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Abstract

In a class of crypto systems fast computation of mod-
ulo ezponentials is essential. The popular RSA pro-
tocol uses operands of more than 500 bits to achieve
a sufficient security. We present a parallel version of
a well known ezponentiation algoriﬂrm that halves the
worst case computing time. It s described how a high
radiz modulo multiplication can be implemented by in-
terleaving a serial-parallel multiplication scheme with an
SRT division scheme. The prob?pems associated with high
radices are efficiently solved by the use of a redundant
representation of intermediate operands. We show how
the algorithms can be realized as a highly regular VLSI
circuit. Simulations indicate that a radiz 32 implemen-
tation of the algorithms is able of computing 512 bit
operand ezponentials in 3.2 msec. This is more than 5
times faster compared to other known implementations.

1 Introduction

The concept of two-key crypto systems was introduced
by Diffie and Hellman [5] in 1976. In 1978 Riverst,
Shamir and Adleman [13] published an encryption
scheme based on computing exponentials, The RSA
scheme realises encryption as put forth by Diffie and
Hellman. Both encryption of a message and decryption
of an encrypted message are done by computing an ex-
ponential M® mod N, M € [0, N[. The message is de-
noted M and the key (E, N). Modulus N is a product
of two very large primes and the security of the system
depends on the length of the keys. To achieve a suffi-
cient security key lengths of 500-600 bits are necessary.

For an implementation of the RSA protocol it is crucial
to calculate modulo exponentials in a rate correspond-
ing to the transmission rate between transmitter and
receiver to avoid the encryption to be a bottle neck in
the communication system. Brickell [4] has made a sur-
vey of hardware implementations of RSA. In his paper
chips from Cryptech [7] are the fastest, with a comput-
ing time of 512 bit messages corresponding to a rate of

17Kbit | Thorn EMI [15] has made chips that encrypt

sec

§12 bit messages at 29%.
In this paper we will present a method for obtaining
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rates of more than 150&;'. Section 2 describes how
we construct a new and faster algorithm for performing
exponentials by splitting the computation into paral-
lel multiplications. The implementation of a high radix
modulo multiplication is elaborated in sections 3, 4 and
5, where it is shown how to interleave a multiplica-
tion with a SRT division scheme and how the algorithm
can be realized in VLSI design. Section 6 discusses the
performance of a VLSI implementation. The summary
indicates how the methods can be generalizsed to even

higher radices.

2 Exponentiation

A commonly known algorithm for performing an expo-
nentiation is named Russian Peasant [8]. It performs
the computation as a number of m tiplications and
squarings proportional to the bit length of the expo-
nent. The algorithm can be modified to perform a mod-
ulo exponentiation by substituting the multiplications
and squarings for modulo multiplications and modulo
squarings gS] Below is shown a variant in which the
exponent Z is read from the least significant bit. The
¥'th bit of E is denoted e;. In the curly brackets is an
invariant for the loop.

If we denote the bit length of M,E and N by n the
worst case time is
T[Exp, n] = 2nT[Mult, n]

and the average time is
T[Exp,n] = gnT[Mult, n),

where it is assumed that the computing time for squar-
ing and multiplication is identical.

Observing that the three statements in the loop are in-
dependent of each other it is possible to speed up the
algorithm by performing two multiplications in parallel
In this way the computing time is reduced to

T[Exp, n] = nT[Mult, n], (1)



Algorithm:
Modulo exponentiation.
Stimulation:
E,M,N,where E>0and 0< M < N.
Response:
X=MFmodN
Method:
1:=0;
X:=1Y := M;
WHILE i < n DO
{*X -YE div2 oy ME,}
IF ¢; = 1 THEN
X:=(X-Y)mod N
END;
Y :=(Y -Y) mod N;
1:=i+1;
END;

Algorithm 1: Variant of Russian Peasant for modulo
ezponentiation.

which is independent on the number of 1-bits in E. It
is hard to imagine how an exponentiation can be per-
formed with less than n squarings.

Note that by distributing the modulo reduction to
squaring and multiplication the bit-length of interme-
diate operands is bounded. This makes the exponentia-
tion algorithm feasible to implement for large values of
n.

3 Multiplication

To implement the exponentiation algorithm mentioned
above we need an efficient way to perform modulo mul-
tiplication. Several algorithms have been presented [3]
[25) (1] [10] [7]). Al of them use radix 2. We will follow
the approach in e.g. [3], where the modulo reduction is
further distributed in the algorithm for multiplication.
A similar approach is followed in [8] where a radix 4
algorithm is elaborated.

The usual way of multiplying is by scanning the mul-
tiplier serially from the least significant digit and par-
allelly adding a multiple of the multiplicand followed
by a right shift of the partial product [14]. This gives
a maximal carry ripple length of the parallel additions
corresponding to the length of the multiplicand.

In the algorithm shown below we scan the multiplier
from the most significant digit and the partial prod-
uct is left shifted. In an ordinary multiplication this
would result in a maximal carry ripple length equal to
the sum of the multiplier length and the multiplicand
length. But since we perform a modulo reduction on
the partial product in every iteration, the length of the
intermediate operands will be limited to n plus a few
digits. Assume we scan the multiplier k bits at a time,

corresponding to processing a digit in radix 2%, we can
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express the serial-parallel multiplication scheme as in
Algorithm 2.

! 1;
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S + a;B) mod N;
ii=1-—-1;
END;

Algorithm 2: Serial-parallel multiplication with inte-
grated modulo reduction.

In this algorithm S is the accumulator, n' the number
of radix 2* digits, a; is digit number i of the multiplier,
B the multiplicand and N the modulus.

The modulo reduction can be carried out by interleav-
ing the multiplication with a division. Division is usually
performed by inspecting the partial remainder and sub-
tracting a multiple of the divisor, followed by a left shift
of the resulting partial remainder. In Algorithm 3 the
variable S has the dual role of a partial remainder in
a SRT division scheme [14] and of a partial product in
a serial-parallel multiplication. This is the reason why
we want to scan the multiplier from the most significant
digit and left shift the partial product. Note that this

S:=0;4:=n'-1;

WHILE i > 0 DO
¢ := Estimate(S div N);
S :=2%S 4+ a; B — 2*¢qN;
t:=1—1;

END;

Correction of S;

Algorithm 3: Modulo multiplication with quotient esti-
mation.

method is only feasible if we are able to generate the
multiples a; B and ¢N rapidly.

Instead of calculating the ezact value of the quotient
digit, which is a tedious task for long operands, we esti-
mate a value of g. This, of course, implies that the final
result is not necessarily completely modulo reduced, and
a correction must be performed after the loop by sub-
tracting N until S belongs to the correct interval. It is
then required that the precision of the estimate is cho-
sen such that the range of S does not diverge during a
computation. Assuming that

a € {0,1,...,2x -1}
B € [0;2N]
q € {011:---1Qnmz}



we can derive a range restriction, which must be satis-
fied by the estimated g, in the foilowing way

2"S+aB-2"qN < gmaaN
gmaz N — aB
S—gN < l‘."‘_ﬁ.—. (2)
- k _
S—gN < (1'"—“'——22,.(2——1—)N.

As we shall see later we can construct hardware that
generates multiples gN efficiently if the range of g be-
longs to [0;42]. Since g is non negative it is required
that S is non negative. We achieve this by restricting
S —gN to be non negative. The restriction then implies
that the maximal radix 2* is 16, i.e. the scan factor is
limited to 4.

However, we are able to increase the scan factor. The
idea is to reduce the contribution of the multiple aB
in (2) by choosing a larger divisor. Recall that we just
want to modulo reduce the partial product, so we can
choose an easily generated multiple of N, e.g. 2"N.
This gives the following range restriction

2*S+aB - 2%¢2'N < gmae2'N
S — qer S Qmuz 27 - a'B (3)
r k __
S—q2’N < gmas? 23(2 l)N.

Since we want to generate multiples aB with the same
hardware as gN, a is limited to 42 and the maximal
radix is therefore 32, corresponding to a scan factor of
5. To achieve this, restriction (3) implies that r must
be greater than or equal to 1.

We are now ready to present the final algorithm for
modulo multiplication. Note that the final corrections
can be made by iterating two extra cycles, while setting
a; = 0 and furthermore assuming r = k.

The final result is read from S discarding the 2k least
significant bits, and belongs to the interval [0;2N[. A
further reduction is not necessary since, according to
the stimulation conditions, we can directly start up a
new multiplication in the exponentiation algorithm with
inputs in the interval [0;2N[. When the exponentia-
tion algorithm terminates the result will also belong to
[O;iljj here a reduction is necessary. This reduction
1s easily carried out while outputting the result serially.
The correctness of Algorithm 4 is proven in [11]. The
time complexity is:

n+1

T[Mult,n] = ([T] + 2)T[iteration]

(4)

In the rest of this paper we will describe how to perform
the central operations of the loop, and take a closer look
at the hardware architecture of the multiplication unit.
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Algorithm:
Modulo multiplication.

Stimulation:
A=an_18n/—3**+G0G_1G_13,
where a; € [0;2% — 1],

a_i1=a_3=0,
=[]
B, where B € [0;2N7];
N, where N €]27-1;2"[;
k, where k > 3;
r, where r = k.

Response:
S div 2" =N AB and
S div 2%* € [0;2N].

Method:

S:=0;i:=n'-1;

WHILE i > -2 DO
{*S =x (A div 2*6+1)) . Bx}
¢ := Estimate(S div 2" N);
S:=2%5 4 a;B — 2¢tTgN;
t:=1—1;

END;

Algorithm 4: Modulo multiplication.

4 Calculation of 2¢S + aB — ¢2**'N

Because we are dealing with very long operands we use
redundant carry save adders. This implies that the re-
sult of a multiplication is represented in two words. To
avoid an area or time consuming carry-completing adder
in the circuit we represent the multipliers and multipli-
cands in carry save form during the complete compu-
tation of an exponential. The modulus is represented
in 2°complement form and in one word. We get the
expression

2%(S, + S.) +a(B, + B.) — g2**'N (5)

The multiplier digit a in radix 32 is recoded from the
carry-save representation of A through twolevels. The §
digit positions of A is interpreted as three digits in radix
4: dj, dy,do, where d; € [0;2] and dy,do € [0; 6]. These
are first recoded into digit sets [—1; 1] repectively [—1; 3],
possibly generating and absorbing carries. Secon
these digits are recoded into a3, a1, ao with a; € [-1;2],
where a; may absorb a carry without generating a carry
out. Hence the radix 32 digit a is represented as:
a= 42“2 +4a; +ag, o € {—1, 0,1, 2}1 (6)
thus aB can be computed as the sum of three shifted
versions of B in a multiplexing network as shown in



Figure 5. The result is again represented in carry save
form (aB), and (aB).. The computation of —gN is
performed the same way, noting that ¢ € [0; 42] can be
represented in radix 4 as in (6).

a r B I
Vo l

ar Multiplexing

a0 network

Li6asB l4cyB laoB

I carry save adder

l(dB)c l(oB)a

Figure 5: Unit for generating a multiple.
Expression (5) is now expanded to the form

2%(S, + S)
+((aB,)s + (aBs)c) + ((@Be)s + (aBc)c)
+2*+7((—gN), + (—=gN)c)

The cost of keeping the operands in carry save form is
that we get an expression of eight terms instead of three
terms. To reduce the hardware we perform the compu-
tation in a pipelined fashion, and share a single unit
for generating multiples and a single 4-2 adder for sum-
ming terms. The adder is constructed of two carry save
adders. In Figure 6 the timing of the computation of
expression (7) is illustrated. Each row shows the activ-
ity of a hardware component by enclosing the activity
in a box. In the left column the components are de-
scribed. A single iteration of the loop in Algorithm 4 is
computed by six cycles of the hardware. The iterations
are overlapped, as illustrated by the dashed lines, re-
sulting in a throughput of one iteration per 3 hardware
cycles. (U,,U.), (Vi, V) and (S,, Sc) denote registers in
the pipeline for saving results in carry save form. The
computation is performed from left to right.

5 Estimation of § div 2'N

Several implementations or suggestions of how to im-
plement the quotient estimation have been presented in
the past. According to [1] the estimate can be found
by multiplying a few of the most significant digits of
the partial remainder S and the reciprocal of the divi-
sor 2'N. This assumes that the necessary amount of
digits of 52y is part of input to the chip or that it is
<:omputed2 on the chip. The standard approach for SRT
division, or as extended in [6], is to use table lookup,
implemented as a PLA circuit. This method seems to
be infeasible for radices as high as in this paper. We
will follow the approach in [3] which is based on what
we identify as a ”parallel exhaustive search” for the quo-
tient digit. In parallel we compute the sign of resulting

™
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partial remainders when the quotient digit assumes all
possible values, i.e. we perform in parall

S—-q2'N, g€ {0, 1|-o-,Qm¢s}a

where S is in carry save form. The sign is detected as
the carry out of the computation. A high carry out
indicates a non negative partial remainder. Then we
determine the quotient digit as the smallest value of ¢
which results in a positive remainder. Since the sign
computation involves a carry ripple we only use a few
of the most significant digits of S and —¢2* N, and con-
sequently the quotient digit will just be an estimate.
The necessary number of digits is determined by the
range restriction (3). In Figure 7 is shown a single cell
in tie quotient estimation unit for calculating the sign
of S —q2" N. There is one cell for each possible value of
¢. In the figure we denote by p the position of the most

4 n+e
r register J
Se Sl. —q2"N
}
Faxry save adder

!

carry ripple circuit J

sign

Figure 7: A cell in the quotient estimation unit.

significant bit, the sign bit, in S,, Sc and in —q2"N.
According to restriction (3) p = n+r+ [logy gmaz| and
for gmas = 42 this gives p =n +r +k+ 1. nis the
bit length of N, and n +z denotes the position of the
least significant bit in the quotient estimation. Since
the weights of the discarded parts of S,, S; and —g2"N
are all positive and belongs to [0; 2"‘"[, this computa-
tion gives the following range for the estimated value of
¢

S—qg2’N = S'"+(—q2'N) +¢
€ [0;2'N +3.27*=[,

where S’ and (—g2" N)’ denotes S and —g2" N with the
bits from 0 to n + ¢ — 1 set to sero. Now & can be
determined from the range restriction (3), where the
redundant digit set {0,1,...,gmaeo} is assumed for the
multiplier:

dmaz2" — 2¢maz

2k =N
1,2"-2
6('2—qmaz - 2')1

UN+3.27 <
22

where the smallest value 2"~ of N has been inserted.



Iteration sequence

Calculating &
multiplier digit

_

J

Calculating a
quotient digit

: & := NextDigit(
: Ay, Ac)

¢ 1= Batimate(
(Se¢ + Sc) diva™N)

Generating a

,Ug) 1= a8
maultiple We: Ue) 1= B

—

(Us, Ug) 1= eBe (U, Ug) 1= —3'+"N

===

4-2 addition

]
_

—

(3%3,,3%50) + (Vs, Us)

(Vo) Vo) 1= (Vo) Vo) 1=

_Tjme

Figure 6: Timing diagram for an iteration in the multiplication algorithm. The iterations are overlapped.

Substituting & for r and k, and 42 for gmae We get z <
0. Thus the necessary number of bits in the quotient
estimation is p — (n + ) + 1 = 12 in the case of radix
25,

This method for quotient estimation seems very area
consuming but compared to the sise of the multiple gen-
erating unit and the 4-2 adder for operands longer than
500 bits this area is reasonable. As usual in VLSI design
a high degree of concurrency results in faster circuits at
the cost of area.

6 Performance

Equation (1) and (4) gives an expression for the com-
puting time of an exponentiation

n+1
k

T[Exp, n] = n([ ] + 2)Titeration].

As explained in Figure 6 an iteration in the multiplica-
tion loop is performed in three cycles through the hard-
ware. Anticipating that the quotient estimation unit is
the critical path in the circuit we get

n+1
k

T[Exp,n] = n([ ] + 2)3T[quotient estimation).

A cell of the quotient estimate unit has been designed
in a 2u CMOS process and simulations shows a delay
less than 20 ns. For n = 512 and k = 5 we achieve a
computing time of 3.2 ms, corresponding to a bit rate

of
Kbit
sec

n

TExpyn] ~ 1

Compared to the hardware implementation from Thorn
EMI [15] with a bit rate of 29 &;‘ this design improves
the speed by a factor of more than 5.

The calculation on computing time assumes that we

have implemented the parallel version of the exponen-
tiation algorithm. This can be done in two ways: By
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replicating the multiplication unit or by pipelining a
single multiplication unit. With respect to area the last
approach is preferable. Observing that the two parallel
multiplications have the modulus N and the multipli-
cand B in common we only need to add extra registers
for a multiplier in carry save form and latches to im-
plement the pipeline. An iteration in the multiplication
loop now consist of six clock cycles at approximately
10ns. Clock frequencies as high as this can be hard to
achieve. A way to avoid the use of a clock to synchronize
the circuit is to use self-timed circuit schemes [16].

The VLSI design of the hardware components shows
high regularity and the area for wiring is minimized
through the use of carry save adders. At the expense
of regularity and area, the speed of quotient estimation
can be increased by replacing the carry ripple circuit in
Figure 7 by carry look-ahead circuit.

We can obtain a rough estimate of the area by compar-
ing the proposed architecture to the one described in
[12], which has been laid out using a silicon compiler:
The area is approximately 200 mm? in a 1.24 CMOS
process technology for a chip capable of modulo expo-
nentiating 561 bit operands. The architecture presented
here include one unit for generating multiples and one
4-2 adder where [12] include two of each and addition-
ally a 561 bit ripple adder. The adder is used to convert
the result of a multiplication from carry save form to a
non redundant representation. Taking into account the
extra latches for pipelining a multiplication unit we be-
lieve that the area will be less than 200 mm? in a 1.2
process if we use the silicon compiler and its library cells.
We can reduce the area significantly by making a full
custom layout of the design, since the library cells are
designed in a conservative manner using static registers
and static logic gates. Another way to reduce the area
(and the computing time) is by choosing a smaller pro-
cess technology, e.g. 0.8y which approximately halves
the area.

All of the fastest implementations in Brickells survey
{4] include more than one chip. Cryptechs 712 bit so-
ution [7] comprise 6 chips, where each chip contains a



datapath for 120 bit. Thorn EMIs 768 bit solution [15]
comprise a controller chip and 3 datapath chips for 256
bit each.

7 Summary

We have presented a way to speed up a well known expo-
nentiation algorithm by performing two multiplications
in parallel, and we have shown how these multiplica-
tions can be performed efficiently using high radices.
Further more we have developed a highly regular hard-
ware architecture, based on the redundant carry save
addition technique, implementing the multiplication al-
gorithm with a radix of 32. Simulations indicates a
resulting speed improvement of more than 500% com-
pared to other known implementations.

Currently we are working on generalising the multipli-
cation to even higher radices. By expressing the quo-
tient and multiplier in a symmetric redundant digit set
i:&s:.;ms simple to modify the hardware architecture to
radix 64.
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