A Redundant Binary Euclidean GCD Algorithm

Shrikant N. Parikh

Programming Systems
IBM

Westlake, Texas 76299

Abstract

An efficient implementation of the Euclidean ged al-
gorithm employing the redundant binary number sys-
tem is described. The time complezity is O(n) uti-
lizing O(n) 4-2 signed 1-bit adders to determine the
ged of two n-bit integers. The process is similar to
that employed in SRT division. The efficiency of the
algorithm is competitive, to within a small factor,
with floating point division in terms of the number
of shift and add/subtract operations. The novelty of
our algorithm is based on properties derived from our
scheme of normalization of signed bit fractions. Our
implementation is noted 1o be well sutted to systolic
hardware design.

1 Introduction

A redundant binary version of the Euclidean algo-
rithm for the greatest common divisor (ged) is devel-
oped. Both our methodology and the performance
achieved is similar to that of the SRT division pro-
cess [1,4,7,12,14,17,18, 20,21].

The traditional form of the original Euclidean algo-
rithm [5] employs recursive integer division and is
based on the fact that ged(p — kg, q) = ged(p, ¢) for
any k. The standard binary form of the Euclidean al-
gorithm employs binary shift and subtract, and thus
relies specifically on the fact that ged(p — 2q,q) =
ged(p,). Using carry look ahead adders, the ged of
two n-bit numbers can be found by an implementa-
tion of the binary form of the Euclidean algorithm
in time O(nlogn) with O(n) hardware. The binary
form relies on strict adherence to the monitoring
of shifts and argument normalization to determine
when to swap the “remainder” p' = p — 2¢¢ and the
“divisor” g, corresponding to what would be the next
recursive division in the traditional algorithm.

As noted in [11], the direct attempt to introduce re-
dundant binary constant time subtraction into the
binary form of the Euclidean algorithm yields non

CH3015-5/91/0000/0220$01.00 © 1991 IEEE

220

David W. Matula

Dept. of Comp.Sci. and Eng.
SMU
Dallas, Texas 75275

trivial side effects in compensating for the lack of
an appropriate notion of normalization of signed bit
numbers. Our first contribution in this paper is the
introduction of a convenient and useful notion of nor-
malization of signed bit fractions. The resulting nor-
malized signed bit fraction will have magnitude in
the range (%, 1), and may be confirmed to be nor-
malized by simply checking at most three leading
signed bits.

Our principal contribution is then the specification
of a redundant binary form of the Euclidean algo-
rithm (RBEA). The algorithm treats the n-bit inte-
gers p,q as n + 1 signed bit fractions bg.b1ba - -bn
which are each normalized to the range (-1,-3) or
(%,1) by a modified shift operation, with by avail-
able for a subsequent possible overflow condition.
A brief computation on a few leading bits of p,q
(equivalently, table lookup) allows us to determine
a particular one of the three terms p— ¢, p— 2q, or
2p — ¢ which must have magnitude less than % This
term replaces p and is appropriately left shifted at
least once until normalized according to our signed
bit normalization criteria.

Note that the selection of one of the terms p — 2g,
2p—q, or p— q to replace p in the presence of redun-
dant binary representation of p and g is analogous to
the combined SRT division steps of i) digit selection
(table lookup), ii) divisor multiple formation, and
iii) partial remainder update. As in SRT division,
we are similarly assured that the new value may be
appropriately shifted at least once. As a consequence
of our redundant binary normalization criteria and
the term selection process, we then are able to prove
that Algorithm RBEA determines the ged of two
n-bit integers employing at most 2n shift /subtract
operations. With this algorithm we thus need only
O(n) time with O(n) 4-2 signed 1-bit adders.

In section 2 we state for reference the Euclidean ged
algorithm in both its traditional and binary forms.

In section 3 we introduce criteria for the normaliza-
tion of signed bit fractions. We specify our redun-
dant binary Euclidean algorithm in section 4, and
then prove it may be implemented in O(n) time with
O(n) 4-2 signed 1-bit adders.

Regarding extensions we first note that the alterna-
tive right shift binary ged algorithm has been shown
(3] to be implementable in an elegant systolic de-
sign. Algorithm RBEA appears similarly viable for
systolic design. In addition, algorithm RBEA may
readily be extended [11] to also obtain a solution a, 8
of
op — Bg = ged(p, g),

according to the generalized Euclidean gcd result.
Thus our methodology provides the foundation for
an efficient systolic design yielding the more compre-
hensive results of the expanded Euclidean ged algo-
rithm, results which can not be obtained from the
right shift binary ged algorithm.

2 Euclidean Algorithm

A summary of the Euclidean algorithm and its bi-
nary version is given in this section based on notation
and discussion from {11].

Algorithm EA (Euclidean Algorithm)

For any (p,q), ¢ # 0, this algorithm com-
putes the ged of p, q.

1. Let b_o=p; b_; =¢.

2. For i = 0,1..., while b;_; # 0 de-
termine a; as the quotient and b; as
the remainder (of the same sign as
b;_2) of the division of b;_5 by b;_;,
so b; = —b;_1 x a; + b;_o.

The algorithm terminates when b; = 0. At this point
b;_1 is the ged of p and q.

The binary version [11] replaces each division by a
sequence of shift-and-subtracts climaxed by a swap.
The swap corresponds to the interchange of role of
divisor and remainder for initiating the next division
step of the traditional Euclidean algorithm.

Algorithm BEA (Binary Euclidean
Algorithm)

Given initializations p,q of the registers P,Q
such that (p,q) # (0,0), this algorithm ter-
minates with the ged value right justified
in the P register. Up and Uq are auxiliary
registers initialized to 1 which identify the
unit-position of each argument.

221

While P and Q not normalized do
leftshift P, Q, Up, Uq;
While Q # 0 do begin
While Q not normalized do
leftshift Q and Ug;
Loop
While P not normalized do
Exit Loop if Ug= Up;
Leftshift P and Up;

End;
If sign(P) = sign(Q) then
P:=P-Q
else P := P+Q;
EndLoop;
Swap(P,Q); Swap(Up,Uq);

End;
While Up# 1 do rightshift P and Up.

In order to introduce redundant binary representa-
tion to expedite the addition/subtraction operations
in Algorithm BEA, an appropriate notion of normal-
ization of redundant binary operands must be devel-
oped.

3 Redundant Binary Representation
and Normalization

Redundant binary representation employs the signed
bits {1,0,1}. We here introduce a notion of normal-
ization of signed bit fractions that guarantees such
a number has magnitude in the range (},1), where
verification of normalization is determined by the
leading three signed bits.

The signed bit string with radix point after bg, p =
bo.biby ... bk, b = 1,0,1 for all ¢, of length & + 1 is
termed a signed bit fraction if and only if

k
-1 < Y b2t < 1
i=0

A signed bit fraction is in complement form when-
ever bg # 0. by is termed the complement bit, and
when it is nonzero, its sign must be opposite to that
of the sign of the necessarily nonzero value of the
remaining portion of the number. The complement
bit may thus be interpreted as a magnitude comple-
menting bit in the sense that the absolute value of
bo.b1by ... by is 1 — |z|, where

k
r = Z bi2_i 75 0.
i=1

The signed bit fraction bg.bibs...by is termed
normalized whenever exactly one of by and b, is
nonzero, where also b2 # —b;, when by = 0.

Thus we may define both standard and complement
normalized forms.

Standard form:

bo =0, bl #0 and b2 #—bl.
Complement form:

bo#O, b1=0

A signed bit fraction that is not normalized is termed
unnormalized.

Observation 1: A normalized signed bit
fraction always is in the range (,1) or
(-13)- An unnormalized signed bit frac-

tion with by = 0 must be in the range
11
-3 3)-
Given the unnormalized signed bit fraction

bo.b1ba ... bk, the complement bit may be forced to
zero by the following decomp function.

b, if bo = —by # 0,

if b = 0.

decomp(p) = { 2‘b°b2b3'

Note we cannot have bg = §; # 0 since ~1 <p < 1
for signed bit fraction. Note further that the decomp
function does not change the value of p. The result
may or may not be normalized.

The operation termed simplifying (“absorbing”)
shift (simshift) is defined for every noncomplemented
unnormalized signed bit number p = 0.51b, ...} to
yield a signed k bit fraction given by

0.b1b3by .. .by, if by ZOAL = —by

simshift (p) = { 0.babbs .. by, if by = 0.

Observation 2:

1. simshift(p) has twice the value of p,

2. simshift never creates a complemented
signed bit fraction,

3. simshift(p) has length one bit less
than p.

Normalization, a unary operation, defined for all
nonzero signed bit fractions can be stated as follows:

Normalization Algorithm:

222

If p not normalized do p = decomp(p);
While p not normalized do p = simshift(p);

Lemma: Given a signed bit fraction p # 0
of length k + 1,

k
p=) b2 #0, b =~1,0,1for all ,
i=0

then the normalization of p will be achieved
after at most k — 1 simshift operations, and
this bound is best possible.

To implement the Euclidean algorithm for two
signed nonzero numbers, the step of selectively de-
termining their difference when similarly signed or
their sum when oppositely signed is aided by intro-
ducing the following diff operation:
o b >0,

adlﬂb_{ a+bforab<0
The diff operation always returns a magnitude equal
to the difference of the original two magnitudes.

Observation 3: For the normalized signed

bit numbers a, b, the range of a diff b will

be ('%) 2‘)
It is useful to contrast standard binary normalization
with redundant binary normalization:

Standard binary representation: The range of a
normalized binary fraction is [3,1), (-1, -3].
The difference of two positive normalized binary
fractions is never normalized, and when nonzero
can always be normalized by one or more left
shift operations.

Redundant binary representation: The range of a
normalized signed bit fraction is (%, 1), (-1, -
%). The result of the diff operation of two nor-
malized signed bit fractions when nonzero can
always be normalized by zero or more simshift
operations. Note, the difference of two normal-
ized signed bit fractions might be normalized.

4

The digit selection process refers to a selection of
one of the terms p diff ¢, p diff 2¢, or 2p diff ¢, as
the new value of p. Specifically, after p and ¢ are

Digit Selection

1/4 1/2 3/4 1 5/4
| I | -1 -=1
Case 1: | €mmm e >
P>=2q “q “2q p
Case 2: | <===>]|
1>=2q>p “q “p “2q
Case 3: |€=mmmmmmm e >
2q>1>p>q>1/2 “q “p ~2q

Figure 1: Examples of diff operations

normalized, the result of the p diff ¢ operation is
previewed (by look ahead) to check if it would be
normalized or not. The occurrence of a normalized
result would guarantee the resulting magnitude to be
greater than %, in which case, depending on the signs
of p, q, and p diff ¢, one of the terms (2p diff ¢) or
(p diff 2¢) is then chosen as the new value of p. With
this selection, the value of p can be guaranteed to be
less than % This is diagrammatically shown above.
Without loss of generality consider the case where p
and ¢ are positive, and 1 > p > ¢ > ;1*-4 In each of
three cases, given p — ¢ > 4l, the position of p, ¢ and
the difference between 2¢ and p are illustrated with
|2¢ — pl < in all cases (see Figure 1).

Lemma: Given [p diff ¢| > %, where p, q
are normalized signed bit fractions, then

p diff 2¢| < 1 if |p| > [ql,
12p diff g| < 1 if |p| < [q].

Lemma: Given % <|pl,lgl < 1,

Min([p diff q|, |p diff 2¢|, |2p diff ¢) <

DO =

Corollary:

After the selection of a diff operation term
such that the magnitude of the result is less
than %, it will always be possible to normal-
ize the result by a process including at least
one simshift operation.

Note that if a complement condition initially exists,
it will be possible to first perform the decomp func-
tion. Note further that the imposition of at least one
simshift can result in the by bit becoming non zero.
We are assured this result corresponds to a comple-
ment form signed bit fraction as the initial result was

guaranteed to be of absolute value less than % before
the simshift operation.

This digit selection is based on the result of the op-
eration (p diff ¢), specifically on the state of the re-
sult — whether it was normalized or not normalized.
This in turn suggests that it is necessary and suffi-
cient to know at most the first five positions of p and
q (positions 0,1,2,3,4) if an alternative table lookup
were used, since the carry propagation in redundant
binary addition is limited to two places. Digit selec-
tion can be obtained either from a table or by im-
plementing in hardware, simple combinational logic
to perform a diff operation on the first five bits, and
checking for normalization of the result.

Algorithm RBEA (Redundant Binary
Euclidean Algorithm)

Given initializations p,q of the registers P,Q
such that (p,q) # (0,0), this algorithm ter-
minates with the gcd value right justified
in the P register. Up and Uq are auxiliary
registers initialized to 1 which identify the
unit-position of each argument.

While P and Q not normalized do
Simshift P, Q and leftshift Up, Uq;
LoopA
While Q not normalized do
Simshift Q and leftshift Ug;
Exit LoopA if Uq overflows;
LoopB
While P not normalized do
Exit LoopB if Up=Ug;
Simshift P and leftshift Up;
If (P diff Q) is normalized then
If sign(P diff Q) # sign(P) then
If Up#Uq then
leftshift Up; P:=2P diff Q;
Else exit LoopB;
Else P:=P diff 2Q;
Else P:=P diff Q;
P:=decomp(P);
Simshift P;
If Up#UQ then leftshift Up;
Else leftshift Upand exit LoopB;
End LoopB;
Swap(P,Q); Swap(Up,Uqg);
End LoopA;
While Up#1 do rightshift P, Up.

Theorem 1: Given the signed bit integers
p and ¢, the number of diff operations in the

execution of algorithm RBEA is at most
the sum of the lengths of p and gq.

Proof: In each major cycle ending with a
swap operation, each diff operation is fol-
lowed by one or more simshift operations on
register P. The number of diffs is bounded
above by the number of simshift operations.
A simshift operation reduces the length of
one of the arguments by one, and the al-
gorithm terminates when ¢ = 0. Since the
number of simshifts is bounded by the to-
tal of the lengths of p and ¢, the number
of diff operations is at most the sum of the
lengths of p and gq.

=]

Since n-bit redundant binary addition is a constant
time operation with O(n) 4-2 signed 1-bit adders,
the ged of two n-bit numbers can be determined by
Algorithm RBEA in O(n) time with O(n) bit level
Processors.

Observation 4 The absolute value of
the chosen term (p diff ¢), (p diff 2q),
(2p diff ¢) in Algorithm RBEA can al-
ways be simshifted. This fact can be used
to combine the simshift and diff operation
thereby avoiding the cost of a simshift im-
mediately following a diff operation.

Algorithm RBEA terminates with a number of diff
operations (previously shown to be equivalent to
add/sub operations) not exceeding j + k, where j
and k are the lengths of the two operands. This
is a guaranteed upper bound. This upper bound is
achieved by a guaranteed progress of at least one bit
after each diff operation. This phenomenon is made
possible by the digit selection process. The algo-
rithm in the form shown needs swap operations but
these can be eliminated by using two symmetrical
registers in hardware. In practice, simulation of the
algorithm with various length arguments has shown
that the number of diff operations per bit of input
(’progress’) approaches 0.41.

Acknowledgements

We wish to thank Sgren P. Johansen for helpful com-
ments and improvements in the statement of Algo-

rithm RBEA.

224

References

[1] D.E.Atkins, “The Theory and Implementation of
SRT Division,” Report No. 230, Dept. of Com-
puter Science, University of Illinois, June, 1967.

[2] A.Avizienis, “Signed-digit Number Representa-
tion for Fast Parallel Arithmetic,” IRE Transac-
tion in Electronic Computing, Vol. 10, pp. 389-

400, 1961.

R.P.Brent, H.T.Kung, “A Systolic Algorithm for
GCD Computation,” Proc. 7th IEEE Symp. on
Comp. Arith., pp 118-125, 1985

M.D.Ercegovac, “A Higher-Radix Division with
Simple Selection of Quotient Digits,” Proceedings
of Sizth IEEE Symposium on Computer Arith-
metic, pp 94-98, June, 1983.

Euclid, Proposition 1 I& 2 of Elements, Book 7,
appx.300BC.

[5]

[6] M.J.Foster and H.T.Kung, “The Design of Spe-
cial Purpose VLSI Chips,” IEEFE Computer,
Vol.13, pp.26-40, Jan. 1980.

[7] C.C.Freiman, “Statistical Analysis of Certain Bi-
nary Division Algorithm,” Proc. IRE, Vol {9, pp

91-103, 1961.

[8] G.H.Hardy and E.M.Wright, An Introduction to
the Theory of Numbers, 4th ed., Oxford, Eng-

land: Clareton Press, 1959.

[9] Y. Harata et al., “High-Speed Multiplier LSI Us-
ing a Redundant Binary Adder Tree,” Interna-

tional Conference on Computer Design, 1984.

[10] D.E.Knuth , The Art of Computer Program-
ming: Vol II,Seminumerical Algorithms, (Sec-
tion 4.5), Addison-Wesley Publishing Company,
1981.

[11] P.Kornerup and D.W.Matula, “Finite Preci-
sion Rational Arithmetic: An Arithmetic Unit,”
IEEE Transactions on Computers, Vol C-32,
No.4, pp. 378-388, April 1983.

[12] S. Kuninobu et at., “Design of High-Speed
Multiplier and Divider Using Redundant Binary
Representation,” Proc. of the 8th ISCA, pp 80-
86, May 1987.

[13] O.L. MacSorley, “High-speed Arithmetic in Bi-
nary Computer,” Proc. IRE, Vol. 49, no. 1, pp.
67-91, Jan. 1961.

[14] G.Metze, “A Class of Binary Divisions Yielding
Minimally Represented Quotients,” IRE Trans-
actions on Electronic Computers, Vol. EC-10,
December 1962.

[15] S. Parikh, An Architecture For a Rational
Arithmetic Unit, Ph.D. dissertation, Southern
Methodist University, December 1988.

[16] G.W.Reitwiesner, “Binary Arithmetic”, Ad-
vances in Computers, Vol. 1, F.L.Alt, Ed. New
York: Academic, 1960.

[17] J.E.Robertson, “A New Class of Digital Divi-
sion Methods,” IRE Trans. El. Comp., Vol EC-7,
no.3, pp.218-222, Sept. 1958.

[18] N.R.Scott, Computer Number Systems and
Arithmetic, Prentice-Hall Inc., NJ, 1985, Section
7.11.

225

[19] B. Shirazi et al., “RBCD: A Redundant Binary-
coded Decimal Adder,” IEE Proceedings - Com-
puters and Digital Techniques, Vol. 136, No.2,
pp.166-160, 1989.

[20] G.S.Taylor, “Radix 16 SRT Dividers with Over-
lapped Quotient Selection Stages,” Proceedings
of 7h Symposium on Computer Arithmetic,
1985.

[21] K.D.Tocher, “Techniques of Multiplication and
Division for Automatic Binary Computers,”
Quart. J. Mech. Appl. Math., Vol. 11, pt.3, pp.
364-384, 1958.

[22] N. Takagi et al., “High-Speed VLSI Multiplica-
tion Algorithm With a Redundant Binary Ad-
dition Tree,” IEEE Trans. on Computers, Vol.
C-34, No.9, pp. 789-796, September 1985.

