SVD by Constant-Factor-Redundant-CORDIC *

Jeong-A Lee

Department of Electrical Engineering
University of Houston
Houston, TX 77204-4793

Abstract

We develop a Constant-Factor-Redundant-CORDIC
(CFR-CORDIC) scheme where the scale factor is forced
to be constant while computing angles for SVD. Based
on the scheme, we present a fized-point implementation
of SVD with the following additional features: (1) the
final scaling operation is done by shifting, (2) the num-
ber of iterations in CORDIC rotation unit is reduced
by about 25% by ezpressing the direction of the rotation
in radiz-2 and radiz-4, and (3) the conventional num-
ber representation of rotated output is obtained on-the-
fly, not from a carry-propagate adder. We compare this
scheme with previously proposed ones and show that it
provides similar ezecution time as redundant CORDIC
with variable scaling factor with significant saving in
area.

1 Introduction

Singular value decomposition(SVD) is an important
tool in a variety of applications of digital signal pro-
cessing (1, 2]. Since the decomposition consists of
computation-intensive tasks, parallel algorithms and ar-
chitectures have been developed to get an adequate
throughput rate (processing time) [3, 4].

Among the parallel algorithms and architectures for
SVD, we consider the one presented by Brent, Luk, and
Van Loan [3]. It consists of a mesh-connected processor
array, where diagonal processors compute left and right
angles to diagonalize a 2x2 matrix. These angles are
passed to off-diagonal processors in the column and row
directions to perform the two-sided plane rotations.

The angle calculation and the rotation can be performed
using standard arithmetic modules such as adders, mul-
tipliers, dividers, and square root units [4]. However, in
this case the angle calculations require a long sequence
of operations resulting in a large number of modules and
a long execution time. An attractive alternative pre-
sented by Cavallaro and Luk [5] is to use the CORDIC
algorithm which is effective for both the angle calcula-
tions and the rotations. The execution time of this ap-

*This research was done while the authors were at the Com-
puter Science Depeartment, UCLA, and was supported in part
by the NSF Grant No. MIP-8813340 Composite Operations Us-
ing On-Line Arithmetic for Application-Specific Parallel Archi-
tectures: Algorithms, Design, and Ezperimental Studies.

CH3015-5/91/0000/0264$01.00 © 1991 IEEE

Tomas Lang

Computer Architecture Department
Universitat Politecnica de Catalunya
Barcelona, Spain

proach was reduced by the redundant-CORDIC scheme
presented by Ercegovac and Lang [11], which has the
drawback that the scaling factor is not constant and
has to be calculated for each angle.

In this paper we develop an algorithm and an imple-
mentation for SVD using Constant-Factor-Redundant-
CORDIC, which is based on the scheme developed by
Takagi, Asada, and Yajima for the computation of sine
and cosine [12].

We review previous work on CORDIC for SVD in Sec-
tion 2. Following that, we develop a Constant-Factor-
Redundant-CORDIC scheme, evaluate the performance
of this new scheme with respect to time and space, and
compare it with previously proposed schemes in Sec-
tion 3. The summary and conclusion are presented in
Section 4.

2 Previous CORDIC work for SVD

We briefly review the conventional(non-redundant) and
redundant CORDIC schemes to compute angles for
SVD and perform the corresponding rotations.

2.1 Non-redundant CORDIC

Cavallaro and Luk presented a CORDIC processor for
SVD [5] using conventional(non-redundant) arithmetic
based on the original CORDIC algorithm [6, 7]. The
two modes of operation are as follows:

Angle calculation(vectoring mode): The angle § =
tan‘l(;—"%) = Z,[n] is computed from the following

recurrence equations with Z,[0] = 0.
Xali + 1] = X [i] 4+ 0:27'Y,[4)]
Yali + 1) = Yo[i] — 027 X, [i]
Zo[i+ 1] = Z,[i] + oytan™ 27" (1)
where, the direction of the rotation o; is obtained as

A
"‘:{ 5 inﬁiﬁg (2)

To compute § with n-bit precision, n CORDIC iter-
ations need to be executed. The step time of one
CORDIC iteration is determined by o computation,

variable shifting(for 2-¢ term?, and addition. Notice
that to use non-redundant selection function(to know
the sign of Y[i]), a carry-propagate adder is needed.

For SVD, 6cs¢ and 6,ign¢ have to be calculated. For the
calculation of these angles, Cavallaro and Luk adopted
the direct two angle method; this requires the compu-
tation of the intermediate angles 6,,,, and 64y such
that

- +z
Byum = Otese + Origne = tan™" e
z—w
-

04; = : -6 = ta -1
dif f right left n +w

where z,y, w, z are the elements of the 2 x 2 matrix.

After that, 6i.y¢ and 6rigne are computed. The
computation of these angles is performed using an
adder/subtractor and two CORDIC modules as de-
scribed in Figure 1.

Rotation(rotating-mode): To perform a plane rota-
tion on input vector (X,[0],Y;[0]) with an angle (6 =
Z[0]), the following recurrence equations are used.

X,[i + 1] = X, [i] + 0:27* Y, [3]
Y,[i + 1) = Y, [i) — 027" X, [4]

Zli+1] = Z[i) - ostan~' 27 (3)

where, oy is computed from Z{i]

I
T -1

Notice that the recurrence equations of X and Y are
the same for both angle and rotation modes, which only
require shifters and adders for implementation. To per-
form the two-sided rotation(with the o-encoded values
of Or4¢ and Bright), two CORDIC operations are per-
formed as shown in Figure 1.

Scaling: CORDIC changes the length of the vector
while rotating. To maintain the same length of the in-
put vector (X,[0],Y,[0]), the following CORDIC scal-

ing operation is necessary, where (2%, y?) is the rotated
vector.

HE

5
Note that K is constant for non-redundant CORDI&
since oZ = 1 for all 7.

if Z[i] >
] <

0
if Z[i] < 0

(4)

X, [n]
Y, [n]

Since two angles (left and right angles(} are associated
with CORDIC for SVD, the corresponding scale factor
becomes K2. Instead of performing the scaling oper-
ation by multiplication by 1/K?, Cavallaro and Luk
roposed a method similar to the ones proposed in
8, 9, 10], which includes additional numbet of iterations
to make the scaling factor K? equal to 2 and perform
the scaling by shifting. For an efficient implementation,
the total number of these additional iterations need to
be minimized; they showed that there exists a solution
with 25% more iterations to force K2 to be 2.

j] where K = 1—[?:—01 V1+eo22-%

265

Evaluation: The timing diagram is shown in Figure 2.
This SVD processor takes 3.25T¢ cycles where T¢ cor-
responds to the time to complete either an angle cal-
culation or a plane rotation. The three CORDIC oper-
ations (one to compute the two angles 6,um and faifs
simultaneously, and two to perform the two-sided rota-
tions) take 37¢ and the final scaling operation for the
two-sided rotation takes 0.25T¢ cycles.

2.2 Redundant CORDIC

Angle computation and Rotation: Ercegovac and
Lang [11] have shown that the performance of the
processor can be improved by using the redundant
arithmetic(carry-free addition) and by determining the
direction of the rotation based on an estimate instead
of an exact value. This requires the modification of the
recurrence and selection function to determine the di-
rection of rotation, .

In addition, &:’ﬂ and &:iyht (corresponding to G ye and

B,ignt) are obtained on-the-fly using &7*™ and &f’”,
which eliminates Z recurrence since G,um and 64:55 do
not need to be computed. This computation is done by
the following on-line algorithm,

Wil = Z[:] + &.-+p+12" tan-l(g—(i+p+1))
Z[i + 1] = 2(W[i] - 4:2" tan™*(279))

(8)
(7
with an initial condition
P .
z[0]=) 6;tan”1(27) (8)
=0
where & belongs to the set { £1,+1,0} and 7 to the set

3 +1,0 }. The corresponding selection function, which
etermines 4; using an estimate of W{i] and on-line de-
lay p=2is
1w > 1L
¥ = 0 < W[i
-1 W< -1

[
[}

(9)

PSS

<

T

where W[i] is computed using two fractional bits of the
redundant representation of W[i].

The computations of these steps are shown in Figure 3.
Notice that since 4 is produced from &, Z recurrence is
not needed for CORDIC rotation units, either.

Scaling: The same scaling operation as in non-
redundant CORDIC has to be performed. However, in
redundant CORDIC, the scale factor K is not a constant
as 4; € {-1, 0, 1}. Therefore, K must be computed for
each §-encoded angle, which has two steps: (1) K? com-
putation using P{j+1] = P{j]+|%; |2~24 P[5] with initial
condition P[0]=1and (2) K = VP. K computation is
overlapped with angle computation to minimize the loss
of timing. However, the division operation is needed for
the final scaling operation.

Evaluation: The timing diagram is shown in Figure 4.
This scheme produced a factor of 4 speed-up compared

with the non-redundant scheme [11). The speed-up is
due to the following factors: redundant arithmetic, use
of an estimate to determine the direction of the rotation,
generation of encoded angles of Oi.¢¢ and b,ign; (%) on-
the-fly from encoded angles of 6,4 and 84;¢¢. However,
it introduced additional cost since the scale factor is a
variable.

3 CFR-CORDIC for SVD

In this section, we develop a new redundant scheme,
called Constant-Factor-Redundant-CORDIC(CFR-
CORDIC) for SVD to reduce the implementation cost
of redundant CORDIC.

3.1 Development of CFR-CORDIC

Angle computation: To compute the direction of
the rotations, &;(more specifically 4{“™ and &f'”), the
modified recurrence equations and selection function for
signed-digit representation [11] are used.

X[i+1) = X[i] + 627 ¥ W4

Wi+ 1) = 2(W[i] — 6: X [3]) (10)
where W[i] = 2'Y[4] (11)
1 W >1
Gi=4 0 ifW[E=0 (12)
-1 W< -}

where W[i] is an estimate computed using one fractional
bit of the redundant representation of W(i].

The &-encoded angles of ;.y¢ and 6,;y5, are obtained
again on-the-fly while &-encoded angles of 6,,,, and
64iss are produced. That is,

G tan-12-% —
2

) sdiff —19-i
a_:cft tan-12-% = o tan™" 2

g tan~ 1277 4 &;iijf tan~! 2%
2

As discussed earlier, the result of direct computation
~left d ~right ~sum ~diff
5~ and & from &{*™ and &;"’/ produce the

é':‘g'" tan~ 127 =

of 6,
set { £1,21, 0 }. (Hereafter we will again skip the
superscript to simplify the notation.)

To have a constant scale factor, we now need to find a
set of 4,, which is in {-1, 1}, satisfying

n—1 n-1
é;tan1(277) = Z 4;tan"1(277)
j=o j=0
As in [11] we define the residual 7 as:
t+p

-1
70 = 23 aten ™ (27) = Yy tan™(270)

where p is the on-line delay. The resulting recurrence
equation is

Zli+1]= Z(Z[i] + &l‘+p+12‘ ta,n"'l(Z_("+P+1))
- #2tan"1(27%)

with an initial condition

Z[o) =) &jtan”}(277) (13)

7=0

To simplify the selection function, the recurrence equa-
tion is decomposed into two parts by introducing an
intermediate variable W, as shown before [11],

Wil = Z[i] + Giqpsr 2 tan™ ! (27(FPHY) (14)
Zli+1)=2(W[i] - 2 tan™'(27%)) (15)

To have a constant scale factor, the direction of the
rotation 4, now need to be in {-1, 1}. However, since ¥
is determined from an estimate and from a partial set
of &, the convergence can not be assured.

Takagi et al. [12] proposed a correcting iteration scheme
to solve the similar problem, which occurs when redun-
dant CORDIC is used to compute cosine and sine func-
tion. For these computations, the direction of the rota-
tion &, is obtained from the estimate of Z[z] and is forced
to be in {-1, 1} to have a constant scale factor. To as-
sure convergence, some iterations of CORDIC, called
correcling ilerations , are repeated at fixed intervals,
where the frequency of repetition depends on the preci-
sion of the estimate. Since this scheme is proposed for
cosine and sine computation, only the rotation mode of
CORDIC is discussed.

‘We have shown the extension of this scheme to compute
angle [13], especially for matrix triangularization [14],
which requires to deal with the inter-dependency of the
recurrences of X and Y.

In the case of CFR-CORDIC for SVD, the problem is
aggravated by the fact that not only an estimate of Z[i]
is used but its computation is on-line. We use the con-
cept of correcting iterations and on-line delays to solve
this problem. In addition, we improve the scheme by
minimizing the number of extra correcting iterations by
dividing the iterations of CORDIC(for i = 0 to ¢ = n—1)
into two groups: one group where the direction of the
rotation is in {-1, 1} for i = 0 to ¢ = % and the other
in {-1, 0, 1} for i = ® to i = n— 1. With these
two groups, we reduce the number of correcting itera-
tions by 50 % since correcting iteration is not needed
for the second half of the iterations and we still obtain
a constant scale factor K since the value of K in n-bit
precision does not depend on the value of direction of
the rotation for »3! < i < (n—1).

The corresponding selection functions to make the con-
stant scale factor are :
(16)

(1) 0§i<;: -"y,-z{l if Wi] >0

-1 ifW[i) <0

where the estimate W{i] is computed using ¢ fractional
bits of the redundant representation of W(i]. As dis-
cussed later, the value of t and on-line delay p shown
in Equation 14 depends on the frequency of correcting
iterations.

n 1 W > 1
(2)551'571—1: Fe=4¢ 0 if-L<Wh<}
-1 if Wi < -1

(17)
Notice that the selection function of the second half it-
erations is the same one as shown in Equation 9.

This selection function forces the scale factors for the
two-sided rotations to be constant but does not sat-
isfy the convergence requirement. In fact, the conver-
gence requirement was satisfied in the previous redun-
dant scheme by setting the ¥ to be 0 for the region
U_1 < W[i] < L, (more accurately, by forcing Lo <
U_, and Ly < Up) where Ly = 2* tan~!(2-0¢+P+1)) and
U_1 = —L;. This interval [Ly, Ux] of W[i] for the re-
dundant scheme of Ercegovac and Lang was determined
such]:hat Z[i + 1] remained boundeg when choosing
Yi =

As we already pointed out, ¥ must not be zero to have a
constant scale factor. Furthermore, the region to select
1 for 4 is bigger than that to select -1 due to the use of
the estimate. More specifically, for the region —27¢ <
W(i] < 0,4 is selected to be 1. The worst case(where the
amount outside of the bound for W{i + 1] is maximum)
occurs when W[i] = —27! + ¢. The resulting Z[i + 1]
and W(i + 1] are

Zli+1]=-2-2%2"" since % =1

Wli+1] = -2 —2x2"t ~ 2-(+1)
assuming &;,p4+2 = —1 for the worst case

In the following iterations, the amount outside of the
bound increases and Wi + m} becomes:

Wi + m] —2—gm2~t _gm-1p-(pt1)

—gm=29-(p+1) _ . . _ 9—(p+1)

To recover the bound, we use here a correcting iteration

defined as:

Zli + m]¢ = Wi+ m] — 45, 2i+m+l gn—1 9= (i+m)
'Yl-f-m

Wi+ m)° = Z[i+ m|°

where 47, is determined by the same selection function
shown in Equation 16. After this, Z[i+m+1]is obtained
by the original equation 15 using Wi + m]° instead of
Wi+ m]. Now to satisfy the convergence requirement,
Wi+ m]° > L_, must be forced.! From this condition,
we get

(18)

Ly = —_2428+m pan—1 2—(i+m)+2i+m tnn—l(Z_(H'"H'P"'l))
,88 determined in [11].

2—t+2—(p+1] <21—m

267

By solving this, we can find out the relationship amons
t(the number of fractional bits), p(the online-delay), an
m(the frequency indicator for a correcting iteration).
We would like to maximize the value m so as not to
perform a correcting iteration too often. At the same
time, we want to minimize the value ¢ for an efficient
implementation of the selection function. A solution of
m = p+1and t = p+2 satisfies these restrictions. For an
example, with on-line delay p = 3, a correcting iteration
must occur with an interval of 4 or less and 5 fractional
bits are used for the estimate. The computation steps
are shown in Figure 5.

Rotation: As shown in Figure 5, since ¥ is produced
from &, Z recurrence is not needed again for CORDIC
rotation units.

The rotation processor can also incorporate two schemes
we developed to speed up its processing. The first one
is to reduce the number of iterations in CORDIC rota-
tion unit by about 25% by expressing the direction of
the rotation in radix-4 4 for the second half of the iter-
ations: this method is based on the fact that for i > 3,
tan~!2% = 2% in n-bit precision. The second one
is to convert the redundant number representation of
the rotated output into the conventional number repre-
sentation on-the-fly, not using a carry-propagate adder.
The detailed development of these two schemes can be
found in [13]. The incorporation of these schemes into
an application system, specifically for matrix triangu-
larization, was discussed in {14].

Scaling: When the final scaling operation is needed, it
can be simply a shifting by forcing the scale factor K to
be 2 (similar to the work for non-redundant CORDIC
mentioned earlier), which requires to repeat iterations
of CORDIC and scaling iteration of the following form:

X[= X[i) + B X[i]277

Y[=Y[]+5Y[i277, B € {-1,1}
The scaling iteration manipulates the extension or re-
duction of the vector norm without changing tan~!]K,U[:]

Consequently, the scaling iteration does not affect the
output of CORDIC angle unit. Moreover, when the pre-
cision of the output is fixed, 8; can be pre-computed.

For an efficient implementation, we need to minimize
the number of additional iterations of CORDIC and
scaling iterations. As discussed in [13], the problem
of searching for the minimum number of additional it-
erations for CFR-CORDIC is more complicated(time-
consuming) than the one in non-redundant CORDIC
since the CFR-CORDIC requires correcting ilerations
to assure convergence. We developed an efficient search-
ing method, called decomposed search, to reduce the

searching time from T to JT (13].

3.2 Performance analysis

Evaluation: Consider the case of n = 16 (16-bit pre-
cision data) and 5 fractional bits in the estimate. From
the condition 18, we know that the interval of a correct-
ing iteration is 4 or less, m = 4. Under these conditions,

| Type | Total-time | n =16 |
Non-redundant 16.25n 260
Redundant CORDIC bn + 10 90
CFR-CORDIC in+ 84

Table 1: Time comparisons (basic cycles)

the minimum number of additional iterations is searched
to force the scale factor to be 2 using decomposed search
, which results in 6 additional iterations: repetitions of
the 4th, the 8th and the 9th CORDIC iterations and
scaling iterations of {+2, +10, -5 }.

The corresponding overall system timing is shown in
Figure 6. As can be seen in the diagram, for » = 16
and m = 4, the timing of both processors matches well,
resulting in an overall time of 42 iterations of CORDIC.

Comparisons: To compare the various schemes we
need to define a basic cycle. As in [11], we use as this
basic cycle the time taken by an iteration similar to
radix-2 SRT division, that is, consisting of a 3-1 multi-
plexer, a carry-save adder, a simple selection function,
and the loading of a register. Using this basic cycle, we
determine in each scheme the number of basic cycles to
complete one iteration of CORDIC and the total time to
complete two-sided plane rotations for SVD, namely, an-
gle computations(f;.s, and 6,;gn¢) and two-sided plane
rotations.

For non-redundant scheme, we estimate that one iter-
ation takes 5 basic cycles since variable shifting and
carry-propagate addition need to be performed. Con-
sequently, Tc takes 5n basic cycles and the total time
takes 16.25n basic cycles. For redundant CORDIC with
variable scaling, one iteration takes 2 basic cycles as dis-
cussed in [11], resulting in an overall time of 5n + 10
basic cycles shown in the timing diagram of Figure 4.
For CFR-CORDIC, assuming that the number of frac-
tional bits for the estimate is chosen not to increase the
step time (that is, the selection will be done within the
time of variable shifting), one iteration again takes 2
basic cycles. In this case, the total number of itera-
tions depends on n(precision of dataf and m(frequency
of correcting iterations). Consequently, the overall time
becomes 4n + a, where 4n corresponds to the two-sided
rotations and a to the correcting iterations and on-
line delays. For 16-bit precision and an estimate of 5
fractional bits, the CFR-CORDIC scheme takes 42 it-
erations, resulting in 84 basic cycles. Table 1 summa-
rizes the time comparisons, which shows that the CFR-
CORDIC scheme is the fastest scheme for n = 16.

The performance of non-redundant and redundant
CORDIC can also be improved by applying our scheme
with radix-4 direction of the rotation(for the second half
of the iterations) since it reduces the total number of it-
erations as shown in Table 2. In this case, the scheme
with variable scaling is faster.

To estimate the area requirement in each scheme, let’s
define the basic unit to be the area consumed by one

268

[Type [Total-time | n = 16 |
Non-redundant 13.75n 220 |
edundant CORDIC | 4n 4 10 74|

Table 2: Time with radix-4 scheme(basic cycles)

[Type [Area estimate |
Non-redundant CORDIC 3
Redundant CORDIC 6.4
CFR-CORDIC 34

Table 3: Area comparisons (units)

conventional CORDIC unit to perform one iteration of
angle computation with X, ¥, and Z recurrence equa-
tions. We also assume that the CORDIC rotation unit
used for the left angle is reused for the right angle.

Then, the non-redundant scheme takes about 3 units
since it requires 3 CORDIC units. For redundant
CORDIC, all 3 CORDIC units do not have Z recur-
rence equations and carry-free additions are employed,
resulting in 2.6 units for CORDIC units. However, ad-
ditional areas are necessary to compute 4 on-the-fly(0.8
unit used twice for left and right in sequence) and to
compute Ki ¢ (1 unit) and K,;gn(1 unit), on-line com-
putation of Kjeg¢ * Kyigne and division for final scaling
(1 unit). The resulting area consumption for redun-
dant CORDIC becomes 6.4 units. In the case of CFR-
CORDIC, we again require 2.6 units for CORDIC mod-
ules similar to the redundant case. Additional area is
now for 4 computations, which is estimated to be 0.8.
Then, the total area consumption becomes 3.4. These
area estimates are summarized in Table 3.

4 Conclusion

We briefly reviewed the non-redundant and redundant
CORDIC schemes for SVD and presented the Constant-
Factor-Redundant-CORDIC(CFR-CORDIC) scheme
where the scale factor is forced to be constant while
computing angles for plane rotations.

It is important to have a constant scale factor for the
SVD CORDIC processor since multiplying a constant
to the matrix does not change the output of CORDIC
angle unit. In fact, when we skip the final scaling opera-
tion for all the plane rotations, the final singular values
are multiplied by a constant term K7, where K is the
constant factor of a plane rotation and r is total num-
ber of plane rotations for SVD. Consequently, with the
floating-point implementation, we can completely elim-
inate the final scaling operation for SVD applications
where only the ratio of singular values need to be found.
When we need to find singular values themselves, we
can skip the final scaling operation for each plane rota-
tion and perform once with K™ at the end. Notice that

with the fixed-point implementation, the scaling opera- [12] N. Takagi, T. Asada, and S. Yajima. Redundant

tion is required in each two-sided rotation to avoid an CORDIC methods with a Constant Scale Factor for
overflow/precision error. Sine and Cosine Computation. Submitted to IEEE
In addition, we presented schemes to make the scaling Trans. on Computers, 1989.

factor equal to 2 by including additional scaling iter-)
ations and CORDIC iterations, to reduce the number (13] J. Lee. Redundant CORDIC:Theory and its Ap-

of iterations in the rotation by using radix-4 direction glicatgm to Matriz Computations. Ph.D. Disserta-
of the rotation, and to convert on-the-fly from the re- C“’I‘,}, ompu;er Science Department, University of
dundant output to a conventional implementation. We ablornia, 1990.

compared this scheme with previously proposed ones 14] J. L

and showed that it provides similar execution time as [14] Fixeil?;o[;gtTl‘iegﬁﬁggj;n?zggﬁg}gagiﬁanz(?tlortl b}t,
redundant CORDIC with variable scaling factor with Scale Factor. Proc. SPIE Conference o: A:i)::nt:d

significant saving in area. Signal Processing Algorithms, Architectures, and

Implementations, July 1990.
References

(1] G. H. Golub and C. F. Van Loan. Matriz Compu-
tations. The Johns Hopkins University Press, 1983.

[2] K. Bromley and J.M. Speiser. Signal Processing
Algorithms, Architectures, and Applications. Tu-
torial 31, SPIE 27th Annual Internat. Tech, Symp.,
1983.

(3] R.P. Brent, F.T. Luk, and C.F. Van Loan. Compu-
tation of the Singular Value Decomposition using
Mesh-Connected Processors. Journal of VLSI and
Computer Systems, 1(3):242-270, 1985.

y X z ‘ W X z w
(4] F.T. Luk. Architectures for Computing Eigenval- v v ¥ ¥ v v
ues and SVDs. SPIE Highly Parallel Signal Pro- +
cessing Architectures, 614:24-33, 1986,
(5] J.R. Cavallaro and F.T. Luk. CORDIC Arithmetic CORDIC Ca(%lRBIC
for an SVD Processor. Proceeding of 8th Sympo- i g
stum on Computer Arithmetic, :113-120, 1987. 0 sum 0 gifr

(6] J.E. Volder. The CORDIC Trigonometric Comput-
ing Technique. IRE Trans. Electronic Computers, X [0] Yr [0] 0 est
EC-8:330-334, September 1959.

CORDIC
rotation

[7] J.S. Walther. A Unified Algorithm for Elementary
Functions. AFIPS Spring Joint Computer Confer-
ence, :379-385, 1971.

CORDIC
(8] G. L. Haviland and A. A. Tuszynski. A CORDIC Totation
Arithmetic Processor Chip. IEEE Transactions on X; [n] k [Yrm]
Computers, C-29(2):68-79, February 1980. kY

tated vector
[9] H.M. Ahmed. Signal Processing Algorithms and ro v

Architectures. Ph.D. Dissertation, Department of
Electrical Engineering, Stanford University, 1982.

[10] J.M. Delosme. VLSI Implementation of Rotations
in Pseudo-Euclidean Spaces. In Proceedings of Figure 1: Non-redundant CORDIC! scheme
IEEE Int. Conf. Acoustics, Speech, and Signal Pro-
cessing 2, pages 927-930, 1983,

[11] M. Ercegovac and T. Lang. Redundant and On-line
CORDIC: Application to Matrix Triangularization
and SVD. IEEE Transactions on Computers, C-
39(6):726-740, June 1990,

6263 __.On-l 495‘1‘“

Oy 6,0,03---6,, —»0 ar

eleﬁ_’ Go 61 0'3---0'

e right_’ 60 0-1 02 O3 --C a1

** Note: (n/4) more iterations are needed for final scaling operation

Figure 2: Timing of non-redundant scheme

< <

vy ¥ LR
i |
v !

. CORDIC ! Wcaong IC

*E

A

A A
G A A
0 G 02 O3 Oy (esum)

| -

(3
é sum S 6 A A g A
comput. 0 0-10.20.3 "0 (ediff)
X, [0] Yz [0] Y SR
l L '| K et comle (01 'Yo?l'YZ 73'--'?“_1
R.CORDIC! ¢ A A A
tati ;
o e Orgn) Yo¥1P2¥s---1
R, 1 1 Kieft and Ky i ;
CS&E(IS % e right computatnoxf (overlapped) Scaling(/)
X L ‘Yr) | Kieft * Kright (on-line computation)

5C 8(/)
rotated vector
*1 R. CORDIC does not have Z rec.

Figure 4: Timing of redundant CORDIC!

Figure 3: Redundant CORDIC(var. scale factor)

270

; Z*;V X Z W
L+ 1 -1 l¥-*]l*+*l

r v

R. CORDIC ! R. 1
C CaOnl;BIC

A
i 2 .
rotation | Ynght
v
R. CORDIC'
rotatlon

X, [n] k‘ kf’[n]

rotated vector
*L R, CORDIC does not have Z rec.
**2 with correcting & scaling iterations

Figure 5: CFR-CORDIC

loading of

o,” & 8 & b, .
| 111 | Angle unit
ZOJ Zl

ol .l_l_l_x_l
[-:YD:! h Yf IT|3 | 1 Rotation unit

rotation with leftjangle

19 iterations 7 "fx ¥ 'Y;

e Wl L

rotation with right jngle

"Time for one-sided rotation

kA 1 B A ’Ym% 1110 i '1‘12 'fiz Iﬁ

recoded radix-4 ¥ _[_]__l_j__l L1l

. A N
radix-4Y911 r2dix-47 12,13 “d“‘4{1\4,15

Scaling iterations CORDIC itcrations ”\Y4 % 96 Q7 '?8 ?8 % ?Q'Y;O‘ly;2,13?14,15

TR RN TR T W LMLLEL‘.U‘L
computation of ROT unit X[n] (Y[n))

#9555 step time (= 2 basic cycles)
42 iterations (84 basic cycles) for n=16 and m=4

Figure 6: CFR-CORDIC' timing for SVD

27

