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Abstract

Multiplication represents one of the major bottlenecks in
most digital processing systems. Depending on the word-
size, several partial products are added to evaluate the
product. The well-known shift-and-add algorithm uses
minimal hardware but has unacceptable performance for
most applications. Several parallel fast multiplication
schemes have been suggested using several levels of
blocks containing full adders.

This paper presents the design of a fast multiplier
implemented using either (7,3) parallel counter or (7:3)
compressor circuits for implementation in CMOS
technology. The resulting 16 by 16-bit multiplier has
less delay than conventional fast multipliers, although the
gate count is about 10% higher.

1 Introduction

Multiplication is inherently a slow operation as a large
number of partial products are added to produce the
product. For example, in a 16 by 16-bit multiplication,
16 partial products are added. Modified Booth encoding
[1] can be used to reduce the number of partial products.
A modified Booth encoding algorithm looking at groups
of three bits at a time will reduce the number of partial
products in our example from 16 to eight. That is still a
large number and will involve a substantial delay in
comparison with other functional units in the system
such as adders. In applications like digital signal
processing, this delay is unacceptable, particularly in the
context of ever increasing throughput requirements.
Recent Reduced Instruction Set Computing processors
have also started to include multiplier units, since many
applications make extensive use of multiplication.
Researchers have developed several fast multiplication
approaches.
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Wallace [2] suggested the idea of pseudo-adders, which are
essentially arrays of full adders without rippling carries,
that take three inputs and reduce them to two equivalent
outputs. Wallace used pseudo-adders at several levels in
the summation of the partial products. Thus, for 16 by
16-bit multiplication without Booth encoding, where
there are 16 partial products, the Wallace multiplier uses
five pseudo-adders to reduce the 16 partial products to
eleven at the first level. It uses three pseudo-adders at the
second level to reduce to eight partial products, two at the
next level to get six partial products, two more pseudo-
adders to get four partial products, and one each at the
following two levels finally producing two partial
products. At this point, a fast carry propagate adder
(CPA) such as a carry lookahead adder, carry skip adder,
carry select adder, etc. is used to determine the final
product. Thus, a Wallace multiplier has a total delay
equivalent to six full adder delays plus one CPA delay. A
shift-and-add algorithm has 15 CPA delays for the same
case, although it uses less hardware. The array multiplier
scheme used by other researchers [3], makes use of only
one pseudo-adder at each level. It reduces the number of
partial products by one at each level. Therefore, for the
16 by 16-bit multiplication case cited above, it takes 14
full adder delays and one CPA delay.

Dadda [4], [5] generalized the idea of using full adders to
reduce the partial product matrix by introducing the
concept of (n,m) parallel counters. An (n,m) parallel
counter is a combinational network with n inputs and m
outputs where the outputs express the count of the
number of inputs that are ONEs. Thus, a full adder is a
(3,2) parallel counter. Dadda aimed at reducing the height
of the partial product matrix by application of suitable
parallel counters. He further theorized that depending on
the available parallel counters, a sequence of numbers
exists which could be used to determine the appropriate
height of the partial product matrix at each level. At
every level, he used just enough parallel counters to
reduce the height of the partial product matrix to the next
lower number in the sequence. When using (3,2) parallel



counters, the sequence is 2,3,4,6,9,13,19,etc. A
16 by 16-bit multiplier using Dadda's scheme has the
same delay as the Wallace multiplier and requires fewer
gates, but has a less regular structure and might be more
difficult to lay out in VLSI.. Dadda's scheme can be
implemented with parallel counters other than (3,2)
counters.

In the Dadda (n,m) parallel counter, n is the number of
inputs with equa! weight. The n bits must come from
the same column of the partial product matrix. Stenzel,
et al. [6] extended this idea to include parallel counters
with input bits coming from multiple columns, which
are described as (ck.1, €k-2, . . . , ¢g, d) parallel counters,
where k is the number of input columns, c; is the number
of input bits in the column of weight 2!, and d is the
number of output bits. Counters like (5, 5, 4),
(2,2,2,3,5) and (3, 3, 3, 3, 6) were suggested and the
Wallace or Dadda scheme was used to reduce the partial
product matrix height to two rows. The design included a
4 by 4 array implemented with a ROM for the generation
of the partial product matrix instead of the AND gate
arrays used by others. This reduces the initial number of
partial products. Appropriate multi-input parallel
counters were used to reduce the height of the partial
product matrix. The major drawback of this design was
the use of ROMs for implementing the parallel counters.
While a ROM based approach is practical for LSI
technology, it is impractical with current VLSI
technology since ROMs are slow and occupy substantial
area. Multi-column parallel counters implemented using
combinational logic have large delay due to the need to
propagate the carry across several columns.

In implementing multipliers the word sizes are generally
multiples of two. Researchers have explored this idea by
using a (4:2) compressor to convert four bits to two.
This block is really a (5,3) counter that takes four input
bits, one intermediate carry input bit from the previous
column, and generates an intermediate carry output with
weight two and two output bits with weights one and
two. Recently Santoro and Horowitz (7] implemented a
64 by 64 array multiplier with (4:2) compressors realized
using pairs of (3,2) counters. Earlier Shen and
Weinberger designed a (4:2) compressor without using
(3,2) counters [8]. They used exclusive-OR gates to
derive the sum bit from the five inputs. The intermediate
carry is generated using the four inputs, while the carry
output is based on the four inputs and the intermediate
carry from the previous block. More recently,
Nagamatsu, et al. [9] used this approach with minor
modifications to implement a 32 by 32 bit multiplier
using a (4:2) compressor circuit realized with 0.8-um
CMOS.
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Swartzlander [10] introduced a methodology to design a
counter with 2k+1 inputs, using two k input counters and
a (14 loga(k) |) stage ripple carry adder. Using this
philosophy a (7,3) counter can be designed using two
(3,2) counters and a two stage ripple carry adder (which is
equivalent to two (3,2) counters).

This paper, describes a multiplication scheme using a
(7,3) counter circuit that offers substantial improvement
over the one implemented with (3,2) counters. To
illustrate its utility, the logic design of a 16 by 16-bit
multiplier using (7,3) parallel counters is described. It
has fewer gate delays than the Wallace and Dadda schemes
for a 10% increase in gate count. It has slightly more
gate delays than the (4:2) compressor based 16 by 16-bit
multiplier with a slightly smaller gate count. Since the
counter based design has fewer inter cell data lines, it is
expected to be easier to lay out and may be faster due to
the reduced capacitive loading on the interconnections. A
design for a multiplier based on (7:3) compressor circuits
exhibits almost identical delay and area characteristics to
the based on (7,3) counters.

The next Section presents the design of the (7,3) counter.
This methodology is useful for designing similar blocks
with a higher number of inputs which would be suitable
for large word-size multipliers. The (7,3) counter is also
compared with a (7,3) counter designed using (3,2)
counters. After that, a (7:3) compressor which is
designed by modifying the (7,3) counter is described.
Then, practical application of these circuits is
demonstrated by considering a 16 by 16-bit multiplier
design. Some of the decisions in the design are scalable
to larger word-sizes. The design is compared with similar
implementations using the Wallace, Dadda, and
Nagamatsu schemes.

2 (7,3) Parallel Counter

Figure 1 shows the logic diagram of the proposed (7,3)
counter. The seven inputs are divided into two groups
(X0, X1, X2, X3) and (X4, X5, Xg). Internal signal A
is the carry for two, three, or four ONEs in the first group,
while internal signal B is the carry for two or three ONEs
in the second group. Finally, internal signal C is
generated by ORing the carry for 4 ONEs in the first
group (along with A) and 1-1, 1-3, 3-1, and 3-3
interactions between the two groups. A, B, and C are
combined using a conventional full adder to get outputs
C1 and Cy, with weights of two and four respectively.
This circuit has been tested exhaustively through logic
simulations to confirm that it correctly implements the
described functionality.



(7,3) Parallel Counter.

Figure 1.

Figure 2 shows the block diagram of a (7,3) parallel
counter implemented using (3,2) counters. First two
(3,2) counters take six of the seven inputs and generate
two sum and two carry outputs. The sum outputs are
combined with the seventh input in another (3,2) counter
to generate the S output of the (7,3) counter. The carry
output of this (3,2) counter is combined with the carry
outputs from the two first level counters using a fourth
(3,2) counter to yield Cy (which is the sum output) and
C2 (which is the carry output), with weights of two and
four respectively. This circuit has six exclusive-OR
delays. Assuming that an exclusive-OR gate has twice
the delay of a normal gate, and assuming that complex
AND-AND-NOR and OR-OR-NAND gates have 1.5 times
the delay of a normal gate, the proposed (7,3) counter has
four exclusive-OR delays which is a 33 percent
improvement over the one using (3,2) counters while
using approximately the same number of gates. The next
Section presents a (7:3) compressor circuit designed by
modifying the (7,3) counter.

3 (7:3) Compressor

In designing a (4:2) compressor, a problem arises since a
sum output with a weight of one and a carry output with
a weight of two are not enough to convey the maximum
possible count of four. This problem is circumvented by
generating an intermediate carry output which is fed into
the next block in the adder array. Thus a (4:2)
compressor is effectively a (5,3) counter. A block
diagram of a (4:2) compressor is shown in Figure 3. The
first box takes the four inputs and generates one sum
output §' and two carry outputs Coy and C. C'is
generated only when S' is zero. The next box takes §',
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Cin, and C' as inputs and generates S and C. Since S and
C cannot represent the case when C', S', and Cj,, are all
ONEs, C' is forced to be ZERO when S' is ONE. Carries
in such cases are accounted for by Coyut which is
essentially the Cj, to the next (4:2) compressor. One
advantage of this scheme is that the intermediate carry
output, Coyt, is generated only by the four inputs and is
used in the following block to generate C and S. This
avoids carry propagation across more than two blocks.
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Figure 3. (4:2) Compressor.

A similar idea was used in designing the (7:3)
compressor. Figure 4 shows a block diagram of this
compressor. Of course, three outputs are enough to count
seven bits, and the intermediate carry outputs could have
been avoided. They were retained to explore the
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Figure 4. (7:3) Compressor.



possibilities of reducing the overall delay and gate count
of the multiplier. The left box takes inputs Xo-Xe and
generates the sum output S' and carry outputs Coutl»
Cour2, and C2. Coupl and Coyr2 are intermediate carries
which are fed into the next (7:3) compressor block in the
adder array as Cjn1 and Cin2. In the next box, S, Cin1l»
and Cjn2 are added using a conventional (3:2) counter to
generate S and Cj. S, Cy, and C are the three output
bits. Note that this circuit differs from the (7,3) parallel
counter in that C1 and C3 both have a weight of two.

Figure 5 shows the logic diagram of the (7:3)
compressor. This circuit is very similar to the (7,3)
counter circuit. Cout] is generated only from Xo, X1,
X», and X3 for cases when two, three, or four of them are
ONEs. Similarly, Cout2 is generated from X4, Xs, and
Xg. This is useful when this block is used with five
inputs as Coy2 is not generated in that case. Usually,
the next block in such cases is a Nagamatsu (4:2)
compressor which takes only one intermediate carry
input. C takes care of the carries not accounted by
Cour1 and Cour2.
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Figure 5. (7:3) Parallel Compressor.

4 Implementation

A CMOS 16 by 16-bit multiplier has been designed
using the (7,3) counter and (7:3) compressor circuits
described above. The multiplier uses 16-bit magnitudes,
but could be modified to accept twos complement
numbers by the Baugh and Wooley approach [11]. Booth
encoding is not used here, although the approach is
applicable to multipliers using modified Booth encoding
[1]. The parallel structure closely resembles the Wallace
scheme with some modifications. Figures 6 and 7 show

the partial product matrices for multipliers using (7,3)
counters and (7:3) compressors respectively.

The partial product matrix is generated using an array of
AND gates. In the Wallace multiplication scheme, each
row of the partial product matrix is input to an array of
adders (compressors). As shown in Figures 6 and 7, this
was modified slightly to reduce the overall delay. Thus,
partial products included in the first block are the ones in
the top seven rows plus some of the bit products from the
two rows below. This is shown by the solid line which
steps down on the left. The same procedure is repeated
for the second block at the top level. As a result of this
modification, four bit products are left at the lower right
corner (columns 14, 15 and 16) of the partial product
matrix. These are reduced to one partial product using
two half adders. This results in seven partial products at
second level which are reduced to three and from then to
two using arrays of full adders (i.e., (3:2) counters). If
this modified approach were not used, there would have
been eight partial products at the second level and four at
the next level. The (4:2) compression would have been
required at the third level which would have added to the
delay and the gate count.

Half-adders (2,2), full adders (3,2), (4,3) counters or 4:2)
compressors, (5,3) counters or (5:3) compressors, and
(6,3) counters or (6:3) compressors were used at the right
and left end of the top two levels. (4,3), (5,3) and (6,3)
counters are modified (7,3) counters with slightly reduced
gate count. Similarly, (5:3) and (6:3) compressors are
modified (7:3) compressors.

5 Discussion

The complexity of a variety of different implementations
of a 16 by 16-bit multiplier is shown on Table 1. The
Table shows the number of components (i.e., adders,
compressors, and counters) and the total equivalent gate
count for several multipliers. The equivalent gate count
is the sum of number of “simple” gates (i.e., inverters, 2-
input and 3-input NAND and NOR gates), 1.5 times the
number of complex gates, and two times the number of
exclusive-OR gates. It is expected that an implementation
using (7,3) counters will be easier to lay out due to the
absence of intermediate carries.

The multiplier delay can be compared by evaluating the
number of gate delays to reduce the number of partial
products from 16 to two. Note however that the total
time to perform the multiplication must also include the
time to generate the bit products (one gate delay) and the
time to sum the two words in a carry propagate adder (ten
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with (7,3) Counters.
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16 by 16-Bit Multiplier Implemented with (7:3) Compressors.
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Table 1. Comparison of the Complexity of Various 16 by 16-Bit Multipliers.
Wallace Dadda (4:2) Compressor (7:3) Compressor (7.,3) Counter
Half Adder 35 16 18 14 10
Full Adder 200 196 18 21 30
(4:2) Compressor 95 15
(5:3) Compressor 8
(6:3) Compressor 8
(7:3) Compressor 28
(4,3) Counter 6
(5,3) Counter 8
(6,3) Counter 11
(7,3) Counter 28
Total Gate Count 1575 1452 1641 1650 1623

delays for a carry lookahead adder). The Wallace and
Dadda multipliers both use six levels of full adders (four
gate delays each) to reduce the number of partial products
from 16 to two. As each full adder has two exclusive-OR
gate delays (two “simple” gate delays each), their delay is
24. The (4:2) compressor approach uses three exclusive-
OR gates per level, using three levels to reduce the partial
products to two giving a total of 18 gate delays. Both of
the new schemes (i.e., using (7:3) compressors and using
(7,3) counters) have a delay of eight exclusive-OR gate
delays plus one full adder delay for a total of 20 “simple”
gate delays. Implementations based on (4:2)
compressors, (7,3) counters, and (7:3) compressors
improve upon the Wallace and Dadda schemes in terms of
overall delay.

One of the advantages of the multiplier implementation
using (7,3) counters over the implementation with “4:2)
compressors is the reduced number of interconnections.
This has been established in IBM RS/6000 Floating
Point Unit design {12] which uses (7,3) counters to
implement a 56 by 56 multiplier. The (4:2) compressor
reduces four bits to two at each level, while the (7,3)
counter reduces seven bits to three. Clearly a multiplier
implemented with (4:2) compressors will require more

blocks at the early stages of the bit product reduction

process than one using (7,3) counters. At lower levels,
as the number of rows of partial products goes down,
implementations using (4:2) compressors become more
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efficient. For example, a 56 by 56 bit multiplier requires
eight (7,3) counter arrays at the top level to reduce the
number of partial products to 24 or 14 (4:2) compressor
arrays to reduce the number of partial products to 28. At
the next level, it requires three (7,3) counter arrays to
reduce to twelve partial products or seven (4:2)
compressor arrays to reduce to 14 partial products. In
addition to the increased number of interconnections
because of the greater number of blocks, (4:2)
compressors also require connections between adjacent
compressors for intermediate carries. The major difference
between implementations using (7,3) counters and (7:3)
compressors is that the compressor based
implementations require interconnections between
adjacent blocks for the intermediate carries.

The (4:2) compressor based approach has a slightly lower
delay with a gate count that is slightly higher than that of
the (7,3) parallel counter implementation. Saving two
gate delays out of a total of 31 (this includes one delay for
the AND gates that generate the bit product matrix, 20
delays for the reduction to a two row matrix, and ten
delays for a carry lookahead adder) may be less significant
than the speed variation due to gate loading which is
expected to be less for the (7,3) parallel counter
implementation.. Multipliers implemented with (4:2)
compressors are expected to be harder to lay out than
those implemented with (7,3) counters as there are more
interconnections.



6 Conclusion

A novel scheme for parallel multiplication using (7,3)
counter circuits has been designed and discussed. A (7:3)
compressor circuit was investigated as an extension of the
(4:2) compressor concept. This study indicates that
parallel multipliers implemented using (7,3) counters
have better performance than those implemented using
(7:3) compressors. They exhibit identical delay
characteristics while the counter implementation requires
fewer gates and lays out better. Although the (7.3)
counter implementation uses more gates than the Wallace
and Dadda schemes, it achieves a lower delay. The (7,3)
counter based implementation compares favorably with
the (4:2) compressor implementation in terms of gate
count, although it has slightly higher delay for the 16 by
16-bit multiplier example.
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