4], being the basis
for a properly defined arithmetic. Operations defined by a
semimorphism deliver a result that differs from the correct
answer by at most one rounding. The programming
languages FORTRAN [10] and PASCAL [11] have been
extended for an easy access to numerical data types as well
as the corresponding operators with a scalar and vector
arithmetic based on semimorphisms. Problem solving
routines delivering a verified enclosure of the result have
been developed by means of these new programming
languages showing the usefulness of the arithmetic. The
entire runtime system for all arithmetic operators was
written in software due to the uncertain floating point
operations delivered by the computer systems. In 1985, the
IEEE society defined a standard for scalar floating point
operations [9]. Floating point processors based on this
standard have been developed for many computers and
became faster and faster. The accurate vector operations,
however, remained on the software emulation level and
their execution time decreased more and more compared
with the algorithms using the given scalar arithmetic,

Several accurate hardware vector arithmetic units [2], [3],
[71 were proposed in the recent years. For an overview see
[1]. They particularly address the vector computer area. For
personal computers up to main frames in the following
sections two hardware units with high performance, short
pipelines and additional hardware less than one multiplier
are described.

2. The principle of operation

Several principles for the computation of accurate dot
products have been developed in the past, but the principle
with the most flexibility is the Long Accumulator (LA)
{6]. In the LA algorithm the intermediate operations are
executed exactly. At first the products are computed to
double length. Then they are accumulated into a fixed-point
register, called LA. To ensure an exact accumulation at any
time, the LA must have

S =K+ 2Emax + 2|Emln| +21+1

digits of the base b of the input floating point format with
1 mantissa digits and an exponent between Epjp and
Emax. K additional digits are for intermediate overflows
and one digit is interpreted as the sign of the LA. After the
final accumulation the exact dot product value is rounded
back into the input floating point format or completely
stored for further computations. Figure 1 shows a Long
Accumulator. Several products are aligned according their
exponent due to accumulation.

[Sign] K [—2Ema |21] 2lEm;n!]
| 1
L 1
|]
| I
Figure 1: Long Accumulator
70

CH3015-5/91/0000/0070$01.00 © 1991 IEEE

In the accumulation step the double length products are
shifted to the corresponding position in the LA where they
are accumulated. For customary floating point formats like
IBM /370 [8], IEEE [9] the products intersect only with 3-
5% of the LA. Thus, it is useful to keep the accumulator
in a memory and perform only a local accumulation of the
product by loading the intersecting accumulator words.
After the local accumulation a carry or borrow may
propagate over many digits as shown in figure 2.

In software implementations of the LA handling the carry
is accumulated in a loop into succeeding words until it is
resolved. M. Miiller, Ch. Riib and W. Riilling at the
University of Saarbriicken developed a fast solution to
accelerate the carry handling [5]. The entire carry
processing can be performed by only one addition, since a
carry skips an accumulator word only if all digits are equal
to (b-1), for b being the base of the number system. After
the carry skip, the value of this word is zero. Thus, no
addition has to be executed, because the result is
predictable. The same effect occurs for borrows, They skip
a word only if all digits are zero and after the skip all digits
are (b-1). A two bit wide register, keeping two flags, is
attached to each accumulator word. One flag indicates,
whether all digits of the corresponding LA word are zero
and the other one, whether all digits are (b-1). The carry
skip over word boundaries is handled by a simple logic that
toggles the flags and delivers the address of the accumulator
word where the carry is resolved, since one digit is less
than (b-1) there. This carry resolve word is incremented in
one final addition. The same principle works for the
borrows and only the final accumulation has to be
performed, as shown in figure 3. The flags have to be
actualized after each addition when the word is stored back
into memory. Therefore, a word is read from the memory
only if both flags are reset. In the other cases a constant is
read into the adder.

After the accumulation of the last product the result can be
read from the accumulator. Here the flags are also
important to find the leading accumulator word being the
first word whose flag is not equal to the sign of the LA.
This leading accumulator word delivers the leading digits
and the exponent of the result. As the rounding is
concerned it is important if there are trailing digits not
equal to zero. This could also be done by a logical OR of
all trailing ZERO-flags.

3. Hardware description
3.1 A sequential circuit

Using a LA stored as a sequence of words with the
mentioned flags, a fixed number of accumulation steps is
necessary to perform the local accumulation of the product,
one step for the carry skip handling and one final carry
resolve step. All these steps could be pipelined if the LA is
kept in a dual-port-RAM. After the first word, intersecting
with the least significant part of the mantissa has been read
from the RAM and accumulated, the next word where the
next mantissa part must be accumulated can be read from
the RAM. The results from the adder and the actualized
flags can be written back via the other port of the RAM at
the same time. There are no address conflicts because the
memory addresses increase and the execution time for the
addition lays between the read and the write access to the
same address.

It is known in advance, how many accu words intersect
with the mantissa. Therefore, the carry skip process and the
prediction of the carry resolve address can be performed in
parallel to the local accumulation, starting with a fixed
offset to the address where the least significant mantissa
part is accumulated. At that time it is not known whether a

(11000001 [11111111] 11111111 [11111111 l111xxxxl>ooooo<|x>o(xoooloooooooﬂ

<—— CARRY skiparea ——»

(0000XXX [XXXXXX [XXX0000]

Figure 2: Local accumulation with carry skip
CARRY resolve

local accumulation

%] 0000X XX [XXXXXX | XXX0000
y

[T1000001 [U111 11 [ITTIT 11 [T TITTTT TG
=bps0] =1 P =1 P20 =1 TR]

<—— CARRY skip ———>

CARRY resolve address CARRY start

Figure 3; Carry handling with flag logic

final carry or borrow has to be resolved. Therefore, only a
copy of the flags is toggled on the way to determine the
carry resolve address. To ensure a proper flag setting at any
time, the flag values after an addition must be actualized in
both the copy and the original flag registers. The final
addition can be integrated without any wait-cycles into the
read-add-write process, since the carry output of the adder
can be added to the carry resolve word in any way. Like in
a carry-select-adder the copy of the flags becomes the actual
flag setting only if there was a carry after the local
mantissa accumulation. This pipelining is shown in figure
4 for a computer with 32 bit data busses, IEEE double
input numbers and a 64 bit wide RAM to keep the LA.
The accumulation is perfomed in seven cycles within an
eight cycle pipeline with the main steps

« operand read,
« multiply & shift and
= accumulate.

In the step "read” the memory accesses and the loop
counter and address pointer administration must be handled
which could not be performed in eight cycles for many
computers. Therefore, eight cycles are a lower bound for
the entire pipelining.

Figure S shows a block diagram of the circuit. The
additional components for the exact accumulation are the
RAM with the flags and an address incrementer and a wider
shifter and adder. The multiplier must compute the exact
product. In almost all computers, however, the lower
product part is cut off and ignored. Therefore, the additional
amount for the exact multiplication is only a wider output
bus. The unit can be designed as a coprocessor or part of a

3.2 A parallel accumulation circuit

The progress in hardware design and technology allowed
the integration of concepts into computers that seemed to
be applicable only for vector Pprocessors. Cache
memories,wide data busses, RISC instruction sets, parallel
execution units and also pipelined floating point operations
are the highlights of this new generation of computers.
Eight cycles for one pipeline step is too slow for them.
But with a few changes in the design the accumulation step
can be performed in two cycles and thus may be adapted to
the high 1/O-bandwidth and fast multiplication times of
these computers.

The addresses of all LA-words where an addition must be
performed can be predicted. If the accu address is known
where the least significant part of the product is
accumulated the next part of the product is accumulated to
the subsequent accu word and so on. The start address for
the carry skip and resolve address prediction has a fixed
offset from this start address and therefore the carry resolve
address can be delivered in advance. All words influenced
may be read in parallel into a sufficiently wide adder and
accumulated there in one step as shown in figure 6.

This could only be performed with a muiti-port-RAM, but
up to six-port-RAMs are state-of-the-art. The width of the
LA-words give the designer a parameter to decrease the
number of ports down to three. The advantage is that one
address decoder manages all ports. The lowest intersecting
word is passed always via port 1, it’s successor via port 2
and so on. The drivers of each port must be designed to
deliver a value according to the flags. All port drivers and
the start signal for the carry skip are controlled by one

main processor and fits onto one chip being applicable for -
main frames as well as work stations or PC’s. l interface il
A 2 L 4
exponent -
adder 53x53 multiplier
cycles] read multply & shift accumulate v
2 reag Xi-1 | 64 out of 106 bit shifter |
read yj-1 7
4 |readxj |zi-1:=Xi-1*Y¥i-1 ;
4 |readyj |zj-1:= shift(zj-1) 6:()2;[add:)rr ﬁ
1 Jread xj+1|z :=Xi*Yi load P
1 add/sub load '
1 store add/sub load X (D
1 store add/sub load carry d D f
1 |read yi+1 |z := shift(zj) store inc/dec di D 1
1 store rn b DI[? 67 x 64 Bit
1 set flags cel 1D 5 dual port RAM [
1 s | 1D
read xj+2 [Zi+1:= Xj+1 * yi+1|load s D

Figure 4; Pipelined accumulation and the overall dot product pipeline
... indicate that the execution is still in process

72

Figure 5: Block diagram

y
11000001 [11111111J 11111111

<——— CARRY skip ———>»

CARRY resolve address CARRY start

Figure 6: Parallel accumulation

decoder. The carry skip logic determines the carry resolve
address, toggles a copy of the flags and then drives the last
port where the carry-resolve-word is passed through. This
hardwired multi-port driver can be designed very fast so that
all words influenced are written to the adder in one cycle.
Figure 7 shows the modified block diagram of the RAM.

The entire process with the steps
* decoding of the address
* predicting the carry resolve address and toggle a copy
of the flags
» loading the words to the adder

4. Comparison with other circuits

The presented circuits are compared with the proposed
solutions of P.R. Cappello andW.L. Miranker [2], R.
Kirchner and U. Kulisch [3] and T. Yilmaz, J.F.M.
Theeuwen, R.J.W.T. Tangelder and J.A.G. Jess [7]. For
all circuits the total amount of transistors has been
estimated for the IEEE-DOUBLE format with design data
of the Institute for Microelectronics Stuttgart. The result of
this estimation and other relevant properties are listed in
table 1.

* accumulation circuit # transistors | pipeline | _ # cycles
« restore the result and actualize flags length accumulation
could be performed in two cycles, as shown in figure 8. [2) 700000 K | = 4200 1
The accumulation and flag actualization must therefore be [3] 750 K =70 1
performed very fast using sophisticated adders and tree 71 300 K =70 2
structures in the comparators and decoders. Figure 9 shows sequential 200 K 24 8
a tree structured path to determine the carry resolve word. parallel 200 K 6 2
multiplier 80 K
port4 Table 1: Comparison between several circuits.
4
port 3
4 port 2
‘T port 1 read x;.1
4 read yj.1
carry resolve word [{) read xj r-l = Xj-1 * ¥i-1
D 67 x 64 Bit cadyi ki1 oo shificp
L - -1 := shift(zj-1)
_ Z:) f [four port RAM np -l

start of the carry skip F-D [1 [| | read Xj+1 i = Xj * yj determine addresses

J [a

7 o ! read yj+1 i := shift(z;) load / accumulate / store

start of the 3 [s read Xi42 Zi+ 1= Xj+1 * Yi+] Jdetermine addresses
accumulation ?D load / accumulate / store

Figure 7: Multi port RAM unit for the parallel
accumulation

73

Figure 8: The dot product pipeline with the parallel
accumulation

CARRY resolve

local accumulation

[0000X XX [XXXXXX | XXX0000]

v

CARRY resolve address CARRY start

Figure 9: Tree structured carry resolve logic

5. Conclusion

The circuits presented in this article are easy to implement
with available techniques as one chip and deliver a high
performance solution for dot product computations. Beside
the RAM for the LA all units can be used for scalar
operations to avoid a hardware overhead for scalar and
vector units. The additional hardware amount for a
combined scalar and vector computation unit is about
120 K transistors and therefore also applicabable for PCs.
The entire data flow from the input interface down to the
accumulation has been discussed in contrast to former
proposals, where only the accumulation was handled. The
pipeline of the first unit has 24 stages and the pipeline of
the second unit only 6 stages for the entire process. Thus,
these units are also applicable for short vectors and for
computations with complex numbers.

References

{11 G. Bohlender: "What Do We Need Bejond IEEE
Arithmetic? ", In: Ullrich (ed): Computer Arithmetic
and Self-Validing Numerical Methods, Academic
Press, New York, 1990

[2]1 P.R. Cappello, W.L. Miranker: "Systolic Super

Summation”, IEEE Transactions on Computers,

EC 37-(6), 1988

[3] R.Kirchner, U. Kulisch: "Arithmetic for Vector

Processors”. Proc. of the 8th Symp. of Computer

Arithmetic (ARITH-8), IEEE Computer Society,

1987

[4] U.Kulisch, W.L. Miranker: "Computer Arithmetic

in Theory and Practice”. Academic Press, New York,

1981

11000001 [11111111 11111111 JITT11111 B 1IXXXX [XXXXXX

74

M. Miiller, Ch. Riib, W. Riilling: "Exact Addition
of Floating Point Numbers". Proc. of the 10th
Symp. of Computer Arithmetic (ARITH-10), IEEE
Computer Society, 1991

(]

S.M. Rump: "Kleine Fehlerschranken bei Matrix-
problemen”. Ph.D.thesis, Universitit Karsruhe, 1980

T. Yilmaz, J.F.M. Theeuwen, R.J.W.T. Tangelder,
J.A.G. Jess: "The Design of a Chip for Scientific
Computation". Euro ASIC, Grenoble, 1989

(7]

[8] International Business Machines Corporation: "IBM
System /370: Principles of Operations", IBM

GA22-7000

American National Standard Institute; Institute of
Electrical and Electronics Engineers: "IEEE Standard
for Binary Floating Point Arithmetic". ANSI/IEEE
Std 754-1985, New York, 1985

9]

[10] International Business Machines Corporation: "IBM
High Accuracy Arithmetic - Extended Scientific
Computation, Reference”, IBM SC33-6462-00

[11] R. Klatte, U. Kulisch, M. Neaga, Ch. Ullrich,
D. Ratz: "PASCAL-XSC Sprachbeschreibung und
Beispiele”. Springer, Heidelberg, 1991

