Optimal Purely Systolic Addition

Lars Kiihnel
Institut fiir Informatik und Praktische Mathematik
Christian-Albrechts-Universitit
W-2300 Kiel 1, Germany

Abstract

We introduce a purely systolic hardware algorithm
for addition which is based on @ mesh connected ar-
rangement of cells. The proposed FASTA-algorithm
ss well-susted for realization in integrated technologies.
Its area, computation time, and period are satisfying
A(n) = O(n), T(n) = o&\/‘n‘), P(n) = 03.@’ respec-
tively, where n denotes the operand length. here)l;re,
this adder is T-, APT-, and AT?-optimal in the lin-
ear model for signal propagation delays. In the class
of B(y/n) time adders it is optimal with respect to A,
P, T, AP, AT, APT, AP?, and AT?. The suggested
algorithm essentially 1s o solution to the general prob-
lem of “parallel prefiz computation”. Therefore, it can
serve as @ paradigm for the design of optimal purely
systolic hardware algorithms in a wide range of appli-
cation domains.

1 Imntroduction

We consider the addition of non-negative integers in
conventional positional binary n-bit representation.
Given the 2n bits of two operands a and b, the task is
to compute the (n+1)-bit representation of the sum

. n) n—1) n—1)
s = Zs;2’=a+b= Zai2'+2ba2'
i=0 i=0 =0
For each n € N (the problem size) this formulation
defines a mapping ADD, : B" x B® — B™"! that
maps each pair of n-bit operands to the corresponding

(n+1)-bit tuple of the sum, leading to the sequence of
mappings ADD = (ADD,),en.

In this paper we introduce a novel globally clocked
hardware algorithm FASTA for the computation of
ADD. FASTA actually is a sequence (FASTA,)nen of
hardware algorithms with FASTA,, computing ADD,,.
This new adder is well-suited for realization in inte-
grated technologies like VLSI, ULSI, and WSI. The al-
gorithm can be easily extended in order to cover two’s
complement addition and subtraction, too.

According to the model introduced in [12], a hardware
algorithm H is a tuple (G, L, S). G is a finite directed
graph, the computation graph of H. The nodes corre-
spond to processing elements (PEs) resp. input and
output nodes and the edges correspond to the wires
connecting the cooperating PEs. The layout L de-

scribes an embedding of G into the plane R, thus

CH3015-5/91/0000/0172$01.00 © 1991 |IEEE

172

suggesting a two—dimensjonal realization of G. S is
the I/0-scheme of H and specifies the times (i.e. clock
ticks) and locations (i.e. input resp. output nodes) at
which values for {ay,...,an-1,00,...,0n—1} are read
resp. for {sp,...,3n} are written.

Our complexity analysis refers to the usual VLSI com-
plexity measures. Let H = (H,)nen be a sequence of
hardware algorithms. The area Ay(n) of H, is the

area of the smallest convex subset of R? that contains
the layout of H,. The time (or latency) Txn(n) of Hy,
is the time elapsed between the application of the first
input bit and the generation of the last output bit with
respect to a single computation. Since hardware algo-
rithms are working on infinite streams of arguments,
we are additionally considering the period Py(n) of
H,. The period measures the time elapsed between
the application of the first input bits of two successive
computations (i.e. the time between two successive
sets of inputs). Note that the reciprocal of Py(n) cor-
responds to the throughput of H,. Moreover, we inves-
tigate the behaviour with respect to the usual product
measures APy(n), ATy(n), APTy(n), AT#(n), and
AP} (n).

In [5, 9] Foster and Kung have identified a set of prop-
erties that make a hardware algorithm especially weli)—
suited for realization in integrated technologies. These
systolic algorithms employ a high degree of parallelism
and pipelining for the efficient solution of a given prob-
lem. Based on the above papers, Schmeck [12] suggests
the following concise definition of systolic algorithms.

¢ The computation graph uses only few types of
simple cells.

o The layout suggests a realization with simple and
regular data and control flows.

¢ For each node, the number of direct neighbours is
small and does not depend on the problem size.

o The design uses extensive concurrency.

o For each node, the area occupied by its realization
does not depend on the problem size.

¢ The suggested realization uses only physically lo-
cal communication for the exchange of data be-
tween PEs. In particular, the length of the longest
wire used for data communication does not de-
pend on the problem size.

¢ The realization can be operated at a clock fre-
quency that does not depend on the problem size.

o Average and maximum data rates have the same
magnitude.

It is crucial to note that purely systolic hardware al-
gorithms totally avoid long—distance or irregular wires
for data communication (cf. [9]).

Purely systolic hardware algorithms are in particu-
lar promising low costs for tie design of realizations,
high throughput, modular expansibility without slow-
ing down the system clock, and steady use of the in-
terface to their environment. Moreover, some of the
above properties prove to be advantageous with re-
spect to testability aspects. Mesh connected array-
like hardware algorithms with simple cells are impor-
tant examples for purely systolic systems and are thus
ideal candidates for the realization in integrated tech-
nologies.

Note that the well-known fast adders (see e.g. [1, 2,
13]) are based on tree-like hardware structures and
thus don’t belong to the class of purely systolic sys-
tems. A first hint concerning fast and purely systolic
addition can be found in [3]. Unfortunately, Chazelle
and Monier’s description is not very detailed . More-
over, their algorithm is not purely systolic in the above
strong sense.

In this paper we propose a new hardware algo-
rithm for fast purely systolic addition (FASTA). 'Ighe
FAST adder is T-, APT-, and AT?-optimal in the lin-
ear model for signal propagation delays. Moreover, it
is optimal with respect to all usual measures in the
class of time optimal (i.e. e(ﬁﬁ time) adders. Since
the algorithm is based on the well-known carry looka-
head technique, it suggests a purely systolic solution
to the general problem of parallel prefiz computation
(see {10]). Thus the FASTA hardware algorithm is of
significant relevance for a wide range o% application
domains.

The paper is organized as follows. Section 2 contains a
concise summary of lower bounds in the linear model
and includes a special treatment of time optimal hard-
ware algorithms for addition. Based on the list of lower
bounds, we develop the FASTA algorithm in Section 3.
Section 4 contains some remarks concerning additional
properties and possible extensions of the FAST adder.

2 Lower Bounds for Purely Systolic
Addition

Obviously, the value of the mapping ADD, depends
on the operands. Thus a hardware algorithm H =
(Hn)nen for addition has to read the argument bits
and to perform a calculation. Since there exists a min-
imum feature width (cf. e.g. {4]), this results in

Axn(n)=9Q(1) .

A simple counting argument, involving the number of
bits to be produced and the number of output nodes
that are used for these output purposes, leads to (see

e.g. [4, 8])
ATy(n) = Q(n) and APy(n) = Q(n) . (1)

Ifl'l the number of output nodes used by H, is O(n),
then

Py(n) = Q(1) and thus AP4(n) = Q(n) . (2)

173

Clocked versions of a ripple carry adder (see e.g. [6])
with a constant number of full-adder cells resp. of an
n—cell ripple carry adder show that the above lower
bounds are tight.

The lower bound for the computation time heavily
depends on the underlying model for signal propaga-
tion delays. The widely used constant model assumes
that the time for propagating a signal across a wire
of length L does not depend on L. Thus this model
should not be used as a basis for the derivation of
purely systolic hardware algorithms since it does not
punish the designer for using long wires. In a purely
systolic algorithm, every datapath of length L crosses
©O(L) processing elements with each of these elements
contributing at least one clock tick to the overall delay
of a signal that has to be propagated across this dat-
apath. Thus it is appropriate to base the analysis on
the linear model advocated in [4]. In this model, the
time for the propagation of a signal across a wire of
length L is assumed to be (). Chazelle and Monier
[4] ve shown that this assumption leads to the fol-
owing lower bounds for addition.

Tu(n) = QUvn) 3
APTy(n) = Q(n?) (4)
AT%i(n) = Q(n?). (5)

Note that the “conventional” fast adders are not time
optimal in the linear model since they are based on tree
structures and therefore employ wires whose length
depend on n. Due to the latter fact, the length of a
basic clock cycle depends on n, too. In general, this
leads to a computation time in w(y/n). For instance,
the carry lookahead adder suggested in [2] has a time
complexity (n) in the linear model.

Section 3 shows that there exists a purely systolic
adder whose time is ©(y/n). Thus the lower bound
3 is tight. We derive from 5 that the area of a time
optimal adder Opt satisfies

Aop(n) = Q(n) . (6)
Moreover, “reasonable” time optimal adders satisfy
Poy(n) = Qv/n) ()
(this bound is shown in [8]). A combination of 3, 6,
and 7 yields
APO}‘(") = Q("\/;)) ATO’i(n) = Q(n\/ﬁ) ’
APg,‘(n) =Q(n?).

Table 1 contains a compilation of the above bounds.
Complete proofs can be found in [8].

3 FASTA: A hardware algorithm for
fast purely systolic addition

The FAST adder is based on the well-known technique
of carry lookahead addition. The following subsection
outlines the basic ideas of this technique.

3.1 Carry Lookahead Technique

The bits of the sum s can be computed through the use
of carry signals ¢;, ¢ € [-1,n—1]. (Given two integers
1,7, let [1, 7] denote the set of integers {k|i < k and k <
7}. Furthermore, let A,V,® denote the logical AND,
OR, and exclusive OR, respectively.)

C1 = 0
c = (a.~ A b.') \ (a.' A Ci—l) \ (b.‘ A c,'_l)
8 = a;®bdciy
Sy = Cp-i}

The carry lookahead technique involves assigning a
pair of bits (G[i, j], Pl¢, j]) to each group of bit po-
sitions [t, j] C [0,n~1] with G and P satisfying

(G[i,7]=1) <= The group [i,j] generates a
carry into position (j + 1) re-
gardless of an incoming carry.
The group [z,] propagates an
incoming carry from position
(2 — 1) into position (j + 1).

(Pl,5l=1) =

Obviously, we have G[0, i] = ¢; for all i € [0,n~1]. The
(G, P) pair of a single bit position i can be computed
according to

Gli,ij=a;Ab;; Pli,ij=a; ®b; .
Introducing the operator o : BZ x B2 — B? with
(G,P)o(G',PY=(G'V(P'AG),PAP'),
we derive the property
(Gli, 3], P,)=(G[s, k—1],P[i, k—1])o(G[k, j],P[k, 5])

for all k € [i + 1, j].

The concept of carry lookahead addition is based on
the observation that the operator ‘o’ is associative.
Due to the latter fact, the carries G[0,i] can be com-
puted from the single bit (G, P) pairs in any order as
long as only associativity is exploited.

3.2 Design Considerations

The derivation of a purely systolic time optimal adder
was guided by the following crucial ideas. Throughout
the rest of the paper, let n = m?,m € N.

Firstly, the n bit positions are divided into 1/n groups
o; z{r_z kl;it positions each. This leads to the sequence
of bloc

(lgv/m, (g+ 1)V —1])gct0,v/m-1) -

The (G, P)-pair of each of these blocks is computed in
a ripple carry adder like fashion using the property

(G[Q\/;, kl,P[Q\/'T» k]) =
(Glgv/n, k—1], Plgv/n,k—1]) o (ar A bx,ax ® by) .

174

Thus each of these block computations takes O(y/n)
time. It is possible to pipeline the block computations
and therefore to complete the computation of all /n

block—(G, P)s in O(y/n) time.

The sequence of cumulative block carries
(G[0, gv/n — 1])gepn,vm)

can be computed iteratively from the block—(G, P)s
using the equality
G[O’ 9‘\/;— 1] = G[(q_‘ 1)\/;;’ Q\/;_ 1]\/
V(P[(g-1)vn,gvn-1]AG[0,(g—1)v/n—1]).(8)

The generation of the sum bits s; is divided into two

stages. Let i € [gy/7,(g+1)v/n—1], i = g/n+k, ie. i
belongs to the gth block. s; satisfies the equation

5 =a; Db Dcie1 =ai ®b®G[0,7— 1]

and thus
3i=a; Db
Q(G[q\/f—"’ i 1] V(P[q\/;? i—l]/\G[O, q\/; - 1]))
| i S e, —
intra-block carry into
carry qth block

Note that (Glgy/n,1—1], P[g/n, i—1]) are intra-block
(G, P) signals, whereas G[0,¢\/n—1] is the cumulative
block carry entering the gth block.

Stage 1 of the sum bit generation process performs the
computation of preliminary sum bits s[g\/n, i] from the
operands a;, b; and the intra-block carries:

slgv/n, il = a; @ b; ® Glgv/n,i-1] .
Exploiting the property

3 = 3[‘1\/;7 i] ® (P[q\/-ﬁ,i - 1] A G[O, ‘I\/— - 1]))

the second stage of the sum bit generation computes
the s;s from the preliminary sum bits, the intra-block
propagate signals, and the sequence of cumulative
block carries.

The generation of the preliminary sum bits and of the
cumulative block carries can be integrated into the
ripple carry adder like computation mentioned above.
Stage 2 of the sum generation is performed by using
an additional linear array of identical PEs with a time
skewed input.

The following list summarizes the basic ideas that have
led to the FASTA hardware algorithm.

¢ Carry lookahead addition, using v/n blocks of \/n
successive bit positions.

e Ripple carry adder-like (G,P) computation
within blocks, using a linear array of /n PEs.

e Pipelining of block computations on the latter ar-
ray.

asg be asg b5 as bg I 0 0
[+ 7% lu ay bl 0 1 ais b]s
ap b | 0 1 ay by an bn
0 1 a3 bz ayo bio a7 b
a12 biz ag by ag bg a3 by
ag by as by ay b | 0O O
Qq b4 a b] 0 1 as b]s
ap b | 0 1 ay by ayy by
0 1 a3 bis ay byo a7 &
a2 bz ap by ag bse az b
ag by a5 by az |0 O
ag by a1 b
Y %o b“ \ 4
0 }—4 _— |4
01 A A A B o
1 B "
+ 4 L_— i
D D C bso
L. ‘
D D C o
|1
L. *
D D C |0

r v/n+1 input diagonals

" vn+1 input diagonals

Vvn+l Vvn+l

33

32

812

316 315 311 87 33 (316 S15 311 37 383

S14 310 8¢ 32 314 S10 3¢ S2

813 39 35 313 8 385 9

38 84 80|l 812 88 84 S0

>

Figure 1: Layout and I/O-scheme of FASTA,s.

Iterative computation of the cumulative block
carries by the rightmost cell.

Two-stage generation of sum bits. Computa-
tions of Stage1 incorporated into the above rip-
ple carry adder-like computation. Computations
of Stage2 performed by a second linear array of
v/n—1 cells. Intermediate results of first stage are
delayed appropriately, using a sequence of v/n—2
shift registers of decreasingglens;lh. Ve
3.3 An Overview

Figure 1 gives the layout of the computation graph and
sketches the I/O-scheme of FASTA, for n = 16. The
layout uses a mesh connected array like arrangement
of n — (y/n — 1) cells with the linear array of v/n — 1
A-—cells and the Bcell in the top row performing the
ripple carry adder like computation mentioned above.
This linear array produces the preliminary sum bits
and provides the sequence of cumulative block carries
via the bottom output line of the B—cell. The latter
sequence is read by the top cell of a linear array of /n—
1 C-cells in the rightmost column, which implements
the second stage of sum bit generation. Accordingly,
the intermediate results of the linear array of A—cells
have to be delayed appropriately in order to meet the
corresponding cumulative block carries in the array of

175

C-cells. This can be achieved by using the indicated
arrangement of n — 3\/n + 2 D—cells with each D—cell
simply delaying its two input signals by one clock tick.
The input is read in the form o%n\/ﬁ diagonals of 2,/
operand bits, each input diagonal corresponding to one
of the blocks introduced in 3.2. An additional diago-
nal of constant pairs separates the inputs of successive
computations. The output is generated in the form
of \/n + 1 distorted diagonals of \/n sum bits each.
Again, each diagonal corresponds to one of the blocks
of 3.2. The last output diagonal of a computation con-
tains the most significant sum bit s, and v/n—1 “don’t
cares”.

3.4 Components

First of all, we will describe the linear array of A-
and B-cells. Let i = gv/n+k < (g +1)y/n. The A-
cells are used for computinﬁ the intra-block signals
(Glg/n,i], P[gy/n,i]) and the preliminary sum bits
s[q\/ﬁ,ig from the inputs (G[g\/n,i - 1], Plgy/n,i—1]),
a;, and b; (see Fig. 2). Moreover, an A-cell propagates
the incoming intra-block P-signal via the second bot-
tom output line. Note that the outputs are produced
on the basis of a global clock. Thus the output signals
indicated in Fig. 2 are available at clock tick ¢ + 1,
provided that the shown inputs are applied to the cell

G[Q\/H"'—ll -
P[q\/f_l,l'—].] —

— Glgv/n,i]
— P[q\/'_', i]

b
s[q\/;;y i] P[Q\/"_‘yi—]-]

Figure 2: I/O-behaviour of the A-cells

input lines at clock tick t. Obviously, the A—cells can
be realized by using a small number of logical gates
and flipflops.

A linear array of \/n A-cells together with a time
skewed input (as shown in Fig. 1) could be used for
generating all the preliminary sum bits and their cor-
responding intra-block propagate signals. It is crucial
to note that the rightmost A—cell produces the signals
that are needed for computing the sequence of cumu-

'y

ey

- B A

Figure 3: 1/0 of a hypothetical v/nth A—cell

lative block carries (cf. 8 and Figure 3). Moreover,
since

3(g+1)vm-1 = slgvn, (g + 1)vn — 1}V
vV (Plgv/n,(g + 1)v/n - 2] A G[0,qv/n — 1]},

the same holds for the sequence of sum bits
(3(g+1)vm—1)ee[o,v/m—1)» t00. Therefore, we incorporate
the corresponding computations into the hypothetical
v/nth A—cell, thus introducing a new cell type B. Fig-
ure 5 outlines a possible realization of the B—cell. The
symbols used for standard logical components are de-
scribed in Fig. 4.

The I/O-behaviour of the complete linear array is
givenin Fig. 6. At the beginning of a computation, the
D-flipflop controlling the O2 output line of the B—cell
has to be cleared. Therefore, the input pair (0,0) pre-
cedes the first pair of operand bits in the sequence of
inputs for the B—cell. At the end of a computation, this
D-flipflop contains the value G[0,n — 1] = s,,. In Fig.
6, the last input diagonal of v/n — 1 (0, 1)-pairs and a
single (0, 0)-pair generates the input [1 =12=14=0
and I3 = 1 with respect to the B—cell. It can be easily
verified that this input combination makes the content
of the O2-flipflop (i.e. s,) appear on the O1 output
line of the B-cell.

Since the input pair (0,0) of the last input diagonal
clears the O2-flipflop of the B—cell, successive compu-
tations can be pipelined as indicated in Fig. 1.

The sequences of values available at the bottom out-
put lines of the above linear array are comprising ex-

176

AND OR XOR D-flipflop
Figure 4: Symbols for logical components

nn 12

01

02

Figure 5: Realization of the B—cell

actly the inputs needed for the second stage of sum
bit generation. Thus a linear array of /n — 1 cells
can be used to perform the corresponding computa-
tions. The latter array uses cells of type C, whose
I{IO—behaviour is given by Fig. 7. Figure 8 outlines
the I/O-behaviour of the complete linear array of C-
cells. The time skewed input format for this array can
be generated by employing the arrangement of D—cells
given in Fig. 1.

3.5 Analysis

Each cell of the FAST adder occupies only constant
area. Thus the complete layout can be embedded into
an O(y/n) x O(y/n) array of constant area rectangles.
Thus

Azasza(n) = O(n) .
G[o, q\‘/ﬁ -1]
Plgv/n,i-1] +
slgv/n, 1]

C 38

610, ayA-1]
Figure 7: 1/O-behaviour of the C—cells

1

0 1 ays bys
0 1 Qs b1g an b

0 1 a3 b3 axpo bio ar by
a2 b2 ag by ag be a3 by

ag bg ag bs az by 0 0

a4 b4 ay bl

ao bo

| } | 4 | | ! {

(1)] A A B — 316 S15 311 37 33

! ' ' ' ' '

1 1 G[o,15]
1 1 s(12,14] Pl12,13] G[0.1]]

1 1 s[12,13] P12,12] s[8,10] P[8.9] G[o,7]
(12,12 1 s(8,9] P[8.8] s[4,6] P[4.5] G0, 3]
(8,8 1 a5 P44 sf0.2] P 0
s[4,4] 1 s[0,1] Plo,0]

{0, 0] 1
Figure 6: I/O-behaviour of the top row of cells
G0, 15]
G[o,11]
G[0,7]
G[0,3]
0
i
1 P[12,13] P[8,9] P[4,5] P[0,1] —
1 s[12,14] 8,10 s[4,6] s0,2] - € [~ L 14510 %6 2
)|
1 P[12,12] P[8,8] P[4,4] P[0,0] —
1 12,13 s[8,9] s[4,5] s[0,1] o C Lesssa
+
1 1 1 1 - . L onson sa s
s(12,12] s[8,8] s[4,4] s[0,0] LT e
G[0,15]
Glo,11]
G[o,7]
G[0,3]
0

Figure 8: I/O-behaviour of the array of C—cells

177

| General fﬁ%&%‘iﬁd FASTA,
A(n) Q1) Q(n) O(n)
P(n) 1) Av/n) O(v/n)
T(n) Qvn) e(vn) O(v/n)
AP(n) Q(n) Q(n®/?) o(n®/?)
AT(n) Q(n) Q(n®/?) 0(n¥?)
APT(n) Q(n?) Q(n?) o(n?)
AP2(n) Q(n) Q(n?) 0(n?)
AT?(n) Q(n?) Q(n?) O(n?)

Table 1: Tight bounds for addition

Let Tx4s74(n) denote the minimum length of a basic
clock cycle of FASTA,. The switching time of each
cell is O(1). Therefore, we have Txas7a(n) = o).
One can easily verify that

(3v/n - 3) - Tas7a(n)
(Vn+1): teaszan) -

i

Trasza(n)
Prasta(n)

Thus we deduce

(/)
O(v/)

for the time and period of the FASTA hardware algo-
rithm.

Table 1 summarizes the asymptotic behaviour of
FASTA, with respect to A, P, T, and the usual com-
pound measures. Moreover, it is confronting these up-
per bounds with the corresponding lower bounds given
in Section 2.

We derive from the entries of this table that the
FAST adder is T-, APT-, and AT?-optimal. In the
class of time optimal adders the FASTA algorithm is
optimal with respect to all usual measures.

Trasta(n)
Prasza(n)

Note that the computation graph uses only four types
of simple cells. Due to the mesh connected array-
like structure, the data flow is particularly simple and
regular. The maximum number of direct neighbours
of a node is determined by the leftmost A—cell and
thus equals 6 (the input nodes have to be considered,
too). The chosen arrangement results in very short
data communication lines, the maximum wire length
being bounded from above by a constant. The adder
is extensively exploiting concurrency mainly through a
high degree of parallelism. Moreover, the average and
maximum data rates have the same magnitude. Thus
we conclude that the FASTA hardware algorithm is
purely systolic.

178

4 Additional Properties and Exten-
sions

Employing a standard technique outlined in (6, p. 71},
the FAST adders can be easily extended in order to be
capable of performing addition/subtraction of integers
in two’s complement representation.

Each single adder FASTA, is quite adaptable to vary-
ing operand lengths. Note that the computation
graph of FASTAN, N satisfying N < n, appears as
a subgraph of the computation graph of FASTA, (see
Fig.1). Therefore, ADDy can be computed by the
computation graph of FASTA, at no increase in com-
putation time and period, when compared to the per-
formance of FASTAy. Since the underlying compu-
tation principle essentially does not depend on the
pumber of input diagonals, the computation aph
of FASTA, can tackle the case N > n, too. here
exists a straightforward modification of the FASTA,-
1/O-scheme which leads to a latency (N/v/n +2v/n —
3) - 7x4574(n) and period (N/yn+1)- Tras7A(n) for
the computation of ADDN.

Besides from the criteria considered above, there ex-
ists another criterion of increasing importance for the
valuation of the practical relevance oF a hardware al-
gorithm: the testabslity with respect to a iven fault
model. The testability of a hardware a.lgori&.m relates
to the minimum number of input patterns needed to
detect all possible faults considered by the underlying
fault model. There exists a slightly modified version
of the FASTA hardware algorithm which is C-testable
with respect to the widely used single stuck-at fault
model (see e.g.[11]). This means that the minimum
number of test patterss needed to detect all such faults
does not depend on n. It suffices to furnish each of the
A—cells with an additional OR-gate and an additional
flipflop in order to allow an 11 pattern test sequence
to detect each possible stuck-at fault (see (8]).

The application of the carry lookahead technique does
not depend on the radix r of the underlying num-

ber representation. Thus, choosing r = 2™ and em-
ploying a conventional m-bit representation for the r-
digit:?eads to a class of coarse-grained FAST adders
in which each cell handles m-bit blocks of bit posi-
tions. Note that the A-, B—, and C-cells of these
adders essentially have to perform an m~-bit addition.
Thus it may be appropriate to generate hybrid adders
which use the purely systolic FASTA structure for the
high level inter-node communication and a binary tree
based addition scheme within the PEs.

It is well-known that carry lookahead adders are es-
sentially a solution to the general problem of paral-
lel prefiz computation (PPC, see [10]). PPCs occur
in the solution of many other problems such as the
simulation of finite-state machines, linear recurrences,
digital ﬁlterit;f, various graph problems, sorting, and
others. Therefore, the FAST adder suggests a general
paradigm for the derivation of purely systolic hardware
algorithms in a wide range of application domains.

5 Conclusion

In this paper we have introduced a novel purely sys-
tolic hardware algorithm for integer addition which is
well-suited for realization in integrated technologies
like VLSI, ULSI, WSI, and discrete technologies as
well. It is shown in [7] that the use of few types of
simple cells and interconnection patterns together with
a rigorous specification of the I/O-behaviour lead to
a straightforward and comparatively simple proof for
this parallel algorithm.

If the linear model for signal propagation delays is
assumed, the FASTA hardware algorithm turns out
to be T-, APT-, and AT?-optimal. In the class of
time optimal adders it is optimal with respect to all
usual complexity measures for VLSI-algorithms. Its
concrete area requirements are essentially determined
by (2v/n—1) logical nodes. The overall ZASTA area of
O(n%]has to be compared with the lower bound Q(n;)
for]t) e area of very fast non-purely systolic adders (cf.
14]).

The FASTadder can be easily adapted to varying
operand lengths. Moreover, there exist s..aightfor-
ward augmentations of the computation graph which
render possible the processing resp. generation of non-
diagonal input and output formats without changing
the asymptotical properties of the FASTA algorithm.
Besides from these properties, this new class of adders
is especially advantageous with respect to testability
aspects.

Since the suggested algorithm allows the generation of
optimal adders at low costs and, on the other hand,
gives a basic principle for the purely systolic solution of
many other problems, the FASTA hardware algorithm
seems to be of significant practical and theoretical rel-
evance.

Future work should include the practical realization
of the FAST adder. Moreover, the testability analysis
should be extended to more general fault models. The
incorporation of fault tolerance mechanisms is another
important topic for future research.

179

Due to lack of space, this paper merely outlines the
concept of the FAST adder. For a complete descrip-
tion of all details and a proof of correctness see [7]. (8]
contains a detailed and systematic treatment of purely
systolic hardware algorithms for parallel prefix compu-
tations.

Acknowledgements

I am especially indebted to Dr. H.Schmeck for many
valuable discussions and suggestions. Moreover, I wish
to thank Prof. Dr. W. Thomas and my coll es of the
VLSI group in Kiel for their support. My tEau.ks also

o to the anonymous referees. Their comments have
gelped to improve the presentation of the paper.

References

[1] B. Becker, R. Kolla. On the construction of opti-
mal time adders. In Proc. STACS 88, pages 18-
28, Springer-Verlag 1988. LNCS 294.

R. P. Brent, H. T. Kung. A regular layout
for parallel adders. IEEE Trans. Computers, C-
31(3):260-264, 1982.

B. Chazelle, L. Monier. Optimality in VLSI. In
J. P. Gray, ed., VLSI 81, pages 269-278, London,
1981. Academic Press.

B. Chazelle, L. Monier. A model of computation
for VLSI with related complexity results. J. ACM,
32(3):573-588, 1985.

M. J. Foster, H. T. Kung. The design of special-
purpose VLSI chips. IEEE Computer, 13(1):26-
40, 1980.

[6] K. Hwang. Computer Arithmetic. Principles, Ar-
chitecture, and Design. Wiley, New York, 1979.

[7] L. Kiihnel. Optimal purely systolic addition.
Technical Report 9002, Inst. f. Informatik, Uni-
versitat Kiel, W-2300 Kiel 1. Germany, April
1990.

{8] L. Kiihnel. Optimale systolische Prafixberechnun-
gen. Dissertation. In preparation, 1991.

[9] H. T. Kung. Why systolic architectures? IEEE
Computer, 15(1):37-46, 1982.

[10] R. E. Ladner, M. J. Fischer. Parallel prefix com-
putation. J. ACM, 27(4):831-838, 1980.

(11] P. K. Lala. Fault Tolerant and Fault Testable
Hardware Design. Prentice-Hall, London, 1985.

{12] H. Schimeck. Modellierung und Bewertung von
VLSI-Algorithmen. Habilitationsschrift. Institut
fiir Informatik. Universitat Kiel, 1989.

[13] J. Sklansky. Conditional-sum addition logic. IRE
Trans. Electr. Comyp., EC-9(2):226-231, 1960.

[14] B. Sugla, D. A. Carlson. Extreme area-time trade-
offs in VLSI. IEEE Trans. Computers, 39(2):251—
257, 1990.

2

(3l

(4]

(5]

