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Abstract

We present a new algorithm for shared radix 2 division
and square root whose main characteristic is the abil-
ity to avoid any addition, when the digit 0 has been
selected. Unlike other similar works, the solution pre-
sented uses a redundant representation of the partial
remainder, while keeping the advantages of classical
solutions. The paper shows how the next digit of the
result can be selected even when the remainder is not
updated, showing also the tradeoff arising. The aver-
age occurrences of 0 digit selections is also estimated in
order to assess the benefits of the algorithm presented.

1 Introduction

Division and square root have always played primary
roles in the computer arithmetic. Their importance has
became more relevant with the recent introduction of
the IEEE 754 floating point standard, as units comply-
ing with the IEEE 754 must include both division and
square root in their instruction sets. Several architec-
tures have been proposed for division, for square root
and for shared division and square root in [11], [1] and
more recently in [6], [4], [5], [10] and [2].

In this paper we present a new algorithm for shared
radix 2 division and square root whose main character-
istic is the possibility to avoid the addition required by
normal steps when the digit 0 has been selected in the
previous iteration. Actually, while normal iterations
require that the partial remainder is updated by carry-
ing out an addition/subtraction, fast iterations update
the partial remainder simply with a left shift, with no
addition/subtraction, and so can be executed faster.

The possibility to speed up the duration of the whole se-
lection process by decreasing the number of additions,
has been extensively explored in several works of the
past literature. Robertson in [11] introduced the con-
cept of redundancy with the precise aim of increasing
the probability of selecting the digit 0, thus in effect
reducing the number of additions necessary for updat-
ing the partial remainders. Wilson and Ledley in [14]
claimed that with Robertson’s method applied to divi-
sion two digits per iteration were produced (on the av-
erage). The same paper [14] also cites a work by Smith
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and Weinberger [12], which concludes that for random
sequences, the ratio of required cycles to quotient bits
approaches 1/3 asymptotically. Freiman in [7] consid-
ers division and presents an analytical analysis based
on Markov Chains, to determine the distributions of
the remainders and of the divisors, for different ranges.
In particular, in [7] it is shown that Robertson’s algo-
rithm produces 8/3 binary digits per iteration, a result
which is confirmed by the simulation described in the
same paper. Square root is considered in the detail by
Metze in [8]. All the aforementioned methods refer to
carry assimilated representations of the partial remain-
der, and then need long carry propagated additions,
while a more attractive solution is certainly represented
by partial remainders represented in redundant (e.g.
carry save) form.

This paper studies again the problem of considering
the selection of the digit 0, but from a different point
of view. Our approach first considers the “classical”
algorithm for shared radix 2 division and square root,
with redundant representations of the partial remain-
ders. Then, by introducing some modifications to the
basic unit, an architecture is derived which could take
the maximum advantage of the 0-selections, still main-
taining the digit selection rules of the “classical” im-
plementation. The simulation will provide tables re-
porting the average number of O-selections in the case
of different assimilations of the most significant bits of
the partial remainders.

The paper is organized as follows: in section 2 we out-
line the proposed algorithm when applied to division,
and we then provide the extension to square root in
section 3. In section 4 our architecture for the pro-
posed radix 2 division and square root algorithm is in-
troduced. The evaluation is left to section 5, while the
differences with previous works are discussed in section
6.

2 Division
The algorithm for computing the division z/d in base
2 [11], relies on the following formulae

w; = 2(winq ~ Yi—1d) = 2i+1(x —Yi_.d) (1)



Table 1: Definitions of symbols used

i iteration step

w;_1 shifted partial remainder value at step i — 1,
with wo = 2z

digit of the partially developed result which
has been computed at the i-th iteration of (1);
Yi € '{‘1: 01 '+'1}

divisor

dividend

value of the quotient after the i-th iteration,
With Y_l =0

Yi

~a e

Y;=Yi_1+27y (2)

where the symbols used are defined in Table 1. For
the purposes of this paper we define an iteration as the
set of operations between two consecutive digit selec-
tions. Therefore, iteration ¢ is the set of operations
occurring between the moment when Yi—1 is selected
and the moment when y; is selected. For division, we
consider z and d as being normalized to 1/2 < d, z < 1.
It turns out that the result Y = z/d is normalized to
1/2 <Y < 2. It is assumed for z and d to be available
in their full precision and in carry assimilated form,
at the beginning of the iterations, thus excluding from
this analysis the on-line algorithms [13].

2.1

Both the algorithm and the architecture for radix 2 di-
vision are well known from the existing literature [4]
and Fig. 1 shows a sketch of the scheme of the “classi-
cal” architecture for radix 2 division. The shifted par-
tial remainder w;_; is stored in redundant form in the
registers C and S. The carry lookahead adder CLA then
operates the assimilation of the 4 most significant bits
of w;_; which is input to the digit selection table T.
The selected digit y;_; is then used to update the pre-
vious partial remainder by means of a carry save adder
CSA and a shift of one position left (block SH). To
handle conveniently the cases of positive and negative
update of the partial remainder CSA can work in co-
operation with a 1’s complementor (COM). The on-the
fly-conversion [3] of the partially developed result Y; is
carried out by the sub-unit OTFC.

When the shifted partial remainder is represented in
carry save form [4], the selection rules for the digit y;_;
are:

Previous work

select y;_; = +1 if 0< Wiy <3/2
select y;_1 =0 if @B, =-1/2 (3)
select y"_lz—-l Zf —5/2${Di_15—1

where @;_; (expressed on 4 bits in two’s complement
denotes the representation of w;._; in carry assimilate
form, truncated to the first fractional bit. It should be
observed that the selection Yi-1 = +1 (or yi_y = -1)
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Figure 1: Conventional radix 2 division unit

implies the necessity to update the shifted partial re-
mainder by subtracting (adding) the divisor and by
performing a left shift of one position. Conversely,
when the selection is y;,_; = 0, it is only necessary
to shift one position left w;_; in order to get the new
w;.

2.2 The algorithm

The proposed algorithm comes from two consequences
which arise when the digit y;_; = 0 has been selected:
i) to get the new shifted partial remainder w; it is not
necessary to pass through any carry save adder, but
only to perform a left shift, and i) the value of @);
can be easily deduced from ;_;; in fact, the informa-
tion provided in output of the carry lookahead adder
at iteration ¢ — 1 is also valid for iteration i since it
is not affected by any manipulations other than a sim-
ple shift. These concepts can be better presented by
referring to the numerical values. Let us assume the
selection y;_; = 0. From the selection rules (3), we
have @; ., = —1/2. Let us now consider the left shift
required by (1) to get the new w; from the previous
w;—1. With reference to Fig. 2, we can observe that
it is possible to obtain the new value of @; from the
previous @;_; in a very simple way. The three bits of
W; from the weight 22 to the weight 2° are respectively
the same as the three bits from the weight 2! to the
weight 2= of @;_;. This is due to the fact that when a
0 has been selected it is necessary to perform only sin-
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Figure 2: Updating of the partial remainder when the
digit 0 has been selected

gle shift left, and in such a case the information given
by the CLA is not corrupted. As can be seen in Fig. 2,
the fourth bit (i.e. the least significant) which is neces-
sary to determine completely the new @; used for the
next digit selection, must come from the assimilation
of the two bits of w;_; with weight 272, i.e. the two
bits of w; with weight 2=, Let us denote with a; the
assimilation of the two bits of weight 2! of w;. Three
possibilities exist:

1. The assimilation yields 0, which becomes the
least significant bit of @;. In fact, @W;—; = (1111),
implies @; = (1110), i.e. @; = 2@;_1 +0-27 =
—1. In such a case, according to the rules (3), the
next digit selection must be y; = —1.

2. The assimilation yields 1 and, according to (3),
it must be y; = 0.

3. The assimilation yields 2 and, according to (3),
it must be y; = +1.

Therefore, it should be noted that the digit selection
at step ¢ (when a 0 has been selected at step i — 1),
is very easy and it is only determined by the value of
the assimilation of the two bits of w;_; with weight
2~2%, because the information provided by output on
the CLA is not corrupted by updates and can be reused
in the selection procedure of the next iteration. Should
a digit 0 be selected at step i too, the aforementioned
process can still be applied for the selection procedure
at step 7 + 1, and so on. The proposed algorithm is
formally expressed by the following selection rules:

o Ify, 1 #0
select y; =+1 if 0<@; <3/2
select y;, =0 if W, =-1/2 (4)
select y; = -1 if —-5/2<@;< -1
e If y, 1 =0 then
select yi=+1 if a;=2-2"1
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ai=1-2‘1

a; =0.27!

iof (5)

if

select y; =0
select y; = —1

where a; (expressed on 2 bits in binary form) denotes
the result of the assimilation of the two bits of weight

2-1 of w;.

3 Square root

The algorithm for square root, although different in
the iteration step from the division recurrence (1), has
been shown to present many similarities with division
in the selection rules. This has allowed units to be
designed where the same hardware is shared by division
and square root [6]. The algorithm for computing the
square root \/z in base 2 [10], relies on the following
formulae

zi = 2[zic1 — (2Yio1 + 327y = 2(z0 — Y2)2'1T (6)

Yi=Yio1 427 (7)

where z;_; is the shifted partial remainder value at
step i — 1, with z9 = 2z, and the same notation in-
troduced for division has been adopted. For square
root we assume z as being normalized to 1/4 < z < 1.
It turns out that the result ¥ = /z is normalized to
1/2 < Y < 1. Also for square root, it is assumed for
z to be available in its full precision and in carry as-
similated form, at the beginning of the iterations. A
key work in the study of binary square root is rep-
resented by [10], where an architecture which is very
similar to the scheme of Fig. 1 is assumed as reference
model, and where it is demonstrated that the selection
rules are the same as for division (3), provided that
the transformation of variables @;_; = %;_;/2 is taken
into account, i.e. the fractional point is considered to
be shifted by one position. It turns out that the same
considerations expressed in section 2.2 are still valid,
and also for square root our algorithm can be formally
expressed in the same terms as the selection rules (4)
and (5) with @;_1 = Zi_1/2.

4 Architecture for shared division and
square root

4.1 Previous work

The selection rules for radix 2 division (3) need to be
implemented by table T in Fig. 1. The quotient digit
selection of y; can be implemented in two ways [4], ei-
ther by first using a carry lookahead adder (CLA) to
assimilate the four most significant binary positions of
w; so as to produce @; and then using the four result-
ing bits as inputs to a combinatorial network for the
selection, or by using the eight bits of the four most
significant positions of the carry save representation of
w; as inputs to the combinatorial network. The main
difference between the two choices is in the assimilation
of the most significant part of w;, which is performed
by the carry lookahead adder CLA and by the selection
table T itself, respectively. Therefore, the architecture
sketched in Fig. 1 refers directly to an implementation



related to the first choice, while it is necessary to re-
move the CLA in order to obtain the architecture re-
lated to the second choice (actually, with a different
and a (slightly) more complex selection table T).

Let us consider the combinational functions to im-
plement the selection procedure [4]. We denote with
8:,38i,28:i.184,0 and ¢; 3¢;2¢;,1¢; 0 the sum and carry bits
of the four most significant binary positions of w; re-
spectively, and with r;37; 27 170 their assimilation
{i.e. the four most significant bits of @;) and we as-
sume that a quotient digit represented in sign and mag-
nitude (g. and g,., respectively) is produced, where
+1 is represented by (q.,gm) = (0,1), 0 is repre-
sented by (q.,qm) = (1,0), and —1 is represented by
(¢s,gm) =(1,1). When a CLA is used, a possible pair
of selection functions would be

qs
q"!-

' (8)

74,27i,174,0

Conversely, when the assimilation is performed by the
selection functions themselves, according to [4] we have

4 = Pi3®(gi2+ pi29i1+ Di2bi19i0)
9m = Pi2PiaPio (9)
where
Pij=3%;®c; and g;=sc; (10)

It should be noted that for both types of implementa-
tions, either with or without CLA, it is still necessary
to have the possibility of updating the partial remain-
der by adding both positive and negative terms (e.g.
+d and —d in the case of division), a task which is
assigned to the 1’s complementor block COM in Fig.
1. Although other alternatives not needing COM ex-
ist when considering division, the block COM becomes
necessary for square root, where the updating of the
partial remainder must be performed according to the
partially developed square root value, which in turn is
not fixed to a given constant, but changes as the it-
erations evolve. The “correction” into 2’s complement
representation can be performed in a similar way to
the one used in [15]. The block COM, can be imple-
mented by a set of EX-OR gates, driven by an enable
line, which below is referred to as f.

4.2 Proposed architecture

The reference model for our architecture is shown in
Fig. 3, and is designed to implement the algorithm il-
lustrated in section 2.2, by introducing some particular
concepts and blocks which let the architecture to be
particularly efficient. First of all, the partial remainder
is stored in a redundant form which is different from
the usual carry and sum form used in Fig. 1: register P
contains the EXOR of the carry and sum bits with the
same weight, which are output by the modified carry
save adder MCSA, while register G stores the AND op-
eration performed on the same bits. In other words, P
holds the p; ; and G holds the g; ; bits as defined by
relations (10). The contents of P and G are shifted
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Figure 3: Architecture for fast division and square root

one position left by suitable wiring and then enter the
block MCSA, i.e. a modified carry save adder. Also
d (i.e. the divisor) and f (the enable signal for the 1’s
complementation) enter MCSA, and it is worth remem-
bering that f = 0 has the implicit meaning to take d,
while f = 1 has the meaning that the 1’s complement
of d is taken. The block MCSA plays an important role
in our architecture. Let us consider the boolean func-
tions for computing the “next” carry and sum of the
partial remainder when a selection different from the
digit 0 has been performed at the previous iteration:

i ®3,;0(fOd))
cij(f @ d;) + 8:;(f ®dj) +cijsi;(11)

where d; denotes the j—th bit of the divisor d. Since the
EXOR operator is associative, it is possible to rewrite
expressions (11) as functions of p; ; and g, ; only.

Sit1,j

Cit1,j

pi;i®fBd;
gij + fd;pij + fdipi j

Sit1,y
Cit1y (12)
The block MCSA implements the functions of sum and
carry given by (12), with a complexity comparable with
that of the usual scheme of the carry save adder (e.g.
CSA in Fig. 1) implementing relations (11) where, how-
ever, (f @ d;) represents a single variable (created by
the block COM) and not an operation. The MCSA’s
output is the carry and sum representation of the new



partial remainder, and corresponds to the point where
the carry lookahead adder CLA takes the most signifi-
cant bits of the carry save representation of the partial
remainder, just as is done in the architecture of Fig. 1.
This ensures the algorithm to be exactly the same for
both schemes (however, when y;_; # 0), although in
Figures 1 and 3 different representations of the partial
remainder are retrieved in the registers. The carry and
sum representation coming out from MCSA is trans-
formed in EXOR-AND representation by the block CO-
MAND); the outputs are stored in P and G respectively,
and the unit becomes ready for a new iteration. The
role of TAB is to implement the selection rules of our
algorithm defined in section 2.2, while the block H is a
single bit register, destined to hold the information re-
quired by the algorithm on the previous digit selection.
In particular, the following convention can be adopted:
during iteration i, the block H stores 0if y;_; =0 and
1if yi—1 # 0. The boolean variable associated with the
contents of the register H is denoted with h. The de-
sign of TAB plays a key role in the whole architecture,
and must be split into two cases: when a CLA is, or is
not, used. We again consider the digit to be selected
as being represented in sign and magnitude, with the
same notation of section 4.1. When a CLA is used to
perform the assimilation, from (8) we have

ri3h + hgio
(Fizmiimi0)h + hpio

‘D
qm

= (13)
Conversely, when a CLA is not used, the selection func-
tions are again given by (9) since the assimilation is car-
ried out by the table TAB itself. and it is not necessary
for h to enter the table TAB. The block OTFC is used
to perform the on-the-fly conversion into a non redun-
dant form, by following the guidelines given by Ercego-
vac and Lang in [3]. Observe that, at the end of all the
iterations, the remainder of the division operation, can
be obtained directly from the output lines of the block
MCSA in carry save form. Finally, a variable duration
clock should be used in the architecture, to regulate
the timings of normal and fast iterations. This circuit
can be easily implemented, provided that the longer
cycle is an integer multiple of the shorter. In this case,
the selection of a non-zero digit disables the clock for
P and G registers, for a number of cycles needed to
obtain the required period; this can be implemented
straightway by using a counter or a shift register used
as a delay line for the clock enabling signal. As a small
ratio between the two clocks is expected, the number of
additional flip-flop required is only a small percentage
of the 2n memory elements used to implement P and G
registers, hence it will influence only to a limited extent
the cost of the whole unit. The evaluation of the whole
architecture will be discussed in section 5.

4.3 Remarks and extension to square root

At this point, the operating principle of the architec-
ture of Fig. 3 turns out to be very simple. Our ar-
chitecture behaves as a “classical” unit, by performing
normal iterations, until a digit selection y;_; = 0 oc-
curs. In correspondence of this event, the i — th itera-
tion is carried out faster than normal iterations, since
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it is not necessary to pass through any carry save up-
dating. The initialization phase is the same as in the
“classical” architectures, as when a new computation
starts, the register P is loaded with the non redundant
representation of the dividend (or radicand, for square
root), while the register G is loaded with all 0’s. The
extension to square root is straightforward, since as we
have seen in section 3 the algorithm is the same, and
therefore the sharing of our unit between division and
square root is implemented exactly in the same way as
is done in the other architectures for both division and
square root.

5 Evaluation

The complete evaluation of the proposed architecture
involves two aspects: hardware requirements and per-
formance evaluation. Concerning the hardware, only
very limited additional resources are required by our
architecture shown in Fig. 3 with respect to the “clas-
sical” unit in Fig. 1. In particular, they are: : { a “line”
of AND gates to implement a part of the block CO-
MAND, 1) a few flip-flops to implement the register
H and the variable duration clock, #i) the amount of
hardware necessary for the selector to permit to per-
mit the loading through or bypass the CSA, and iv)
(only when the CLA is used), a few logical gates so
as to implement the slightly more complex selection
functions of TAB with respect to the table T. The per-
formance evaluation must take into account the two
separate cases when a CLA is, or is not, used to assim-
ilate the most significant bits of the partial remainder.

Architecture with carry lookahead
adder

By looking at Fig. 3 we observe that the blocks CO-
MAND and CLA operate in parallel. In fact, as we have
seen in section 4.2, CLA is a 4 bit carry lookahead adder
and COMAND is a line of EXORs in parallel to a line of
AND gates, and hence it is reasonable to assume that,
independently of the iniplementation technology, the
delay of the CLA is larger than or, equal to, the delay of
the block COMAND. Therefore, the execution time of
a normal iteration of the proposed architecture in Fig.
3is Thewnorm.CLA = tMC5A +tcLa +1trAB + treg. PG
where, in general, tx denotes the delay of the bﬁock
X in the architecture in Fig. 3, and t,.4 pc the delay
for loading the registers P and G (including the delay
of a selector to permit the loading through or bypass
the CSA). On the other hand, the execution time of an
iteration of the “classical” architecture is Toq.cra =
tesa.com+tera+ir+itrey.cs, where tcsa con is the
total delay required for a carry save sum/subtraction
and t,.4.cs is the delay for loading the registers C and
S. For fast iterations the execution time of our archi-
tecture becomes Tew, fast.CLA = tTAB + lreg.PG-

5.1

5.2 Architecture without carry lookahead
adder

By removing from Fig. 3 the block CLA we observe that
the critical path passes through MCSA, COMAND,
the register load and TAB. The execution time of



a normal iteration of the proposed architecture be-
comes Tyew,normnocLa = tMcsa+tcomMmanp +irap+
treg.pG. Let us consider now the architecture in Fig.
1 when the CLA has been removed. From the expres-
sions of the selection functions (9) we see that they
require the knowledge of the terms p;; and g ;, as
they are defined in (10). This is equivalent to con-
sidering the functions for digit selection in the archi-
tecture in Fig. 1 as being implemented by the coop-
eration of a block COMAND (to compute the terms
of (10)), and a table T to implement the functions
(9). Therefore, the execution time of an iteration of
the “classical” architecture in Fig. 1 is Toignocra =
tesa.coM +tcoMAND +iT + treg,cs. It is worth re-
memi)ering that as we have seen In section 4.2, both
tables TAB and T implement the same relations (9).
For fast iterations the execution time of our architec-

ture becomes Toiew. fastnocLa = tTAB + treg PG
5.3 Average execution time

From the previous computations, it emerges that tech-
nological factors determine whether normal iterations
of the proposed architectures are longer or shorter than
the iteration delays of the “classical unit”, although in
general it is expected for this difference to be small.
Anyway, even if the normal iterations could have a
longer duration, the average performances may be im-
proved if a sufficient number of fast iterations is ex-
ecuted. The aim of this section is to determine the
average execution time, that is to say how much the
fast iterations contribute to reducing the average iter-
ation time. Since a pure theoretical analysis is very
complicated, we have preferred to direct our efforts to-
wards the simulation in order to detect the number of
occurrences of the fast iterations. We have first con-
sidered the square root, by performing an exaustive
type of simulation, that is to say, we have considered
all the possible radicands expressed on a given number
of bits. For our purposes, the generic radicand z has
been taken into account as expressed in carry assim-
ilated form. Our simulation has explicitly considered
the behavior of the proposed architectures (irrespec-
tive of whether the CLA is used). This means that, in
correspondence to the selection of a 0, no sum opera-
tion has been performed. The results of the simulation
for different lengths of the radicands and for different
assimilations of the most significant bits of the remain-
der, are reported in Table 2. From Table 2 we see that,
as the number of bits of the radicand increases, the
percentage of 0 selections is approximately 28% when
an assimilation of 4 bits of the result is considered by
the digit selection process. As it will be explained in
section 5.4, higher percentages are obtained with the
increase of the number of bits of the remainder which
are assimilated. Basically, we have used the same as-
sumptions for simulating division as those adopted for
square root. The results of the simulation for differ-
ent lengths of the dividends and for different assimi-
lations of the most significant bits of the remainder,
are reported in Table 3. It should be observed that
the rightmost column in Table 3 (i.e. corresponding to
the whole partial remainder represented in carry assim-
ilated form), reflects approximately the bound given
by Freiman in {7] on the number of digits produced
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per iteration by the Robertson’s method. In fact, from
[7], it is known that one iteration produces (on the av-
erage) 8/3 binary digits. This corresponds to having
(1 —8/3) = 5/3 selections of the digit zero every 8/3
binary digits produced. Therefore, with Robertson’s
method, according to Freiman’s results, the percentage
of 0-selections is 5/8=62.5%, which is approximately
the same as the values shown in the CLAy column in
Table 3. From Table 3 we observe that, as the number
of bits of the radicand increases, the percentages of se-
lecting a 0 approach approximately 35% when the digit
selection process considers an assimilation of 4 bits of
the result. Higher percentages are obtained with the
increase in the number of bits of the remainder which
are assimilated.

5.4 General remarks

From the previous analysis it is clear the izaportance of
the results of Tables 2 and 3. In fact, as we have seen,
the percentages of 0-selections in Tables 2 and 3 offer
a criterion for evaluating how different implementation
technologies can favour the average execution time of
the proposed algorithm and architecture, with respect
to the delay of the “classical” architecture.

Several other conclusions can be deduced from an anal-
ysis of Tables 2 and 3, which involve the choice among a
class of different architectural solutions for implement-
ing our unit. The most important is that assimilating
more bits of the partial remainder, than the strictly
necessary (i.e. 4), has the effect of enlarging the region
of the truncated partial remainder for which the digit 0
can be selected. This corresponds to passing from the
region [—1/2, —1/2] of a 4 bit assimilation, to [—1/2, 0],
[-1/2,1/4] and [-1/2,3/8] of 5, 6 and 7 bit assimila-
tions, respectively. If we assume that the maximum
size of these regions is being considered, then the final
effect is that the percentage of selecting a 0 increases as
the number of bits of the partial remainder which are
assimilated increases, because of both the lower trun-
cation error and of the larger region for a 0-selection.
To take full advantage of the larger region for a 0 selec-
tion, the selection table TAB must consider all the bits
of the assimilated part of the partial remainder, i.e. 5,
6 and 7 bits respectively in the case of 5, 6 and 7 bit
assimilations. Although this increases the complexity
of the implementation of the table TAB, it is necessary
to consider all the assimilated bits of the partial re-
mainder. In fact, as we have observed with simulation,
the increase in the percentages of selecting 0’s remains
relatively small if the assimilated part of the partial re-
mainder is still examined on “only” 4 bits of the “clas-
sical” architecture. For example, with a 7 bit assim-
ilation and an inspection of 4 bits, the percentage of
selecting a 0 is equal to 25.954%, that is about one half
the corresponding value in Table 2, i.e. 51.724%, and
does not substantially differ from the value 25.854%
reported in the column of the 4 bit assimilation. This
implies that the most significant role in the increase of
the percentages of selecting 0’s, is played by the en-
largement of the regions for the 0 selection, and not by
the assimilation of our extended subset of the partial
remainder. For this reason, in our implementations we
have considered that all the assimilated bits enter TAB.



Table 2: Square root: percentages of selection of 0

lIength of Iength of || iterations percentage of 0’s

the radicand | the result || performed || CLA; [ CLAs | CLAs | CLA; [ CLAN
8 bits 5 bits 768 17.083 | 34.115 | 41.797 | 44.010 | 45.443
10 bits 6 bits 3840 20.521 | 36.667 | 44.271 | 46.458 | 48.073
12 bits 7 bits 18432 22.439 | 38.542 | 46.050 | 48.405 | 49.799
14 bits 8 bits 86016 23.865 | 39.983 | 47.363 | 49.805 | 51.267
16 bits 9 bits 393216 24.976 | 41.073 | 48.372 | 50.877 | 52.328
18 bits 10 bits 1769472 25.854 | 41.962 | 49.184 [ 51.724 | 53.211
20 bits 11 bits 7864320 26.551 | 42.681 | 49.851 | 52.392 | 53.912
22 bits 12 bits 34603008 I 27.161 | 43.276 | 50.396 | 52.950 | 54.496
24 bits 13 bits 150994944 [[ 27.660 | 43.775 | 50.857 | 53.412 | 54.982
26 bits 14 bits 654311424 || 28.094 | 44.203 | 51.247 | 53.806 | 55.396

Table 3: Division: percentages of selection of 0

Tength of Iength of || iterations percentage of 0’s

the dividend | the result || performed [ CLA4 [ CLAs | CLAg | CLA7 | CLAN
8 bits 5 bits 4096 34.766 | 52.539 | 60.059 | 62.500 | 63.965
10 bits 6 bits 40960 35.518 | 52.393 | 59.658 | 62.256 | 63.633
12 bits 7 bits 393216 35.508 | 52.182 [ 59.171 [ 61.812 | 63.198
14 bits 8 bits 3760016 35.434 | 52.053 | 58.869 | 61.466 | 62.914
16 bits 9 bits 33554432 || 35.364 | 51.958 | 58.664 | 61.198 | 62.681
18 bits 10 bits 301989888 || 35.296 | 51.891 | 58.526 | 61.011 | 62.501

The upper bound on the percentages of selecting a 0
is reached when the partial remainder is represented in
assimilated form (see the columns CLAy in Tables 2
and 3).

By examining the numerical values of Table 2 we ob-
serve that with an assimilation of 4 bits, percentages of
0 selections of about 28% are obtained. With the assim-
ilation of 5 bits, the percentages increase to about 44%,
while with 6 bits the increase is more limited (about
51%), then becoming almost insignificant for 7 bit as-
similations (i.e. about 54%). Although it is beyond the
scope of this paper to evaluate the proposed architec-
ture in such a case since it would be highly technology
dependent, it is clear that there exists a knee in the
performance curve vs. the number of assimilated bits,
such that the advantages of a larger assimilation are
almost irrelevant compared with the price to be paid
for, in terms of increased hardware complexity. In fact,
a larger assimilation implies the use of a larger (and
slower) CLA and of a larger (and slower) selection ta-
ble TAB still considering all the bits of the assimilated
part of the partial remainder [9]. Task of the designer
is, therefore, to evaluate among all the most convenient
implementation, given the technological constraints.

6 Differences with previous works

Several works have considered the possibility to speed
up the duration of the selection process by decreasing
the number of additions. Key works been provided by
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Metze in [8], by Freiman [7] and by Wilson in [14]. How-
ever, in all these works, partial remainders are repre-
sented in non-redundant form. In our algorithm the re-
dundancy of the SRT-like algorithms is used to achieve
two goals: firstly to allow selection rules based on lim-
ited precision comparisons (because of the carry save
representation of the partial remainder), and secondly
to obtain “good” probabilities of selecting a 0, and then
to avoid the need of additions/subtractions for updat-
ing the partial remainder. These two goals are con-
tradictory, and in the past the former has always been
given preference with respect to the latter.

In our work we have not considered any priority be-
tween these two goals. We have not studied the deriva-
tion of selection rules for minimizing the number of
non zero digits of the result, in the case of carry save
representations, since it can be demonstrated that, in
order to obtain a minimal representation in the sense
used by Metze (8], for a radix 2 square root with carry
save adder, the complexity of the digit selection tables
is comparable to that required by radix 4 square root.
Conversely, the attention has been focused on the study
of the statistical properties of the “classical” radix 2 di-
vision and square root methods known in the literature,
and in particular on the percentage of the 0-selections.
We have then slightly modified the digit selection ta-
bles of the “classical” unit known in the literature, in
order to take the full advantage of the existence of the
0O-selections. Moreover, by properly tuning the portion
used for the redundancy which is employed for limited



length comparisons and digit selections, and the com-
plementary portion used for the redundancy which has
the role of increasing the percentage of the 0-selections,
it is possible to achieve several different architectural
solutions. Eventually, unlike other algorithms using the
redundant representation of the partial remainder, we
use a representation different from the “classical” non-
assimilated carry sum form.

From these considerations, it is clear that both our al-
gorithm and architecture differ radically from the pre-
vious proposed in the literature.

7 Conclusions

We have presented a new algorithm for shared radix
2 division and square root. The main characteristic
of the proposed scheme is the subdivision of the iter-
ation steps for the calculation of the result, into fast
and normal iterations. For fast iteration we mean an
iteration when the addition can be avoided, while for
normal iterations we refer to all the other iterations.

Some implementation aspects have been discussed. In
particular, it has been shown that a redundant rep-
resentation of the remainder different from the non
assimilated carry-sum form could improve the perfor-
mance characteristics so that a normal cycle with du-
ration close to that of a “classical” architecture can be
achieved.

The proposed design methodology can be extended to
architectures where larger assimilations of the partial
remainder such as the “minimal” one (i.e. the 4 most
significant bits) are taken into account, with the aim
of increasing the average number of fast iterations oc-
curring during a computation. It can be shown that,
in such a case, an increased percentage of 0’s selected
during a computation leads to more complex selection
functions. Among the proposed solutions, i.e. pure
radix 2 and radix 2 with larger assimilations, it is the
task of the designer to evaluate the most convenient
implementation, depending on his specific technologi-
cal constraints.
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