Exact Accumulation of Floating-Point Numbers

Michael Miiller

Max-Planck-Institut
fur Informatik
D-6600 Saarbriicken

Abstract

We present a new tdea for designing a chip which com-
putes the ezact sum of arbitrary many floating-point
numbers, i.e. it can accumulate the floating-point num-
bers without cancellation. Such a chip is needed to pro-
vide a fast smplementation of Kulisch-arithmetic. This
13 a new theory of floating-point arsthmetic which makes
it possible to compute least significant bit accurate solu-
tions to even sll conditioned numerical problems. Our
approach avoids the disadvantages of previously sug-
gested designs which are too large, too slow or consume
too much power. The crucial point 1s a technique for a
fast carry resolution in a long accumulator. It can also
be tmplemented in software.

1 Introduction

Everybody who has implemented an algorithm using
arithmetic on “real” numbers knows the problems aris-
ing from approximating reals by floating-point numbers.
Even in very simple geometric algorithms, inaccurate
calculations can lead to a crash of the program or to
completely wrong results.

The major reasons for inexact calculations in computers
are cancellation occurring in subtractions and trunca-
tion after multiplications. Also, during the huge com-
putations performed on modern vector processors very
small errors have enough time to accumulate until the
result has nothing in common with the desired solu-
tion of the given problem. Hence, calculating exactly is
much more important in those computers, but they still
supply no remedy against this problem.

To avoid these problems, Kulisch and Miranker (cf. [14],
(15]) derived a new theory of floating-point arithmetic.
They propose to provide, besides the four standard basic
operations +, —, -, /, the inner product of two vectors
(denoted as *) as a fifth basic operation. This opera-
tion should, as well as the standard basic operations,
be available in the three rounding modes rounding to
nearest ((J), rounding towards +oo (/\) and rounding
towards —oo (\/). These three rounding modes, im-
plemented in a way such that z @y = O(z » y) for
O e {O0,V, A} and % € {+,—,-,/,*}, are necessary
to derive reliable error estimations écf. (13]). Here, ®
d;notes the operation actually performed by the ma-
chine.

CH3015-5/91/0000/0064$01.00 © 1991 |EEE

Christine Riib

Max-Planck-Institut
fir Informatik
D-6600 Saarbriicken

Wolfgang Riilling

Fachhochschule
Furtwangen
D-7743 Furtwangen

We will refer to the operation ® as the rounded exact
inner product or, for short, exact inner product.

This theory allowed the development of new algorithms
for the numerical standard problems. These algorithms
compute bounds for the (real) solution of the given
problem. In general, the bounds are adjacent floating-
point numbers, and in this case the result is called least
significant bit accurate. Even for very ill conditioned
problems where traditional numerical methods fail to
give a reasonable answer, the new algorithms mostly
compute least significant bit accurate results. Also the
computed intervals are proven to contain the actual re-
sult, i.e. one can rely on them.

To implement these algorithms, one needs the exact in-
ner product and there exist extensions of Pascal and
Fortran (PASCAL-SC [4,9] and FORTRAN-SC [6]) and
subroutine packages (ACRITH [10], ARITHMOS [20]3
providing this operation in software. In [3] one can fin
a good overview over the state of the art in this field.
But as far as we know there still exists no chip for this
purpose and thus the acceptance of the new methods is
quite small since there is no really fast implementation
of the exact inner product. Especially for high perfor-
mance vector computers a software realization seems
not to be competitive.

There have already been several proposals how to design
such a chip ([24], [16], [7], {12], [25]), but most of them
seem to have no chance of being realized in the near
future because they are either too large, consume too
much power since in most cycles the whole circuit is ac-
tive, or too slow since one has to wait a hundred or more
cycles to obtain the result after the last input has been
accepted. Thus, we present a new strategy to compute
the exact inner product of two vectors which promises to
avoid the essential disadvantages of the other concepts.

This paper is structured as follows. In section 2 we
describe the algorithms which form the basis of our de-
sign. In section 2.1 we outline the basic ideas of our al-
gorithms, and in section 2.2 we describe the algorithms
in more detail. Section 2.2.1 is dedicated to accepting
a new summand and section 2.2.2 treats the problem
of rounding the sum to get a floating-point result. Sec-
tion 3 briefly describes how we intend to realize the algo-
rithms of section 2 in hardware and in section 4 we show
how the algorithm can be implemented in software.

2 The Algorithm

Suppose that we want to compute the exact inner
product of two vectors v = (v1,...,vs) and w =
(w1,...,wy), and that the components of the vectors
are represented with 7a bits of mantissa and an expo-
nent range of [é;..8&;], &1 < &. To compute the inner
product, we first have to compute the n exact products
v; - w; = z;, 1 < i < n, where the n products z; are
each represented with m = 2 - ™ bits of mantissa and
an exponent range of [e;..e3] = [2-&;..2&)]. Then
we have to add the n products z;, 1 < 1 < n, and round
the exact sum according to the desired rounding mode.

The exact product of two floating-point numbers can be
computed by standard techniques and we thus concen-
trate on the exact, i.e. cancellation-free, summation of
floating-point numbers. We use the following technique
which is also used by [24], [16], [7], [12] andiZS]:

Each summand that arrives at the chip is
expanded to a fixed-point number with m+
ez —e; + 1 digits. The expanded summands
are then added using pipelining. After the
last summand has been accepted, remain-
ing carries are removed if necessary, and the
computed sum is rounded to the required
floating-point format.

The problems that arise when this technique is imple-
mented in hardware originate from the length of the
expanded summands. E.g. if the components of the
input vectors are single-precision floating-point num-
bers (we refer to the IEEE standard 754, cf. [11]), the
length of their mantissas is 24 and the length of their
exponents is 8. Thus, the exact products of the com-
ponents have mantissas of length 48 and exponents of
length 9, and the expanded summands have a length of
48 4 2° = 560. If the components of the input vectors
are double-precision floating-point numbers, then their
mantissas have a length of 53 and their exponents have
a length of 11. Thus, the expanded summands have a
length of 106 + 212 = 4202.

In our design we want to avoid the three essential dis-
advantages of the previous layouts mentioned in the in-
troduction, i.e. the design should be small, only a small
part of the circuit should be active in each cycle to re-
duce power consumption and the result should be avail-
able only a short time after the last summand has been
accepted. How this can be achieved is shown in the rest
of this section.

2.1 The Basic Ideas

As mentioned above, we reduce the computation of the
inner product to the summation of products computed
elsewhere. This is done by adding the summands into a
long accumulator.

Intuition tells us that it is not necessary to consider all
accumulator digits when we add a number covering only
a small part of it. This is clearly true if the number is
positive and can be added without producing a carry at
the left end of the range covered. If this locality would

65

hold for all additions, we could maintain the contents of
the accumulator in an ordinary storage, read the part
affected by the addition, use a moderately sized adder
to do the main work and write the modified section back
to the storage. To make this idea work in all cases, we
have to solve two major problems:

1. What do we do with the carries?

2. How do we treat negative summands?

Let us first ignore negative summands and concentrate
on carry handling. A first approach could be to accu-
mulate the carries as suggested by Kirchner and Kulisch
(cf. [12]). But this means that the accumulated carries
have to be resolved at the end of the addition which
takes a lot of time. Thus, we looked for a way to get
immediately rid of the carry resulting from an addition.

Let us inspect carry handling during a conventional ad-
dition w.l.o.g. in the binary system. Suppose we add
two numbers a and b where b has many leading zeros.
Consider what happens to a carry when we reach the
leading zeros of b, cf. Figure 1. As long as the corre-
sponding digits in a are 1, the bits in the sum become 0
and the carry propagates. When we reach a 0 in the bi-
nary representation of a this digit of the sum becomes 1
and the carry disappears. The following bits of the sum
are the same as the leading bits of a. Hence, in order
to resolve a carry we only need to find the next zero
in a and toggle all bits between this position and the
position from which the carry originated.

XXX...XX0111...11XXXX... XXX
+ 1

=XXX...XX1000...00XXXX... XXX

Figure 1: Carry resolution.

To make use of this observation, we use the follow-
ing strategy. We divide the accumulator into several
blocks. To add a new summand, we perform ordinary
additions for the blocks intersected by the mantissa of
the summand. The less significant blocks remain un-
changed. If the most significant addition yields a carry,
this carry has to be added to the more significant blocks
as sketched above. To avoid stepping through all bits of
the more significant blocks, we maintain for every block
some information about its contents which describes
whether the block consists only of ones or whether there
is a zero in it. Thus we know whether the carry passes
through a block or whether it is accepted in it. The
first block that contains a zero has to be incremented
by 1. The blocks consisting only of ones that we have
skipped should be inverted, but this is too time and
power consuming. Hence, we invert only the contents
information and register in a second information bit that
the contents of this section of the accumulator are not
the contents of the storage but only zeros. This infor-
mation always has to be considered when we want to

read something from the storage and has to be updated
when we write a block to the storage. The storage is
organized such that a row of the storage corresponds to
a block of the accu.

To avoid running sequentially through all information
bits, we use the adder for carry propagation as follows.
We define a binary number which represents the states
of the blocks of the accu. The least significant bit of
the number corresponds to the least significant block of
the accu. A bit is one iff the corresponding block of
the accu contains only ones. To this number we add
the carry, i.e. we add a number having a 1 only at the
position corresponding to the block first entered by the
carry. Figure 2 illustrates this procedure. In the result
of this addition the bits different from the bits in the
input number are exactly the bits corresponding to the
rows passed by the carry (marked with a bar in Fig. 2)
and the row which absorbs the carry (marked with a
cross). Hence, it is easy to update the information bits
and to address the row which absorbs the carry.

=1...1 =1...1
#1...1 #1...1
#1...1 +1—#1...1K
=1...1 =0...0
=1...1 ~ |=0...0
+l1—1=1...1 =0...0
#1...1 #1...1
100111011
=1...1 + 1 =1...1
=1...1 10}(000011 =1...1
[

Figure 2: The use of the adder to propagate the carry
over the blocks.

Now we have shown how carries can be treated if all
summands are positive. Next we show how we will han-
dle negative summands. When expanded to the fixed-
point format, the negative numbers are represented in
two’s complement and thus require all the leading dig-
its being filled up with ones. At first sight this seems
to be incompatible with our effort of working only lo-
cally, but this is not true. Again we consider the way
we perform arithmetic manually. Suppose we want to
subtract b from a. If we use binary representation, we
compute a + (—b) representing —b in two’s complement
which we get by inverting all digits of b and adding 1. If
a corresponds to a section of the accumulator and a > b,
then this method of subtracting two numbers can also
be applied locally to our accumulator since only local
changes are necessary. If a < b, then the result of the
subtraction is a negative number and we cannot replace
some section of the accumulator by a negative number.

But consider the way a negative number is represented
in two’s complement. The sign bit has value —2" where

n is the number of digits used to represent the number,
not counting the sign bit. Hence, if we manipulate a sec-
tion of the accumulator in the usual way, a negative sign
bit of the result can be interpreted as a negative carry,
i.e. from the more significant bits we have to subtract
this carry. This negative carry can be handled nearly
the same way as a positive carry. The only difference is
that it is accepted by a 1 and propagated by a 0. Hence,
the meaning of the two information bits associated with
a row has to be extended in the following way. One bit
indicates whether all bits in the row are equal and if
they are, the other bit indicates whether the row has to
be interpreted as constant 1 or constant 0. The propa-
gation of a negative carry over the blocks is similar to
the propagation of a positive carry: a block contain-
ing only zeros is represented as a zero, other blocks are
represented as one and we subtract the carry from the
number constructed in this way. In the following sec-
tion we give a more detailed description of the addition
algorithm and the rounding process.

2.2 Some Details of the Algorithms

In describing the algorithms for adding and rounding,
we will widely abstract from a concrete hardware real-
ization, but some considerations are influenced by the
floating-point system we use. To keep things simple,
we describe the algorithm for the binary system but
the principles can also be applied to any other number
system, e.g. the decimal system. Since we want to con-
struct a chip that fits together with other hardware, we
have to consider existing standards. A commonly ac-
cepted standard for the representation of floating-point
numbers is the IEEE floating-point standard 754 (cf.
[11]). This standard uses sign magnitude representa-
tion for the mantissas. Hence, we choose the follow-
ing floating-point format for our abstract descrip-
tion: The summands are represented as floating-point
numbers consisting of m mantissa digits for the absolute
value of the mantissa, a sign bit and an integer exponent
in the range [e; .. e;]. We do not require the summands
to be normalized.

Let the accumulator be realized by L digits (including
the sign bit) representing the accumulator contents in
two’s complement. L must be at least e; — ¢; + m + 1.
To be able to add k-times the largest representable
summand, there must be [logk] additional overflow
bits. Since it is not hard to make enough overflow bits
available, we will always assume that L is chosen large
enough such that a new summand can be added without
producing an overflow. As we already stated in section
2.1, the accumulator is subdivided into several blocks.
Here we assume that the accumulator is divided into
blocks of size s and that we are able to add s-bit num-
bers. We also assume that L = n - s for some n € N.

2.2.1 The Algorithm for Adding a New Sum-
mand: The algorithm for adding a new summand
works as follows. First we “convert” the summand into
fixed-point representation. This can be done by adjust-
ing the mantissa to the corresponding position at the
accumulator. Since we can address each block of the
accumulator individually, we can perform the position-
ing in two steps. One step is a coarse positioning done

by addressing the blocks of the accu that are intersected
by the mantissa digits Scf. Figure 3). The other step,
the fine positioning, is done by a shifting circuit. The
output of this circuit is stored in a register and we know
(from the exponent of the summand) which part of the
register corresponds to which block of the accu. For each
of these blocks of the accu we perform a usual addition
stepping through them from right to left as indicated in
Figure 3. Each rectangle represents a block of s bits and
each addition is an s-bit addition. If in the last addition
a carry occurs, we have to pass all blocks that cannot
accept the carry and add it to the first accepting block.

Mantissa

, .
. ’
s ,

secw [[FI[1 [~ T2 T JT---T][][]
0
Figure 3: Ilustration of the addition algorithm if we add

a positive summand and when after the local additions
a carry remains to be resolved.

+10

The address of the accu block containing the least signif-
icant mantissa digit is given by the more significant bits
of the exponent, provided that s is a power of 2. The
shift distance is s — 1 at most. Then the shifted man-
tissa digits cover at most » = [(m + s — 1)/s] blocks of
the accu.

If the summand is negative, then the mantissa has to be
subtracted. This is done by adding the two’s comple-
ment, i.e. by adding the inverted output of the shifter
plus one. Here it is not necessary to represent the sign
bit explicitly since subtracting a positive r-s-bit number
from a positive r - s-bit number always yields a number
that can be represented in two’s complement using r - s
bits plus a sign bit. Hence, no overflow or underflow
occurs. Furthermore, the sign bit of the result is 1 iff
there is no carry entering the column of the sign bit.
This means that we have to resolve a negative carry iff
the summand is negative and no carry resulted from
the last one of the r addition. The procedure for carry
resolution is already described in section 2.1.

2.2.2 Rounding and Normalization: Given the
contents of the accumulator, we have to perform the
specified rounding at the end of the summation. Round-
ing towards —oo can clearly be done by truncation; this
corresponds to omitting a nonnegative part of the sum.
Rounding towards +oo can be performed by truncating
and computing the next larger floating-point number if
the truncated part was # 0. Rounding towards zero is
now trivial. Rounding to nearest is a little bit harder.
Again we truncate the part of the contents of the accu
that won’t fit into the mantissa. If what we truncated

67

was less than 100.. .00, then we are done. If it was more
than 100...00, we compute the next larger floating-
point number. If it was equal to 100...00 and the man-
tissa is even, we are done, too, but if the mantissa is not
even, we also have to compute its successor. Computing
the successor of a floating-point number can usually be
achieved by adding 1 to its mantissa. If the resulting
number is not representable in the given floating-point
format a, suitable exception has to be signaled.

In order to determine the significant part of the accu
we need to know the position of the most significant
bit (m.s.b.), i.e. the first bit different from the sign bit.
To find out whether the part of the accu that will be
truncated is greater, equal or less than 100...00, it is
also helpful to know the position of the least significant
bit (l.s.b.), i.e. the rightmost bit that is 1.

To determine the m.s.b. and the l.s.b. we use the same
principle that we used to find the position where a carry
is accepted. A negative carry is accepted at the right-
most 1 which is to the left of the position from which
the carry originated. Hence, the position of the 1.s.b. of
a binary number is the position where a negative carry,
which enters from the right, is accepted. It can be found
by subtracting 1 from the number. If the number is not
zero this subtraction causes exactly one digit, namely
the 1.s.b., to change from 1 to 0. Hence, we can deter-
mine the L.s.b. in two steps. To determine the block, we
define a binary number which represents the states of
the blocks of the accu as we already did for the carry
resolution. A bit in this number is 0 iff the correspond-
ing block contains only zeros. To this number we add
1...1 which is equivalent to subtracting 1. To deter-
mine the position within the block we apply the same
procedure to the contents of the block. Determining the
m.s.b. is similar; we have to find the left-most bit which
is different from the sign bit.

Let ¥ denote the computed exact sum, i.e. the value of
the contents of the accumulator. Having computed the
m.s.b. and the l.s.b., we extract the significant part of
the accu and compute the appropriate exponent to get
\/(Z) with the mantissa represented in two’s comple-
ment. If the sign is negative, we mainly have to invert
the mantissa and to add 1 to obtain the sign magnitude
representation of \/(Z).

Now we have treated rounding towards —oo and next
we will explain what modifications are necessary to sup-
port the other rounding modes. For any floating-point
number z let succ(z) denote the next larger floating-
point number. Since /() < T < suce(V/(X)), the
rounded contents (Q(Z) of the accu are contained in
{V(Z), succ(S/(T))} for any rounding mode O. Hence,
it is sufficient to compute /() and suce(S/(X)) and
decide which of both values is the right one. Consid-
ering the remarks at the beginning of this section this
decision can easily be made.

3 Realization in Hardware

In this section we turn to the hardware implementation
of the algorithms presented in section 2. As one can see
from the previous discussion, the circuit consists only of

well known components: an adder for s-bit nubmers, a
shifter, a storage and some decoders.

The siges of the modules (i.e. the number of bits they
must be designed for) are fixed by the choice of the
floating-point system and the choice of the size s of a
block of the accumulator. The choice of s influences
the performance and space requirement of the circuit
significantly. If we choose s small, the adder and the
shifter are small, but on the other hand we have to use
the adder and the shifter many times to process a sum-
mand. If we choose s large, things are the other way
round: the adder and the shifter are large, but we need
only few additions and shifts to process a summand. It
is also important to choose s as a power of 2 since then
the computation of the shift distance and the blocks af-
fected by the addition of a new summand are trivial;
they merely require selecting the more, less resp. signif-
icant bits of the exponent.

It seems that s should be chosen as large as possible
to achieve a high performance. This is because the re-
duction of the number of additions seems to gain much
more than the loss of speed resulting from the longer de-
lay time of the larger modules makes up. To get a better
feeling for a good choice of s we consider the following
example.

Example: The input numbers shall be (cf. the be-
ginning of section 2) exact products of double precision
floating-point numbers corresponding to the IEEE stan-
dard 754, cf. [11]. This requires an accumulator of about
4200 bits plus a sufficient number (e.g. 60) of additional
bits to avoid overflow Scf. section 2.1). The mantissas
of the products have a length of m = 106.

To calculate the number of additions needed to process a
summand (depending on s) we recall from section 2.2.1
that the number of blocks intersected by a mantissa of
length m is r = [(m + s — 1)/s] at most. We need one
addition for each of those blocks plus [Sn —1)/s] to find
which block accepts a carry plus one for removing the
carry, i.e. we need r + [(n — r)/s] + 1 additions. The
expression [(n — r{)/ 5] results from the fact that a carry
can run over n—r blocks at most, where n is the number
of blocks of the accumulator. Table 1 shows the number
of additions required and the number n = [4260/s] of

blocks of the accumulator if we choose s = 2¥ for some k.

k| s=2F|r| #additions | n

4 16 8 26 267
5 32 5 11 134
6 64 3 5 67
7 128 2 4 34

Table 1: The effect of choosing s = 2 for some k.

For s = 128 we need the least possible number of ad-
ditions and hence this seems to be the best value to
achieve a high speed. Choosing s larger than 128 is not

68

useful since we need at least 4 additions in the worst
case: it can always happen that the mantissa intersects
two blocks of the accu and that we need two additions
to remove a carry. But s = 64 might also be a good
choice if there is not enough space to realize a 128-bit
adder and shifter. 1

4 Implementation in Software

The algorithm presented above can also be used to ob-
tain a fast software implementation of the long accumu-
lator. Almost all operations we use are available in an
ordinary computer. The only problem is to find in a bi-
nary number z the w.l.o.g. left-most bit which equals 1.
This corresponds to compute |lgz], and not all proces-
sors provide this operation. But as shown in {8] |lg =]
can be computed in constant time using ordinary arith-
metic and bitwise Boolean operations as follows. Let
b be the wordlength and consider a partitioning of the

word z into blocks of s = [v/b+1] bits. Define C to have
1’s precisely in the left-most bit position of each block.
Evaluating the expression (C—[(C—zAC)AC])V(zAC),
where C is the bitwise complement of C, yields a number
in which the left-most bit of a block is 1 iff the corre-
sponding block of z contains a 1, and all other bits in the
number are 0. Multiplying this number with a suitable
constant compresses all the leading bits of the blocks
into the rightmost [b/s] bits. Now, by table look-up
we can find the number of the block of z, which con-
tains the left-most 1 and by a second look-up we can
find the position within this block. Hence [lgz| can
be computed using about 4 bitwise Boolean operations,
2 subtractions, 1 multiplication and 2 table look-ups.

References

[1] B. BeckERr, “Efficient Testing of Optimal Time
Adders”, TR 04/1985, SFB 124, Universitat des
Saarlandes

[2] B. BECckER, R. KoLLa, “On the Construction of

Optimal Time Adders”, TR 07/1987, SFB 124,

Universitat des Saarlandes

G. BOHLENDER, “What Do We Need Beyond
IEEE Arithmetic?”, in [22]

(3]
(4]

G. BoHLENDER, L. RaLr, CaH. ULLricH, J.
WOLFF VON GULDENBERG, “PASCAL-SC: A
Computer Language for Scientific Computation”,
Academic Press, New York, 1987

[5] R. P. BrenT, H. T. KUNG, “A Regular Layout
for Parallel Adders”, IEEE Trans. on Comp., C-31,
pp- 260-264, March 1982

(6] J. H. BEBLER, S. M. Rump, U. W. KULIsCH,
M. METZGER, CH. ULLRICH, W. WALTER,
“FORTRAN-SC: A Study of a FORTRAN Exten-
sion for Engineering/Scientific Computation with
Access to ACRITH”, Computing 39, pp. 93-110,
1987

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

[18]

(19]

(20]

P. R. CaPELLO, W. L. MIRANKER, “Systolic Su-
per Summation”, IEEE Transactions on Comput-
ers, Vol. 37, No. 6, pp. 675-676, June 1988

M.L. FREDMAN, D.E. WiLLARD, “BLASTING
Through The Information Theoretic Barrier With
FUSION TREES”, Proc. of the 22nd Annual ACM
Symp. on Theory of Computing, pp. 1-7, 1990

R. HAMMER, M. NEAGA, D. RaTtz, “PASCAL-
SC: New Concepts for Scientific Computation and
Numerical Data Processing”, Institute for Applied
Mathematics, University of Karlsruhe, Federal Re-
public of Germany

IBM, “High-Accuracy Arithmetic Subroutine Li-
brary (ACRITH)”, General Information Manual,
31d ed., GC 33-6163-02, IBM Corporation, 1986

AMERICAN NATIONAL STANDARDS INSTITUTE /
INSTITUTE OF ELECTRICAL & ELECTRONIC EN-
GINEERS, “A Standard for Binary Floating-Point
Arithmetic”, ANSI/IEEE Std. 754-1985, New
York, August 1985

R. KIRCHENER, U. W. KuLIscH, “Accurate Arith-
metic for Vector Processors”, Journal of Parallel
and Distributed Computing, Vol. 5, pp. 250-270,
1988

U. W. KuLiscH, “Grundlagen des Numerischen
Rechnens — Mathematische Begriindung der Rech-
nerarithmetik”, Mannheim, Bibliographisches In-
stitut, 1976

U. W. KuriscH, W. L. MIRANKER, “Computer
Arithmetic in Theory and Practice”, New York,
Academic Press, 1981

U. W. Kuiisca, W. L. MIRANKER (EDS.), “A
New Approach to Scientific Computation”,” New
York, Academic Press, 1983

P. LICHTER, “Realisierung eines VLSI-Chips fiir
das Gleitkomma-Skalarprodukt der Kulisch-Arith-
metik”, Diplomarbeit, Fachbereich 10, Ange-
wandte Mathematik und Informatik, Universitat
des Saarlandes, March 1988

M. MULLER, CH. RUB, W. RULLING, “Exact Ad-
dition of Floating-Point Numbers”, TR 05/1990,
SFB 124, Universitat des Saarlandes

TH. OTTMANN, G. THIEMT, CH. ULLRICH, “Nu-
merical Stability of Geometric Algorithms (Ex-
tended Abstract)”, Proceedings of the Srd Annual
ACM Symp. on Computational Geometry, pp. 119~
125, 1987

5. M. Rump, H. BOHM, “Least Significant Bit
Evaluation of Arithmetic Expressions in Single-
Precision”, Computing 30, pp. 189-199, 1983

SIEMENS, “ARITHMOS, (BS2000) Benutzer-
handbuch”, SIEMENS AG, U2900-J-Z87-1, 1986

69

[21]

(22)

23]

(24]

[25)

J. SKLANSKY, “Conditional Sum Addition Logic”,
IRE-EC 9, pp. 226-231, June 1960

CH. ULLRICH (ED.), “Computer Arithmetic and
Self-Validating Numerical Methods”y Academic
Press, June 1990 ’ \

J. VUILLEMIN, L. GuiBaAs, “On Fast Binéry Addi-
tion in MOS Technologies”, ICCC 82, pp. 147-150

TH. WINTER, “Ein VLSI-Chip fir Gleitkomma-
Skalarprodukt mit maximaler Genauigkeit”, Diplo-
marbeit, Fachbereich 10, Angewandte Mathematik
und Informatik, Universitit des Saarlandes, April
1985

T. Yiemaz, J.F.M. THEEUWEN, R.J.W.T. TaN-
GELDER, J.A.G. JEss, “The Design of a Chip for
Scientific Computation”, Eindhoven University of
Technology, 1989 and Euro Asic, Grenoble, Jan.
25-27, 1989

