Design and Implementation of a Floating-point Quasi-Systolic
General Purpose CORDIC Rotator
for High-rate Parallel Data and Signal Processing

Alfons A.J. de Lange and Ed F. Deprettere
Department of Electrical Engineering
Delft University of Technology
2628 CD Delft, The Netherlands

Abstract

We describe the design and implementation of an algorithm
and a processor which can be used to accelerate computations
in which large amounts ‘of rotations (circular as well as
hyperbolic) are involved. The processor is a low-cost high-
throughput visi implementation of the algorithm. With 107
rotations per second, many real-time and interaction-time
applications in scientific computation become feasible.

1. Introduction

A central problem in image processing (HDTV, video phone),
document processing (digital copiers), imaging (medical,
acoustic radar), dynamic system modeling, simulation and
visualization (computational sciences), computer graphics
(photo realism, animation) and other time critical
computational intensive applications [Kun88}) is : how can the
algorithm be so (re-)designed that it can meet the time/space
requirements. A solution to this problem is ideally obtained by
deriving a parallel algorithm in which the basic functions have
been carrefully converted into opimally designded software
and/or hardware operations. In applications from time-critical
domains such as computer graphics, image processing etc. fast
hardware functions are usally paramount. In such cases, the
performance of multi-processor ©Or processor array
implementations will heavily depend on the performance of its
basic software functions (in programmable processors) or
hardware functions (in application specific hardware). In case
the basic functions are simple, say of type multiplication, the
corresponding software/hardware algorithms will not degrade
performance when they are also kept simple. However, when
basic functions become more complex, it will not in general be
acceptable to realize them in terms of a composition of the
simple functions since their overall efficiency, in terms of time
and/or space, will be much lower than for newly designed
operations.

For example, in many signal processing and matrix
computation applications, i.e. speech processing, radar,
computer graphics. and antenna array processing
[Jai89, Vee88, Dep89]. Algorithms in these domains can most
advantageously be expressed in terms of basic plane rotations,
yielding much more stable and often also more structured

CH3015-5/91/0000/0272$01.00 © 1981 IEEE

algorithms than the conventional algorithms. For a typical
example, see [Jai89]. However, the advantage may quickly
turn into a disadvantage when the basic plane rotation itself is
not implemented in an optimal way. The latter will usually
mean non-iteratively and unconditionally (if possible),
minimal number of evaluation steps, inherent accuracy efc.

To pursue the plane rotation example, it is well known that
circular implemented using Taylor or Chebychev expansions,
which requires a number of multiplication and
addition/subtraction steps. See also [Ahm85, Sch83,Nav83]
and[Mul85). Another solution that is more appealing for
applications where rotation evaluation time must be a constant
is the bit-recursive shift and add Coordinate Digital Computer
(CORDIC) approach. See [VoI59]. In application specific
algorithm design, Volder’s algorithm is easily implemented in
both software and hardware. However, in case one would like
to go a bit more general, in the sense that one wants a bit-
recursive shift-and-add implementation of Walter's unified
plane rotation

—m*sin(m* o)

cos(m* o)

cos(m** o)
Ra(®= |\ n-%sin(m*a)

which is circular, linear or hyperbolic in case m=1, m=0 and
m=-1 respectively, the task is much more involved. The reason
is that the hyperbolic rotation can not be implemented in the
same (minimal bit-recursive) way as the circular rotation,
whence it is not at all obvious wheter a unified algorithm for
the unified function exists and if so, what the optimal
implementation will be. See e.g.[Coc72,Hav70], and
[Hwa79].

Several implementations of the CORDIC algorithm in
hardware are described in [Hav70,Coc72]. AT&T, Motorola
and Intel have released products using CORDIC arithmetic.
These are respectively the WE32206, the 68881 and the 80x87.
HP built a CORDIC floating point processor box for their 2100
series of minicomputers, however it was never sold. The
CORDIC hardware in these products is meant to compute
transcendental functions like sin, cos, arcsin, arccos, sinh, cosh,
arcsinh, arccosh, exp, log and sqrt. Currently, CORDIC
hardware is only used in desk-calculators. This is because it is
generally felt that a CORDIC co-processor adds much

272

hardware and communication links to the multiplier-adder unit
of a standard computer. It is cheaper to add some simple
sequencing logic or micro-programs to a multiplier-adder unit,
which allows polynomial approximation of transcendental
functions. In short, the application of a CORDIC processor for
the computation of transcendental functions is not very
efficient. This is not true for the application of fast CORDICs
in massive-parallel algorithms where they can significantly
accelerate system performance. An example of a more useful
CORDIC processor that was designed recently is the
TMC2330 of TRW LSI Products. It is a pipelined
implementation that is used to accelerate circular coordinate
transformations in computer graphics. See[Wil89]. Another
useful CORDIC processor is the word-level pipelined core
processor applied in the Plessey (Plessey Research Caswell
Ltd, UK) PDPSP 163XX series products. However, no
vectorization mode has been built in this core processor, which
makes it useless in most of the previously mentioned
applications. We even believe that a CORDIC processor is
only useful if both vectorization and rotation are possible and
can be executed simultaneously. With the latter we moreover
mean also working on the same angle.

In this paper, we present a CORDIC algorithm and processor
which allow a substantial acceleration of many known and
novel algorithms in the application domains of computational
algebra and physics, in particular time critical applications
which must be implemented in parallel machines or arrays of
processors.

In the next section a modified version of the CORDIC
algorithm as originally proposed by Volder [Vol59] and
Walther [Wal71] is presented. This modification enables a
low-cost simultaneous implementation of the various rotation
functions in several coordinate systems. Tthis section also
describes the derivation of optimal parameters for the proposed
CORDIC | algorithm. Section 3 briefly discusses several
CORDIC (hardware) architectures with different speed and
hardware complexity properties. High-speed architectures are
carefully considered, because a CORDIC processor
implementation must be applicable in real-time signal
processing computations. Section 4 describes a word-level
floating point extension to the CORDIC algorithm of section 2
and 3. This extention is necessary to meet a true 16-bit
accuracy which is minimally required in most of the
applications we are referring to in this paper. Section S gives
the accuracy analyses of the CORDIC algorithm. In this
section all parameters are determined that influence the
accuracy and dynamic range of computations. In section 6, we
present the specification of a prototype CORDIC which has
been fabricated and used by the authors. Finally, in sections 7,
conclusions about the novelty of the work are made.

273

2. The CORDIC Algorithm

In this section we briefly review the CORDIC concept in so far
as our own needs go. Then we proceed with the the
modifications we are proposing and the motivations for doing
s0.

The original CORDIC algorithm is a bit-recursive shift-and-
add implementation of the forward and backward Givens
rotation, that is, if we put

X cos(ar) sin(0)) |

[ﬂ = |-sino) cos(®) [v]
then in the forward rotation, called rotation, the algorithm
computes the rotation of a vector [x y]' over an angle ¢t to a
new vector [x’y’]', and in the backward rotation, called
vectoring, it computes the length x” and the inclination o of a

vector [x, y]'. The 2 procedures are eccentially the same. The
function (2.1) can be easily generalized as follows[Wal71]:

» cos(m*c) —m¥sin(m”0) B]
L/] T Im%sinm*%0) cos(m*c))
which is the original Givens rotation for m=1, and includes,
moreover, the hyperbolic rotation (m=-1) and the linear
rotation (m=0). Figure 2.1 shows the three rotations. With
appropriate definitions of m-norms (lengths) and m-arguments

(angles) the 3 rotations (forward and backward) are vector
norm preserving.

2.1)

22

m=]

Figure 2.1. Rotation in the Circular, Hyperbolic and Linear
Coordinate Systems. Shown is (1) rotation of a
vector U to u’ over an angle o in the circular
coordinate system, (2) vectorization of a vector v
to v’ in the hyperbolic coordinate system, and (3)
rotation of vector w to W’ in the linear coordinate
system over an angle .

The original CORDIC algorithm essentially decomposes the
rotation in a minimal product of rotations, each one embedding
an angle of fixed magnitude and variable sign such that the
signed sum of angles can be any angle in the range of angles of
resolution dependent on the number of elementary rotations.
However the "minimal” number is not independent of the
coordinate system (m) and the choice of elementary angle
values is neither unique nor unifirm over the m-values. In
traditional algorithms, the sets of fixed positive angles (called
basic angles) are selected appropriately to each coordinate
system and are denoted by O ;, with i=0, 1, - - p(m),
wher p(m)+1 is the (minimal) number of elementary
rotations. Hence the angle ¢, the number of basic rotations
p(m), and the set of basic angles O, ; satisfy the following
relation :

p(m)
Y Giopi=0a, and ciel-1, 1] 2.3)
i=0
So, equation 2.2 can be rewritten as :
A cos(m®00,;) —m¥sin(m*0;0,;) s
-8 e, s
1o |m™sin(m*oi00,;) cos(m®oi0n)
pm) 1 = %W\(m%ci(’ni) X 24
=K T |m*tan(m*oi0,) 1 (e

where
plm) "
K= JT cos(m™ oy, ;) .
i=0

The right hand side decomposition form in eqn. (2.4) is now
inteerpreted as follows:

1. Choose the angles o,; in such a way that the term
m™*tan(m*o,, ;) equals 27, where S,; is a non-
negative integer.

plm) .
Get the scaling factor Hcos(m"am_i) included in pre-
i=0

operations or post-operations, or distribute it over the
elementary rotations, using (if possible) approximations
cos(m*ay, ;) = (1-me, ;27°~), with either &,;=0, or
em,i =1.
The CORDIC algorithms will then approximately implement
the functions (2.2) in the following sense:

Let:

m* tan”! (m* 0; A1) =27%), Smi€ N, 2.5)

Yol i < Oy a1 < Oy (2.6)
p(m)

loo— 3 6i0m i | S Omp(emys @
i=0

and:

p(m) P) "

[1(1-megp;27°) = [Tcos(m™ oy ;) 2.8)

i=0 i=0

Then eq. 2.2 can approximately be rewritten as :

for i=0, 1,...p(m)

274

m G; 2-8-'
1

1
-Gj 2_5"

= (1-me,, ;27°)

Xi1 Xi
, 2.9

|:Yi+l] [Yi] @9)
with either €, ; = 0 O €y, = 1, and either o; =1 or 5; = 11,
In case of rotation, the o; (i=0,1,..,p(m)) are computed by
evaluating

i-1

o; = sign(o. — 3,00t ;)- (2.10)

0
In case of vectoring, o; (i=0,1,..,p(m)) are computed by
inverting the signs of y; (i=0,1,..,p(m)):

o; = —sign(y;). .11

Due to the dependency of all coefficients of the parameter m,
the set of algorithms as given above is much less unified as the
function (2.2) is. For example, if we require an accuracy of M
e.g 27 — and an angle range condition (2.7) — e.g.
-1 < o <t — and accuracy — e.g. 2716 —, then the number of
basic angles, hence of micro rotations, will be different for
different values of m, since the convergence condition (2.6)
depends on the parameter m, See[Dep84], and all shift
exponents in the set m=1 will be different from those in the set
m=-1, this is expensive, both in software and hardware
implementations. The range [-7 ,] is very realistic; it is the
range for the circular rotation and it is an acceptable range for
the hyperbolicrotation (having an infinite range in theory). On
the other hand, if the condition would be that execution times
must be independent of the paprameter m — this is necessary
in many applications that use rotations in both circular and
hyperbolic coordinate systems —, then different conditions
hold for the accuracy and range of angles a (eq. 2.7, accuracy
is determined by Oy, pimy) in different coordinate system. This
is unacceptable if both circular and hyperbolic rotations are
used in the same algorithm (see e.g. speech coding[Jai86]).
Another drawback of the original CORDIC algorithms as
described above are the auxilia{y) angle decomposer (eq. 2.10)
pim,

and a result angle composer : ¥, 6,0, ;. These operations are
i=0

neither necessary nor useful. For example, in many
applications one has to rotate a set of vectors over an angle that
is first to be computed from a given vector. In such cases the
decomposer succeeds the composer creating a perfect identity
that is not only useless but also prevents the sequence of
rotations to be started almost concurrently with the
vectorization. If, on the other hand encoded angle

+ Some authors allow the ©;’s to become zero. T‘hils will speed up the
-]

determination of the sign of y; and the sign of a3 0j0t,; if o and x/y;

have a binary redundant representation [Dup89], which will be explained in
section 3.2. A serious drawback however is that the scaling factor

p(m;
[T cos(m*;04;) (¢q 2.10) will then depend on o;. This problem can be

=0

solved by either repeating the iteration serially[Tag87] (one for c=-1 and
one for 6=+1), or performing two iterations in parallel [Dup89]. See also
page 11.

inputs/outpus are used, (o), rotations can be initiated
immediately after the first step in the vectorization has been
completed.

Most of the drawbacks can be overcome by using a slightly
more complex representation of the term “"m*tan(m” oy m)".
Namely,

(2.12)
where n,; is either -1,0, or 1 for i=0,1,..,p. This modification

allows us to impose the following constraints on the CORDIC
algorithm :

m‘hmn(m%ai.m) = 2-8“ - nm.iz-S."v

1. The number of iterations p+1 is independent of the
coordinate system.

2. Accuracy and range conditions are the same for each
coordinate system.

3. The - normalization (scaling) factors
p
Kp = [cos(m*a, ;) are simple powers of 2 :
=0
Pm)
Ky = [Jcos(m*ay, ;) =275, (2.13)
i=0

A complete set of basic angles oy, ;, M's, scaling constants Ko, ;
and shift factors Sy, Sm;” has been deduced for the case
m=-1,+1 (circular/hyperbolic coordinate systems) with an
absolute error smaller than 271 and an angle range of [~,+7).
This table is depicted in table 2.1.

TABLE 2.1. Optimal CORDIC parameters for 16-bits
accuracy

indexi | §,8'n; | S,8’m; oy o

1 04-1 03+1 | 1.716994 | 0.844154
2 18-1 18+1 | 0.544111 | 0.466768
3 16-1 16+1 | 0.528685 | 0.476069
4 214-1 | 214+1 | 0255348 | 0.245036
s, 24-1 24-1 0.189745 | 0.185348
6 46+1 46+1 | 0078285 | 0.077967
7 410-1 | 410-1 | 0.061601 | 0.061446
8 5 5 0.031260 | 0.031240
9 6 6 0.015626 | 0.015624
10 7 7 0.007813 | 0.007812
11 8 8 0.003906 | 0.003906
12 9 9 0.001953 | 0.001953
13 10 10 0.000977 | 0.000977
14 11 11 0.000488 | 0.000488
15 12 12 0.000244 | 0.000244
16 13 13 0.000122 | 0.000122
17 14 14 0.000061 | 0.000061
18 15 15 0.000031 | 0.000031
19 16 16 0.000015 | 0.000015

K_1=4.0000058891=722, K,=0.5000096618=2"1

Note that for circular rotation, an additional initial rotation over
On,; = 0,0 =1%m is necessary, to cover the required angle
range of [-m,+w). This has not been depicted in the table.

The paprameters in the above table are slightly different thar
those buplished in [Bu86] where the number of micro-rotation

p(my+1 was stilll different for circular and hyperbolic
coordinate systems. The parameters given here have been
given for the first time in [Lan88].

Notice that almost all shift exponents S and S’ are independent
of the parameter m. The problem of finding such set of
exponents is not trivial. It is an NP complete problem and,
moreover, the solution space is a very small intersection of the
two solution spaces, one for m=1 and one for m=-1. The
solution given here has been obtained by means of a simplified
exhaustive search. It is not the only solution although the
number of solutions quickly decreases with increasing
accuracy. Only one solution was found for a 32 bit accuracy. It
is not clear whether such a solution (such a set of constraints)
is optimal or not. In fact, the VLSI implementation of the
algorithm, based on the data of table 2.1, is not optimal in
terms of silicon area used. Notice also that for most of the
micro-rotations (i=7,8,..,p(m)) Ny equals zero. This is not
hard to understand, since for small basic angles the cordic
becomes linear in o, and
0R 4

€08(Om,i) = l—-—2—- + O(Cm 1) (2.14)
=1+0Q2%), forom,;<2'Z

This has several consequences, one being that the price to be
payed for the "double rotations" is negligible, another being
that increasing the accuracy (number of rotations) will only
have a minor effect on the scaling factor. However, the price to
be payed for one more bit of accuracy is a complete micro-
rotation : the price is in the tail.

A detailed analysis of all different errors sources in our
modified CORDIC algorithm is given in section 5. This will
explain the need for additional micro-rotations to enhance the
accuracy in hyperbolic rotations.

3. CORDIC Architectures

Many different architectures can be deduced for the CORDIC
algorithm described in the previous section. These vary from
bit-serial implementations to word parallel pipelined
architectures. Which choice is made depends on the
requirements for computing throughput and constraints that
hold for area usage, latency and dissipation. At each level of
abstraction of the CORDIC algorithm, such a tradeoff must be
made. Two important levels of abstraction can be identified in
the CORDIC algorithm :

1. the micro-rotation level
This level describes the basic shift-add operation,

2. the CORDIC top-level
This level describes the CORDIC operation as a
sequence of micro-rotation operations.

3.1 Top Level CORDIC Architectures

Table 3.1 summarizes' the main properties of some alternative
top-level CORDIC architectures.
For any technology with a given T, table 3.1 can be used to

2715

TABLE 3.1. Properties of Top Level CORDIC Architectures.
T, is the minimum clock period, T, is the delay
of a micro-rotation, p+l is the number of
CORDIC iterations, L, is the latency of a micro-
rotation (for pipelined CORDIC only) and area®
indicates the additional amount of area due to

multiplexers, rams, barrel-shifters, registers,
wiring and control.
Top Level CORDIC Implementations
prop quential ripple pipeline
delay (sec) Aprlmax(Te,T,) | DT, | Ly(p+Dmax(T.T,)
1 1 1
thru-put (rot/sec) 2pDmax(T.,T,) | @+HT, max(T &_)
€ L»
latency (# cycles) 0 0 L,@e+)
arca (# jRot’s) % (p+) 1)
arca® (# pRot's) 16 S%Q i%ll

determine the optimal top-level CORDIC architecture.

If we compare the performance figures for the different
architectural alternatives (table 3.1), it is clear that the
pipelined implementation has the highest throughput, however
at the cost of more hardware. The amount of extra hardware is
less than would be expected, because a number of
simplifications in both top-level and micro-rotation architecture
are possible.

1. The full-pipeline implementation does not need a
barrel-shifter for shift-factors, because the shifts can be

hard-wired.

No memory for shift-factors and m; parameters is
needed, because these are constant for each different
micro-rotation.

The terms m;O\N,; and G;N,; (eq. 3.5-3.12) can be
simplified since n,; only depends on m for a given i,
hence reduces the complexity of the control-unit of each
micro-rotation (identified by i).

A double shift factor 2™ can be omitted for a large
number of micro-rotations (see eq. 3.5-3.12) and table
2.1) when nyy,; is zero. This reduces the micro-rotation
complexity with a factor 2.

We conclude that a full pipeline implementation leads to a
regular architecture with very few control. A compromise
such as the usage of a limited number of micro-rotations,
which are executed sequentially, looses all the advantages
listed above.

3.2 Micro-Rotation Architectures

At the next level down we identify the micro-rotation
operation. This operation can be implemented by add/subtract
devices, control unit and shifter. Figure 3.1 shows two
structures of a micro-rotation that implement a micro rotation
operation given by eq. 3.5-3.12 : one with 1,; #0 and the
other with N, ; = 0. Both structures can be used in a ripple or
pipeline CORDIC implementation.

276

|Xi Yi
ENVE Y
i+l i+l
®)
Figure 3.1. Micro-Rotation Structures for (a) N, # 0 and (b)

Mmi = 0
High throughput with at the same time a limited latency and
area occupation is a very important property of the CORDIC
processor we want to design. We are therefore most interested
in fast parallel add/subtract devices as far as arca usage and
dissipation do not create a problem.

Figure 3.2 shows the architecture of a parallel pipeline micro-
rotation device for M,; =0. The shift factors are hardwired
and therefore not shown.

!

1 L

REGISTERS |
L I }
¢;(n) m;(n) yi()/x;(n)
o<H
iX
Z(n) mux |- ZUBB: ADD/SUBTRACT DEVICE I
reg l y
Civ1 (n+1) my; (n+1) Yie1 (n+1)/%;41 (n+1)

Figure 3.2. Architecture of a Word Parallel Pipeline Single
Section Micro-Rotation. Z; is the encoded angle
input signal, c;(n) the control signal that selects the
input o; : Z(n), the previous o; : o;(n-1), or the
sign of y;. The other signals are as defined in
section 2

The best known fast devices are the carry-select
adder/subtractor, the carry-look ahead adder/subtractor and its
dynamic implementation in CMOS called the manchester chain
adder/subtractor. See pages 322-325 of Weste and
Eshraghian[Wes85]. Another very fast addition/subtraction
device that is worth considering is the *Binary Redundant’
device See e.g.[Tak85]. A comparison of the transistor-count
and gate-delay between the different types of add devices is
depicted in table 3.2. The data for this table is obtained from
Weste[Wes85] and Takagi[Tak85). The numbers depicted are
approximate figures for devices in static and dynamic CMOS.
The extension to subtract devices involves only a small O(n)
number of extra gates.

TABLE 3.2, Comparison of n-bit Adder Devices, consisting

of k-bit digits
static dynamic
name # tran- carty delay carry delay
sistors (¥ garwes) # transistors (¥gates)
carry ripple 2o 2n 2n 2n
carTy save 34n 2k 28n 2k
carry seloct 28(2n-k) | 2k+2n/k || 2(2n-k) | 2k+2n/k
sutic camry look abead || <3820t | 2408w {| <3230t | 20ptu)
manchostor chain 30n -;-
binary redundant 1160 3 103 n 3

Discussion.

Before going into the pros and cons of the different
add/subtract devices, the following remark is in order. The
CORDIC algorithm presented in this paper is nearly regular,
meaning that it can be easily generated using repetition of
(parametrized) bit-level as well micro-rotor level units, This
means that recently proposed systolic or Quasi-systolic
architecture design methodologies can be invoked to design
such algorithms (and their implementations) as the CORDIC
algorithm. See [Kun88,Dep91]. In this context, the
implementation of the CORDIC algorithm using adders "such”
or "so" is simply a matter of degree of systolization. See e.g.,
[McC90]. Therefore, the usage of a particular full-adder in the
VLSI implementation of the algorithm is just a parameter in
the design process. The implementation considered here uses
carry-ripple adders only because such adders have been
available in the cell library and not because of architecture-
design level considerations. Of course, the performance and
price of the ultimate implementation will depend on the
particular adders used. We therefore include the following
additional remarks.

e carry-ripple
The slowest device is the carry-ripple adder, however its
area consumption is low. Even more important is its
simple and regular structure.

e carry-save
The carry save adder has relatively low area consumption,
paired with a high throughput. The main drawback of such
a device, is its high latency. In the CORDIC algorithm, the
latency will be increased with a factor n/k. This is
undesirable in some filtering applications which require
low computation latency[Dep89]. However, in case of a
high computation latency, several filter applications can be
executed in pipeline on the same CORDIC processor.

o carry-select
The carry-select adder is a fast device, but occupies nearly

t The number of bits that have carry look-ahead is 4 (k=4), because a larger
number increases the complexity of the logic (and delay) dramatically. For
4 of such blocks (16-bits), a new block is added that performs carry
lookahead for for the 16 th bit. This is repeated each time_“*log(n) is
integer. Hence the number of transistors = 38n (1 + 1/4 + 1/4% + ...) = 38
n(1+1/3(1-1/4")'<57n. Here m is the number of levels of carry-
lookahead devices are added = ceiling(*log(n) — 1).

27

L

twice as much area. Application of this device in a micro-
rotation can be considered in case small latency and high
speed is paramount, while area consumption is of less
importance.

carry look ahead

The area and delay of this device are logarithmically
proportional to the number of bits. A drawback of this
device is its less regular structure. This causes lower area
efficiency of VLSI implementations, and complicates the
task of constructing automatic module generators for this
device (this is necessary if different accuracy requirements
must be fulfilled). If only one level of carry-lookahead
sections is used, the delay is equivalent to the delay of the
manchester-chain, but the hardware of the device is
reduced (30 % smaller for large devices : n > 32) and its
structure is more regular.

manchester chain

This device is a more compact implementation of the
carry-lookahead device. It is a dynamic implementation.
This results in smaller area and its architecture is more
regular, but the cascading of several sections cannot be
done without clocking. However the applied
pre/discharging scheme allows correct carry ripple
propagation. It can be equipped with several levels of
carry-lookahead, but this complicates the design of error
free dynamic behavior. Like all dynamic devices, it must
be designed carefully to ensure correct operation under all
circuit conditions.

binary-redundant adder

Evidently, the fastest device is the binary-redundant adder.
A binary redundant adder is a device that can perform
additions in constant time, because there is no carry ripple.
This is possible since two bits are used to encode one
redundant bit, hence is sufficient to retain both sum and
carry bit or an encoded version of these two.

The area consumption of such a device is however very
high. This is not only due to the larger basic add-cells, but
also because of the additional wiring (twice as much,
because each redundant bit consists of 2 standard bits).
Finally, an area consuming conversion unit from binary
redundant to standard two’s complement encoding is
necessary.

An additional problem arises in CORDIC vectoring
operation. Here, the sign of the y-operand must be
determined before the next addition/subtraction can take
place. However, the sign of a binary redundant number
cannot be determined in constant time, because there is no
reserved sign bit. At best a O(log n) time complexity can
be achieved. We can solve this problem for the CORDIC
algorithm, by limiting the number of most significant bits
(e-g. 1 to 4 bits) to be examined for sign determination.
This means that the correct sign can not be determined if Vi
has a too small magnitude. In this case however,
vectorization (rotation over the next basic angle) is not
necessary, because the accuracy of y; will not be improved
in this micro-rotation. In the following micro-rotation, a

few bits of y; of lower weight are examined to determine
the sign. If once again the magnitude of y; is too small to
allow correct sign determination, again no vectorizing
micro-rotation is necessary. However, if the sign of y; can
be determined by examining these few bits, a micro-
rotation must be performed. This way, in each micro-
rotation, a few number of different bits are examined : the
first micro-rotation examines the most significant bits, the
last micro-rotation the least significant bits. A fast
determination of the sign of y; was proposed in [Tag87]. It
can be shown that it is possible to combine Tagaki's
approach with ours to obtain both fast determination of y;
signs and simple scaling factors.

The final problem that remains, is that if no micro-rotation
is performed, this corresponds to o;=0, hence eq.
3.8/12/13 are no longer valid. Le., the scaling factor K, is
no longer constant. This can be solved by performing both
a positive and negative micro-rotation (namely, o; =1 and
o; =—1). For this, thé micro-rotation hardware must be
doubled. We have now obtained, a very fast device.
However, the maximum clock frequency will be smaller
than the rate at which an adder device can execute. The
only way to to retain performance, is to execute several
microrotations within the same clock period. This is
obtained by implementing the CORDIC as a rippling
device.

Considering the previous discussion, most devices are either
too costly in area, or too slow. A reasonable alternative that
allows a trade-off between latency and throughput is the
carry-save adder. This device has a very regular and simple
structure, hence can easily be described as a parameterized
module. Instead of using a static or dynamic fulladder in a
carry-save device, the application of a manchester chain device
seems attractive. This is because it is 4 times faster than the
fulladder, hence less pipeline stages are needed in the carry
save device.

4. Floating Point Extension of the CORDIC Processor

In many numerical applications, it is required that the CORDIC
processor can operate on numbers with a large dynamic range.
E.g. simulations of a speech coding application [Jai86]
demonstrate the need for a CORDIC processor with an
accuracy of 16 bits and a dynamic range of 26, We
therefore need to make a floating point version of the fixed-
point CORDIC algorithm of section 2. Roughly speaking there
are two options.

1. Local floating point normalization
Each micro-rotation performs a floating point shift-
add/subtract operation and normalizes the result.

t We would like to thank one of the reviewers for bringing this to our
attention. '

278

global floating point normalization

The CORDIC algorithm remains fixed-point. Only at the
inputs and outputs of the algorithm floating to fixed point
and fixed to floating point conversions are done.

The first approach is very costly in terms of hardware and
speed in case several pipelined micro-rotations are used.
Moreover, this approach is not very useful, because every
micro rotation performs an addition or subtraction operation,
which requires equal weights for the exponents of both
operands. Hence, prior to each micro-rotation the floating
point normalization operation (placing the binary point before
the most significant bit of the mantissa and correcting the
exponent accordingly) performed by the previous micro
rotation has to be reversed.

The equalization of exponents before an add/subtract operation
results in loss of accuracy because some bits of one of the
operands will be shifted out of the data path. This problem
also occurs in the global floating point normalization case.
This is significant for the case of hyperbolic
rotations/vectorizations where large input vectors (both x and y
are large) become subsequently smaller during each micro
rotation (this case is treated in section 5). . The cases where the
loss of accuracy leads to serious problems are very rare. Even
then the relative error still remains acceptably small ; (7™, see
section 5).

The opposite case, where rotations can give rise to overflow, is
easily prevented with local floating point normalizations.
However, if we know the maximum possible overflow that can
occur in hyperbolic and circular rotations, we can extend the
data path to account for this. All these considerations are
described in more detail in section 5.

Floating Point Input Processor

The floating point input processor adapts the mantissa whose
associated exponent is the smallest exponent of the x/y vectors
according .to the difference between the x/y exponent values,
such that the resulting x/y mantissas have equal exponents. The
largest exponent is outputted. n and m are the sizes of
respectively the mantissa and exponent data path. The
architecture of the floating point preprocessor is shown in
figure 4.1.

Floating Point Output Processor

The floating point output processor takes care of the output
scaling (factor K,,,) and the selection of significant bits. n
denotes the size of the external datapath, F is the number of
overflow bits, m the datapath size of the exponents and K., the
scaling factor in the CORDIC algorithm (see eq. 4.13). The
generic architecture of the unit is given in figure 4.2.

out gout bt
X m)’

Figure 4.1. Floating Point Preprocessor Architecture. The
parameter expressions n, m, m+1 indicate the
number of bits of interconnections

e m:: Kin mi
no/, m+l m+] "’}’
ml (MSB é) | B bits)
Afa#1[exposent exponcnt m+
change detect change detect
sclector selector
detect
seloctor
m
uq m+ &+ o+,
{ [
+ +
adder
nL m nl
o out out t out
my 4 K3 ey’ my

Figure 4.2. Generic Floating Point Postprocessor Structure

S. Accuracy Analysis of the Floating Point CORDIC
Algorithm

In this section, the datapath widths of mantissas, exponents and
control signals as present in floating point pre/post processors
and CORDIC pipe are computed from the requirements for
accuracy and dynamic range. The following items influence
the computation accuracy.

5.1 Floating Point Input Normalization

The datapath size of the mantissa at the input and output of the
floating point preprocessor are n-bits to obtain n bits
(adder/subtractor) accuracy. In contrast to a floating point
multiplier, no guaranteed accuracy improvement can be
obtained by an extension of the internal datapath (micro-

rotations perform add/subtract operations). See[Lac88].

5.2 Floating Point Output Normalization

The floating point postprocessor performs a "back-shift” of x
and y mantissas. The maximum shift size is determined by the
number of overflow bits in the internal datapath in the
CORDIC pipe and the scaling factor K, that is to be
performed at the output for circular (K; =27') and hyperbolic
(K- =2%) rotations. Circular rotations are norm preserving
according to x? + y? = C, with C 2 0 is constant, hence x and y
are always bounded by VC. On the other hand, hyperbolic
rotations are norm preserving according to x*—y? =C, with
CeZ and constant. This implies that the magnitude of x and y
can be very large in hyperbolic rotations. Because the
magnitnde of x and y depends on the angle o, the number of
overflow bits is determined by the maximum rotation angle
Omex in hyperbolic rotations. For this, we write out equation
5.2 for x” with m=-1 (hyperbolic coordinate system) and

0= Oy

x’ = COSjOlnax * X + SiNjOLmay * Y.
= COShOlpey * X + sinha,,,.x * X,
j= ‘/—_1 .
Then
X'l = 1x cosh(Cmax) + Yin SINh(Clyrax) |

<max(Ix],lyl) 2 cosh(C,y).

In the CORDIC algorithm that we have described in section 2,
hyperbolic and circular rotations have the same domain for
angles o. This is required, because a variety of algorithms
(e.g. speech coding[Jai86]) apply both circular and hyperbolic
and circular rotation/vectorization operations on the same
(angle) data. In the circular case, an angle interval [—m,+x] is
sufficient to cover all possible rotations, hence we have chosen
this angle range for both the circular and hyperbolic coordinate
systems. The angle parameters of table 2.1 constitute an angle
interval l0p | = ©+0@27'), hence 2 cosh(Ome) <25,
which means that a 5 bits overflow extension is sufficient. In
case of hyperbolic vectoring, the angle a of an input vector (x,
y) may be larger than |ct,,,!. Then, this vector is rotated to
the x-axes over an angle o,,,, which introduces a relative error
of ™ [Lan88].

The output scaling factor for hyperbolic rotations is : K_; =22
and is performed in the floating point postprocessor.
Therefore, inside the fixed point CORDIC pipeline, only (5 -
K, =) 3 MSB overflow bits are needed, while 2 LSB
extension bits are needed to prevent the loss of accuracy due
to the multiplication factor of K_; =22 in hyperbolic rotations.

5.3 Number of Micro Rotations

In the linear part of the CORDIC algorithm (see table 2.1) only
single shift/add operations are performed. In this part of the
pipe, the angles have become small, hence the micro-rotations
can be approximated by the following equations (see eq. 5.9
and 5.8) :

279

X4l =X —MOGYi, Yis =Y; +MOGX;
When o < 2 (n is the number of bits of the input/output
mantissas), then the terms moyx; and mo;y; can be neglected.
This is because the selection of the n most significant bits from
the mantissa x;/y; results the same string of bits as the selection
of the n most significant bits from the mantissa X;,1/Yis1. If we
denote the selection of the bits 0 to n-1 of a binary word z by
z[0..n-1], then

X;i41 [0..n—1] = x;{0..n—1], and

Yis1 [0..n—1} = y;[0..n—~1], because

276D x. and 2Dy, are the LSB (and bits of lower
weight) of x; and y;.

Therefore, the angle in the last useful micro-rotation satisfies :
o =271, However, the hyperbolic scaling factor K_; =22
propagates the error 2 bits towards the MSB, hence we require
for the smallest angle ofi® : ofi" =271 2= T
reduce the cost of area we choose of™* =2™". This introduces
a relative error of 27V for x;/y; numbers whose MSB equals
one (negative number in Two’s Complement), and an error of
2™ otherwise.

5.4 Errors due to the Scaling Factors

In our CORDIC algorithm, the scaling factor K, was
determined for a total of p+1 = 20 micro rotors (see table 2.1),
and an angle resolution of 2™ (S =n). For hyperbolic scaling
then holds : .

m=-1, and K,, = 4.0000058891 = 4 + 2! _where n = 16
and for circular scaling :

m = 1, and K, = 0.5000096618 = 0.5+2~")

The normalization factor K., (see eq. 5.13) hence introduces a
relative error of 27°.

5.5 Accumulation of Truncation Errors

Every step in the CORDIC algorithm truncates the binary
representation of the numbers at the least significant bit (LSB).
The average error is equal to % the weight of the bit. For the
total of p+ 1=20 micro rotors, 26 shift/add operations are
performed to achieve an angle resolution of 2™ (Smax =n).
Then the average error may have propagated over 4 bits
towards the MSB, because 2° < % 26 < 2*. Therefore, another
4 bits must be added to the data path. The total amount of
bits in the CORDIC pipe now reaches 16 + 2+ 3 +4 =25, 21
of which are accurate at the output. Figure 5.1 shows a
simplified schematic for the floating point pipeline CORDIC
architecture.

Detailed information considering the circuit and Jayout design
of the CORDIC processor can be found in[Hoe88]1.

6. Implementation Results

A 21 bits floating point pipeline CORDIC processor has been
designed and manufactured in a 1.5 p CMOS process. It was
originally designed in a 3 p CMOS process[Phi82] and was
later scaled down by a factor 0.72 to fit on a 1.2cm? chip. The
CORDIC algorithm has been implemented as a pipeline of

Figure 5.1. Floating Point Pipeline CORDIC Architecture

micro-rotations, while the micro-rotations consist of carry-
ripple adders/subtractors (latency is zero), 2 — 1 multiplexers,
hardwired shifts, word-pipeline registers and a small control
unit that takes care of o; selection and coordinate system
selection. See figure 3.2. Furthermore, floating point input and
output convertors, a handshake module and clock buffers are
integrated on the chip. The chip has a hold mode, in which the
current state of pipeline registers is frozen, a scan-test mode, in
which test vectors can be shifted in and out of the pipeline

registers via the sigma-input/output pins, and a
synchronous/asynchronous operation mode. The features of
the chip are depicted in table 6.1.
TABLE 6.1. Implementation Results
accuracy range thru-put latency transistors
16-bits 1216 5x10° rot/sec | 4.4us 70 000
#inputs | # outputs dissipation size process
71 69 0.13 Watt | 1.2cm® | CMOS(1.5)

7. Conclusions

In this paper we have described a novel CORDIC algorithm
and processor. It is new with respect to its algorithm which is
optimized to allow for both circular and hyperbolic rotations
with low complexity, both in terms of software implementation
and harware implementation. Moreover it is a very efficient
algorithm when used in applications in which large amount of
rotation and vectorizations are used, in any possible coordinate
system and in any order. The required storage and/or silicon
arca is low and the execution time is independent of the
particular operation performed. Another new feature of our
CORDIC design is its pipelined architecture and floating point
extension. It is angle pipelinable at the bit-level and has an
execution time which is independent of any possible operation

280

that can be executed. Its complexity is almost unaffected by the
fact that a set of functions are implemented instead of just one.
We are currently re-designing our floating point pipeline
CORDIC to provide a professional very fast, small and high
accuracy CORDIC core for signal processing applications. The
novel design will be considerably smaller, mainly because the
area consuming linear part of the cordic function can be
implemented in a way which is much more efficient than has
been done in our prototype CORDIC which is merely a
straightforward map of the VLSI algorithm on silicon.

This architecture will enables the (real-time) application of
CORDIC arithmetic in 2-dimensional high-speed
systoliclwavefront arrays for parallellpipelined signal

processing algorithms and matrix computation applications.
For an overview of applications see[Dep90]

References

Ahm8S. H.M. Ahmed, *‘Altemative arithmetic unit architectures for
VLSI digital signal processors", in VLSI and modern signal
processing, ed. 8.Y. Kung et.al.,, Prentice Hall, Inc., Englewood
Cliffs, NJ (1985).

Bu86. J.C.Bu, E.F. Deprettere, and F. (A.A.J.) de Lange, “‘On the
Optimization of a Pipelined Silicon Cordic Algorithm",
Proceedings European Signal Processing Conference, (2) pp.
1227-1230 (September 1986).

Coc72. D.S. Cochran, ‘‘Algorithms and Accuracy in the HP-35"",
Hewlett-Packard Journal 10(11)(1972).

Dep84. E.F. Deprettere, P. Dewilde, and R. Udo, *“Pipelined cordic
architectures for fast VLSI filtering and array processing”,
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp.
41A6.1-41A6.4 (March 1984).

Dep89. E.F. Deprettere and P.M. Dewilde, “‘Orthogonal Filter
Design and VLSI Implementation’, Proc. International
Conference on Computer Systems and Signal Processing, pp.
779-790 (Dec. 1989).

Dep90. E.F. Deprettere and A.AJ. de Lange, *“The Synthesis and

i Implementation of Signal Processing Application Specific VLSI
CORDIC Arrays’’, proc. International Symposium on Circuits
and Signal Processing (ISCAS), (May 1-3. 1990).

Dep91. Ed F. Deprettere and P. Dewilde, **Architectural synthesis of
large, nearly regular algorithms: design trajectory and
environment’’, Annales des telecommunications, p. (to appear)
(1991).

Dep89. J. Bu and E.F. Deprettere, ‘A VLSI Architecture for High
Speed Radiative Transfer 3D Image Synthesis", the VISUAL
COMPUTER, (5) pp: 121-133 (1989).

Dup89. Jean Duprat and Jean-Michel Muller, *‘The Cordic
Algorithm : new results for fast VLSI implementation’’,
Internal Report, CNRS, Laboratoire LIP-IMAG 69364 Lyon
Cedex 07, France (1989).

Hav70. G.L.Haviland and A.A. Tuszynski, ‘‘A CORDIC Arithmetic
Processor Chip”, IEEE trans. Computers Vol. C-29(2) , pp.
68-79 (1970).

Hoe88. A.J. van der Hoeven and A.A.J. de Lange, ‘‘Synthesis and
Verification of the Pipelined Floating Point Cordic Processor’’,
pp. 109-125 in Lecture Notes of the Nelsis Project, ed. O.E.
Hermann and B.JF. van Beijnum, University Twente,
Enschede (March 9-11 1988).

Hwa79. Kai Hwang, ‘‘Computer Arithmetic, Principles, Architecture
and Design"’, John Wiley & Sons, (1979).

Jai86. K. Jainandunsing and E.Deprettere, ‘‘Design and VLSI
Implementation of a Concurrent Solver for N Coupled Least-
Squares Fitting Problems'’, IEEE journal on SELECTED
AREAS IN COMMUNICATIONS , pp.39-48 (Jan. 1986).

281

Jai89. K. Jainandunsing and E.F. Deprettere, ‘A New Class of
Highly Structured Algorithms for Solving Systems of Linear
Equations™, SIAM journal on Scient. and Stat. Computations,
pp. 880-912 (September 1989).

Kun88. S.Y. Kung, VLSI Array Processors, Prentice-Hall
International, Englewood-Cliffs, NJ 07632 (1988).

Lac88. Arild Lacroix, ‘*‘Floating-Point Signal Processing -
Arithmetic, Roundoff-Noise, and Limit Cycles’’, Proc. IEEE
Int. Symp. on Circuits and Systems (ISCAS), pp. 2023-2030
(1988).

Lan88. A.A.J. de Lange, A.J. van der Hoeven, E.F Deprettere, and J.
Bu, *“An Optimal Floating Point Pipelined CMOS CORDIC
Processor’’, Proceedings International Symposium on Circuits
and Systems (ISCAS), pp. 2043-2047 (June, 1988).

McC90. I.V.McCanny, J.G. McWhirter, and S.-Y. Kung, ‘“The Use
of Data Dependence Graphs in the Design of Bit-Level Systolic
Arrays’, JEEE Transactions Acoustics, Speech, Signal
Processing ASSP-38(5) pp. 787-793 (May 1990).

Mul85. JM. Muller, “Discrete Basis and Computation of
Elementary Functions’’, JEEE Transactions on Computers C-
34(9) pp. 857-862 (Sept. 1985).

Nav83. R. Nave, ‘‘Implementation of Transcendental Functions on a
Numeric Processor"’, Microprocessing and Microprogramming
11 pp. 221-225 (1983). _

Phi82. Philips, ‘“‘Process Description - Philips C5th'’, USER’s
MANUAL, Philips Research Laboratries, Eindhoven (1982).

Sch83. C.W. Schelin, ‘‘Calculator Function Approximation'’,
American Mathematical Monthly, pp. 317-325 (May 1983).

Tag87. N. Tagaki, T. Asada, and S. Yajima, *‘A hardware algorithm
for computing sine and cosine using redundant binary
representation’’, Systems and Computers in Japan 18(8) pp. 1-9
(Aug. 1987).

Tak85. Naofumi Takagi, Hiroto Yasuura, and Shuzo Yajima,
**High-Speed VLSI Multiplication Algorithm with a Redundant
Binary Addition Tree’’, IEEE Transactions on Computers c-
34(9) pp. 789-796 (September 1985).

Vee88. Alle-Jan van der Veen and Ed F. Deprettere, ‘A parallel
VLSI direction finding algorithm™, Proc. SPIE Conf. on
Advanced Algorithms & Architecures III(975) pp. 289-299
(1988).

Vol59. JE. Volder, “The CORDIC trigonometric computing
technique’’, IRE Trans. Electronic Computers EC-8 pp. 330-
334 (Sep. 1959).

Wal7l. J.S. Walther, ‘‘An Unified Algorithm for Elementary
Functions”, Proc. Spring Joint Computer Conference Vol. 38 ,
p. 397 AFIPS press, (1971). .

Wes85. Neil Weste and Kamran Eshraghian, Principles of CMOS
VLSI DESIGN, A Systems Perspective, Addison Wesley
Publishing Company (1985).

Wilg9. F. Williams, ‘“The CORDIC Algorithm - Cast in Silicon"’,
Electronic Engineering, pp. 47-50 (Sept. 1989).

