The Redundant Cell Adder

Tom Lynch and Earl Swartzlander
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, Texas 78712

Abstract

This paper describes the design of the 56-bit significand
adder for the Advanced Micro Devices Am29050!
microprocessor. This is a 1 um design rule CMOS
realization of a high performance RISC microprocessor
that implements IEEE Standard 754 floating point
arithmetic. To achieve an add time of under 4 ns for the
56-bit significand and to avoid multistage pipelines which
significantly impair compiler efficiency, a redundant cell
adder has been developed. This new design is a key to
realizing the high performance for floating point
arithmetic that is achieved by the Am29050
microprocessor.

1 Introduction

Classic high speed adders include carry lookahead, carry
skip, carry select, and conditional sum adders. A variant
of the binary carry lookahead adder was analyzed by Brent
and Kung [1]. Another variant, based on reformulating
the carry equations was developed by Ling [2]. Fast
implementations of carry lookahead adders have been
developed by Hwang and Fisher [3] in CMOS and
Bewick, Song, and Flynn [4] in bipolar ECL. For large
word sizes, the carry lookahead adder is generally
considered to be the fastest. For gate level designs where
each gate has unit delay, the carry lookahead adder greatly
reduces delay with a modest increase in complexity
relative to the ripple carry adder. In dynamic CMOS
implementations where the delay depends on the gate size
and loading, the use of Manchester carry chains [5] to
realize the carry lookahead logic significantly reduces the
gate loading, which produces a substantial speed increase.

This paper presents the design of a redundant cell adder
implemented in dynamic CMOS which combines carry
lookahead adders realized with Manchester carry chains and

1 Am29050 is a trademark of Advanced Micro Devices

CH3015-5/91/0000/0165$01.00 © 1991 IEEE

165

the carry select adder concept to achieve approximately
twice the speed of the traditional carry lookahead adder.
Because this is a cellular adder that performs redundant
calculations to generate the control signals for a carry
select adder, it is referred to as the “redundant cell adder”.

2 Logic Design of the Redundant Cell
Adder

Notation: a; and b; denote the i-th bits of the words to be
added, p; denotes that a carry will propagate across bit
position i (i.e., p; = aj + b;), and gj denotes that a carry is
generated at bit position j (i.e., gj = aj bj). pi:j signifies
that a carry will propagate from bit j (LSB) to bit i
(MSB). Similarly g;:; denotes that a carry is generated in
each of the bit positions from j to i inclusive. The
fundamental carry operation, “fco,” introduced by Brent
and Kung [1] is used:

(Pi:j»8i:j) = (Pizk+1,8i:k+1){cO(Pk:j-Ek:j) n

which is defined as:
Pi:j = Pi:k+1Pk:j and gi:j = gi:k+1+ Pik+18k:j

Brent and Kung have shown the associativity of the fco.
Forri>m>k>j.

[(Pi:m+1,8i:m+1) fc0 (Pm:k+1.8m:k+1)] fco (Pk:j-8k:j)
= (Pi:m+1.8i:m+1) f00 [(Pm:k+1.8m:k+1) fco (Pk:j-8k:j)]
)]

A block diagram of a 64 bit redundant cell adder is shown
in Figure 1. The adder uses a tree of Manchester carry
chain carry lookahead modules (on the left) to calculate the
carries for each of the eight bit carry select adders (on the
right). On the left, the Manchester carry chain carry
lookahead modules (Mcc) produces group generate and
propagate signals for four bit groups, except for the least
significant group, where carry c4 is produced. On the
second level of the tree, the first level signals are

$55:48

[9-S47:40

- S38:32

- S531:24

H»-S23:16

H»S158

pesges BImgs oy Poago Pogs ¢y Progeol—
-»ipege & paages page Q Peogeo—
poogen : 21:;; = pragw g‘;.gg*o = Pragwo 1 on 8 Bit Adder
/
pogse »lpsge o psagso Pssa, g 0 -»| on 8 Bit Adder |- ¢
»{p2g2) Pengeo g Py cse
- p1,g1 = pragro * " pzo'gv Cas
pssgss - pogo Pagz @ Peage
Pi.g E progio
pssgss sy o Paageo p‘mw:{ *1poge
»p2gz Q Paagen 1 on 8 Bit Adder =
1 P1.g1 E pragro g
ps2gs2 - po,go -
0 -»{on 8 Bit Adder |+ &
psigs wipogs o paaguo
- p2.g2 O P
- P1,g1 E p1agio £o
peeges | pogo]
1 on 8 Bit Adder "
Prga Spsgs oy Peagso P3g3 ey Po0.GO 3
1 P2.92 O Pz0,g20 pa.g2 13 p2o,geo — -
g & page PG S Proge - 0 -»|on 8 Bit Adder — & |
pesges - pogo —" pogo
P43.g43 3 P2.g3 pas,gao psz.geaf
g & peages 1
> B pragr pa.gs o0, gp: cs2 | 1 on 8 Bit Adder | »
P40.g40 ~ po,go p2g2 Q Peo.geo i
) Pro.gr 3
Pegm PG) Piugso - s‘qgg; = o o 8 Bit Adder| |
-»lp2gz) Pageo
- pr.gt E pragro -
P3sgis — pogo _L
Posgas —»{pogs o paages 1 on 8 Bit Adder |H
—»1 D292 O p2:0.g2:0 psraingorid ;
—p 0, F F 1:18,031:1! -
pegs Mpa = O 0 {0 8 Bit Adder |-{ & |
Porgs w{pgs o paages P2gs ¢y Peog—
»peg: 5 panges pegz (5 Progeo— il __L
- pr.g1 pioagro pLgt pro,gro [~ -
pzs.gas - pogo = —*poge = pasaegee 1 100 8 Bit Adder |
P2rger -9 P33 p3o, g0 3
- p2.g2 8 pzogeo 0 -»{on 8 Bit Adder— © |
= p1.gt E p1o.gro
Peegas - pogo s
Prgn »{pgs o Pongse _L
+pege § Prageo 1 on 8 Bit Adder | .
- D101 E pro,g10 i
P20,g 20— X k1]
g pogo 0 »{an 8 Bit Adder|— © |
Pr19.gio— P3,g3 1) Pao,ga:o
— P2.g2 O pa:0,gz0
— P19 E progio
16,0 16— X
Pregre={Pogo on 8 Bit Adder s7
p1sg1s — P393 o psa,goo pa.gs 1Y psogso
»p292 G Paogeo p2.g2 Pz.o.g2.0 =
1 p1.g1 E pragio p1.g1 progue
pPr12g12 i pogo ™ pogo
Prgn—s{pgs o psagie
—»|P0z Q Peagen
—»{ P1.91 E proagre
Pe.gs — pogo
P7.g7 —{ P3.93 1) pa.0.gso
—®| pa.g2 Q Pzagezo
— P1.01 E pro.gio
Ps.gs —»{ po,go
P3.g3— P3.g3 paagao
—>pg2 ¢y Prages
—lprgr QO prage
po.go—poge >
|—> o
co
Figure 1. Redundant Cell Adder Block Diagram.

166

combined to produce group propagate and generate signals
for 16 bit boundaries, and overlapping eight bit
boundaries. For example, P47:32.847:32 and the
overlapping eight bit boundary signals P39:32,839:32 are
produced. Carries cg and c1¢ are available from the least
significant group on the second level.

On the third level two Manchester carry chain modules are
used. The most significant third level module combines
the three less significant 16 bit boundary group propagate
and generate signals, p15.0,215:0; P31:16,831:16; and
P47:32,847:32, and the most significant eight bit
boundary group propagate and generate signals
P55:48.855:48 to produce carries c4g and cs¢ (note that
carry 3 is generated both here and at the lower module in
this column).

The idempotency of the fundamental carry operation must
be shown to explain the operation of the least significant
third level carry lookahead module. As shown in Equation
(2), combining group p and g signals with themselves
produces correct results. The result for propagate follows
trivially since ANDing any signal, say x, with itself
returns X, while the result for generate follows by
factoring gi.j + pijgi;j = gij (1 + Pi;j) = gizj. Thus:
(Pi:j-8i:j) = (pijugi:j) feo (Pi:j»gij) 3
Because of this idempotency property, the fundamental
carry operation can be applied to overlapping regions:

Theorem:
Giveni>m 2k > j, then (pi;j.8i:j) can be derived from
(Pi:k-8i:k) fco (pm:j,gm:j)

Proof:
The proof begins by applying Equation (1) to expand both
terms in (pj:k,gj:k) fco (Pm:jagm:j)5

(Pi:kogizk) = (Pi:m+1.8i:m+1) feo (Pm:k-8m:k) @
and
(Pm:jvgm:j) = (Pm:k-8m:k) fco (Pk-l:j»gk-l:j) ®

Substituting these for (pi:k.8i-k) and (pm:j,gm;j) in
(Pi:k-8i:x) feo (Pm:jvgm:j) yields:

(Pi:k.gi:k) fco (pm:j’gm:j) = [(Pi:m+1,8i:m+1) fco
(Pm:k.gm:k)] fco [(Pm:k.gm:K) fco (Pk-l:j:gk-lrj)]

Associativity from Equation (2) is applied to move the
brackets:

(Pi:k.gi:x) feo (Pm:j,gm:j) = [(Pi:m+1.8i:m+1) fco
[(Pm:k.gm:k) fco (Pm:k-Em:1)1] feco (Pk-l:j,gk-l:j)

167

By the idempotency of the fco operation from Equation (3)
[(Pm:k.8m:k) fc0 (Pm:k-gm:K)] reduces to (Pm:k-8m:k):

(Pi:k.gi:k) fco (Pm:j,gm:j) = [(Pi:m+1.8i:m+1) fco
(Pm:k.&m:K)] fco (pk-lzj,gk-lzj)

Applying Equation (1) to the bracketed quantity:
(Pi:k-8i:k) f€0 (Pm:j,8m:j) = (Pik.gick) fco (Px-1:j.8k-1:))
Applying Equation (1) again:

(Pi:k.8i:k) fco (Pm:j.8m:j) = (Dijigi:j) QED
Since overlapping regions can be combined with the
fundamental carry operation, the overlapping group
propagate and generate signals p31:16,831:16; P23:16s
£23:16; and c1¢ can be applied to the least significant
carry lookahead module on the third level to produce
carries for ¢4, ¢392, and c4g. Since carries on all eight bit
boundaries are now known, these are used in standard carry
select fashion to select the correct result from the eight bit
adders.

3 Implementation of the Redundant Cell
Adder

The redundant cell adder was implemented for the
Am29050 microprocessor using AMD’s 1 um minimum
drawn feature size, two layer metal CMOS process. The
basic Manchester carry chain cell is shown in Figure 2.
Outputs are tapped from the appropriate points in the
chain. In order to make the Manchester carry chain as fast
as possible, each series transistor is sized to
approximately fill the bit cell where it is placed. The tree
is laid out by placing the Mcc modules in roughly the
same position as they are shown in the block diagram of
Figure 1. The third level (and higher level if necessary)
Mcc modules are placed in holes left in the column of
second level Mcc modules to reduce the width of the
layout.

The adder floor plan is shown in Figure 3. Metal two is
used for long horizontal runs carrying the input operands,
the bit propagate and generate signals, the calculated
carries, and the results. Metal one runs vertically, and is
used for local interconnect. The LSB of the adder is at the
bottom. The inputs come from the left, while the outputs
leave at the right. The first block in the floor plan (going
from left to right) is the propagate and generate logic.
The second block is a stack of four bit Mcc modules
connected in pairs to form eight bit ripple carry sections.
A ZERO carry is input to each section in this column.

PH2, PH2)
g3 —t —
% > 93:0
o T P3:0
p3 o LA ILT
g2 = g2:0
s] PH2 PH2
|~ | = £
= =
o J——— P20
= uj it
o 01:0
PHEl FH2|
t—D> P10
= 1 k)
9o D—-—_L PH2,
G
PH
I—Z_E PH2
1 &y
Po O T
\PH2 |
Figure 2. Manchester Carry Chain Cell.
- -
T
2 § o
g || 3 g .
% 3 3 § 3
2 e e 2 = 2
Q 27} © -— £ -
3| ¢ S || 8 2 2
sl 2 O 2 i
2 = c > g c e
5 q 3 IS =m &
10 £ £ S g & o
B &) o 5 c 8
S o @ @ a3 @
2 o s T g0]
gl = < S 3 k-
] 9 L 4 o P
g 3 g g 3 s
a o o 3 - =
> g & g ¥
a E T N
Q © 3
@ K] 2
g g -
c [l
Figure 3. Redundant Cell Adder Floor Plan.

168

The third column consists of ripple carry sections with a
carry in of ONE. Next are the exclusive-OR gates for
calculating the sums from the ripple carries and the bit
propagates. The fifth column is the carry tree. The last
column consists of multiplexers which select between the
eight bit add results.

For the IEEE 754 floating point standard, double precision
significand calculation, only 56 bits are required, so carry
c56 is the carry out, and the top carry select adder (bits 56
through 63) and its multiplexer are omitted. Also, the
associated carry tree logic may be omitted, which includes
the top four Manchester carry chain blocks on the first
level and the top Manchester carry chain block on the
second level.

4 Performance

The width of the adder is roughly proportional to log n.
The second level of the adder has holes large enough to
contain three Manchester carry chains, so the third (and
fourth if required) levels of the tree can be packed into the
second level for adders of up to 256 bits. The total width
is the sum of the widths of the blocks in the floor plan:
W = Wpg + (1 + log16N) WMcc + Wesas ©
Where: W is the total width of the N bit adder, Wp, is the
width of the propagate/generate logic, WMcc is the width
of the Manchester carry chain logic, and Wcgag is the
width of the eight bit carry select adder. W is 450 um
wide (for 24 < N < 256), as implemented in the AMD
1pm CMOS technology. The total area is the product of
the width times the height:
A=WNH, Q]
Where: Hc is the height of a bit slice adder cell. Since
each bit cell is 71.6 um high, the 56 bit adder shown on
Figure 4 is 4010 pm high for a total area of 1.8 x 106
square um. The height and area of adders for word sizes
from 24 to 256 bits scales in direct proportion to the
wordsize.

As with any carry select adder, the delay is determined by
the slower of the sum computation and the carry
computation. In this implementation, the sum
computation is faster. For the carry computation,
propagate and generate signals are already set up when the
clock asserts. First, the least significant Manchester carry
chain in the first level fires. The critical delay path signal
travels through three levels of Manchester carry chains.
The worst case load is seen by cj¢ since it drives two

Figure 4.

4010 pm

Redundant Cell Adder Layout.

169

Manchester carry chain inputs; the multiplexers are well
buffered, so they present a small load. Finally the critical
carry signal arrives at the multiplexer for the most
significant eight bit adder.

D = (logaN) DMcc + Dmux ®

Where: D is the delay of the N bit adder, Dy is the
delay of the Manchester carry chain, and Dy, is the delay
of a 2:1 multiplexer. In the Am29050 microprocessor,
the time from the rising edge of the clock to the sum is
approximately 3.2 ns as shown in the electron beam
timing waveforms on Figure 5. With comparable CMOS
technologies the speed should be nearly constant for
24 <N < 64.

Figure 5. Measured Performance of the
Redundant Cell Adder. The Top Waveform is
the Clock and the Lower Waveform is the
Most Significant Sum Bit.

5 Conclusion

The idempotence of the fundamental carry operation
allows the construction of a fast adder that has small
performance degradation as the add width grows. This
adder is very fast, achieving a 3.2 ns measured add time
for 56 bit operands and is of reasonable size, as shown by
the Am29050 microprocessor implementation.

Acknowledgement
The design and initial implementation of the redundant

cell adder was performed by the first author while he was
employed by Advanced Micro Devices. Special thanks

are due Stephen Mclntyre, Danny English, and Tom
Burghart for their help in implementing this adder.

References

1l

(2]

3]

R. P. Brent and H. T. Kung, “A Regular Layout for
Parallel Adders,” IEEE Transactions on Computers,
Vol. C-31, 1982, pp. 260-264.

H. Ling, “High-Speed Binary Adder,” IBM Journal
of Research and Development, Vol. 25, pp. 156-
166, May 1981.

I. S. Hwang and A. L. Fisher, “A 3.2 ns 32-bit
CMOS Adder in Multiple Output Domino Logic,”

170

[4]

5]

1988 IEEE International Solid-State Circuits
Conference Digest of Technical Papers, pp. 140,
141, 332, and 333.

G. Bewick, P. Song, G. DeMichel, and M. J.
Flynn, “Approaching a Nanosecond; a 32-bit
Adder,” Proceedings of the 1988 IEEE International
Conference on Computer Design: VLSI in
Computers and Processors, pp. 221-226.

T. Kilburn, D. B. G. Edwards, and D. Aspinall,
“Parallel Addition in Digital Computers: A New
Fast “Carry” Circuit,” IEE Proceedings, Vol. 106,
pt. B, 1959, pp. 464-466.

