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Abstract

Ofman, Wallace and others used carry save adders to
design multiplication circuits whose total delay is pro-
portional to the logarithm of the length of the two num-
bers multiplied. An extension of their work is presented
here.

The first part presents a general theory describing the
optimal way in which given carry save adders can be
combined into carry save networks.

In the second part, two new designs of basic carry save
adders are described. Using these building blocks and
the above general theory, the shallowest known theoret-
ical circuits for multiplication are obtained.

1 Introduction

We examine theoretical ways to speed up multiplication
circuits. The general approach used is the one suggested
by Ofman [10] and Wallace [13]. The present paper
extends previous results reported in [11],{12].

The model we use is that of dyadic Boolean circuils. A
dyad}c Boolean circuit is an acyclic circuit composed of
dyadic (i.e., two-input) Boolean gates.

There are ten non-trivial types of dyadic gates: eight of
them of the form (22 A y*)° (where 2° = z and 2! = 7
and A denotes the AND operation), and the other two of
the form (z @ y)°, where @ denotes the XOR operation.
The first eight types include the usual AND, OR, NAND
and NOR gates.

Two different cases may be considered. In the first we
assume that all gate types can be used and in the second
that only the eight AND-like types can be used. Our
method can also be used to construct fast multiplica-
tion circuits in cases where fewer gate types, e.g., only
NAND gates, are allowed.

We allow the gates to be connected in an arbitrary
gcychc manner and assume that each has unit delay,
ie., t}}e output of a gate is stabilised one unit of time
after its two inputs are stabilised. The total delay of
a circuit is the time from the moment at which all the
inputs are stable until all the outputs are stable. In this
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model the total delay corresponds to the length of the
longest directed path from an input to an output.

This model ignores many practical considerations. No
attention is paid for example to possible VLSI layouts of
these circuits. Simplifying assumptions are made: that
no delays are introduced on connecting wires and that
the delay of a gate is not influenced by its surroundings.
The model enables however a theoretical investigation
of the inherent delay needed to perform multiplication.
Subsequent work may reveal ways of making the con-
structions described in this work more practical. The
basic ideas of Ofman and Wallace, on which this work
is based, are already of practical use (see e.g. [1]).

The above Boolean circuit model is one of the principal
models used in the theory of computational complexity.
For a summary of the extensive literature available on
this subject the reader is referred to [4],[6],[14].

The first step in the Ofman-Wallace approach is to de-
sign a carry save adder (CSA). The simplest CSA re-
ceives three input numbers and avoids carry propaga-
tion by outputting the sum of them as the sum of two
numbers. Such a device will be called a CSA3_,5. The
striking discovery of Ofman, Wallace and others (see
also [2],[5]) was that CSA’s can have constant delay, in-
dependent of the size of the input numbers. The second
step is to construction a network of CSA’s that reduces
the sum of n input numbers to the sum of only two.
Such a network requires only a logarithmic number of
layers and its total delay is therefore logarithmic. The
two remaining numbers may be added using a carry look
]ahead adder %see [3],[8]) which also has logarithmic de-
ay.

Since multiplication of two n-bit numbers involves little
more than adding n numbers, the above approach yields
logarithmic depth multiplication circuits.

In sections 4 and 5 of this work we present improved
designs of CSA’s. In section 3 we describe a general
method of combining CSA’s into shallow networks.

2 Bit Adders and Carry Save Adders

The simplest CSA3_,, is obtained by using an array of
FA3’s (3-bit full adders? as shown in Fig. 2.1. In fact
any bit adder (BA) could be used to construct a CSA.

A bit adder is a unit with k input bits and £ output
bits, where £ < k. Each input and output bit has an as-
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Figure 2.1: Constructing a CSA 3_.2 using FAj’s.

sociated significance. If the k input bits are denoted by
Z1,...,2¢ and their significances are ay,...,ax, :fmd_ if
the £ output bits are denoted by yy, ..., y, and their sig-

nificances are by,...,b, then the relation Ef__.l yi2b =
Z;ﬂ z;2% holds.

The simplest bit adder is the 3-bit full adder FA3. The
significance of the three input bits is 0 and the signifi-
cances of the two outputs bits are 0 and 1 respectively.
More generally, if k = 2™ —1 then an FA; which receives
k input bits, and outputs m bits containing the binary
representation of their sum could be constructed. The
significance of all the inputs to an FA; is again 0, and
the significances of the m outputs are 0,1,...,m — 1.

The fastest CSA networks which can be constructed us-
ing CSA 3_.7’s have depths asymptotic to 3.71 log, n or
5.42log; n, depending on whether all dyadic gates or
only the AND-like gates are used (see [11],[12]). In or-
der to get our best-performing CSA’s we need to con-
sider slightly more general BA’s. If 3°7_ ¢;2' =2m — 1
we denote by FA,, . the bit adder with k = 0 Ci
inputs, where ¢o of them have significance 0, ¢; of them
have significance 1, and so on. The unit FA,,,... ., will
have m outputs with significances 0, 1,...,m— 1. Since
every number 0 < z < 2™ has a unique binary represen-
tation of length m, the output of this BA for any input
vector is uniquely defined.

In section 4 we describe an efficient implementation of
an FAs;. A CSAe_3 could be built using this FAj
as illustrated in Fig. 2.2. The CSA’s constructed in
this way give rise to the shallowest known multiplication
circuits. These constructions use both AND-like and
exclusive-or (XOR) gates. Their asymptotic delay is
about 3.57 log, n time units (excluding the time needed
for the final addition).

In section 5 we describe an efficient implementation of
an FAy 4 using only AND-like gates. A CSA ;.4 could
})e built using this FA; 4 in a similar way to that shown
in Fig. 2.2. The CSA’s constructed in this way yield
the shallowest known multiplication circuits that use
only AND-like gates. Their asymptotic delay is about
4.95 log, n time units (excluding again the time needed
for the final addition).
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3 Constructing CSA networks

We are given a CSA _,, unit G that accepts its k inputs
at times z1,...,2; and delivers its £ outputs at times
Y1y...,Ye, where k > £ Our task is to compose copies
of G into a network that reduces the sum of n numbers
to the sum of only £. We would like the delay of this
network to be as small as possible.

Without loss of generality we may assume that 0 = z; <
...<zp and y; <...< Y. In a real ‘causal’ device no
useful output can be given until after the first input is
received, and no input can be relevant unless it precedes
the final output. Hence we may assume that y; > ;
and y; > zj.

The characteristic polynomial of G is defined to be
g(z) = Z;=1 2¥i — Ef___l z%. It is easy to see that
g(1) = £—k < 0 and g(oo) = oo. Hence the equa-
tion gﬁz) = 0 has at least one real root greater than 1.
We call the smallest such root the principal root of G
and denote it by Ag. The asymptotic depth of the net-
works we construct depends on the principal root: the
larger this root, the shallower the circuit.

As a consequence of the causality, if all the inputs up
to time ¢ are zero, then all the outputs up to time ¢
are zero as well. If the number of inputs still to be
given after time ¢ is larger than the number of outputs
still to be produced, then we can get a CSA unit Gl
by fixing all the inputs to G up to time ¢ to zero and
ignoring the outputs up to that time. If for some ¢ > 0
a unit G can be obtained for which Agta > Ag we
say that G could be improved, since we could use the
smaller unit G{* instead of G to construct circuits which
are asymptotically at least as shallow. If G cannot be
improved in this way then we say that it is reduced.

For a polynomial f(z) = Y7/ fiz' we define f > 0
grespectively F = 0)if fi > 0 (respectively f; > 0)
or 0 < i < m and also write, for example, f < ¢ if
(9-f)=o0.
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Figure 2.2: Constructing a CSA¢_.3 using FAs1’s.

Lemma 3.1 If G is reduced and g(z) = (z — Ag)h(z)
then h » 0.

Proof : For a polynomial f(z) = Y/~ fiz' we define
fll(z) = 0, fiz*. Note that if GI* is a functional
CSA then its characteristic polynomial is f['](z).

We have hpoy = gm > 0 where m = deg(g). Suppose
that for some t, 0 < t < m — 1, we have Al'*1 & 0 but
hy < 0. Then

gl 0(2) = hyz'+1 4 (2 — Ag)RI(2) < 0

for 1 € z < Ag. Hence Agu+1) > Ag, which contradicts
the assumption that G is reduced. O

We can interpret the equation Agh(z) + g(z) = zh(z)
as an assertion that if Agh; data items are available at
time ¢, for 0 < ¢ < m, and (some of them) are input to
a copy of the unit G, then the result is that h; items
are available at time ¢ + 1 for 0 < i < m. This suggests
that we may be able to reduce the number of items by a
factor of Ag at every time unit. The delay of a network
for the carry save addition of n numbers in this case
would be about log, n time units.

There is however a small obstacle to be overcome. The
numbers Agh; and h; are in general non-integral. We
will use integers to approximate the real numbers that
we encounter and show that this does not affect the
validity of our results.

A copy of G that receives its inputs at times t+z1, ..., t+
z; (and yields its outputs at times t-+y;,. Lo tty,) is
said to be based at time f. The essentials of a network
could be described by specifying the number of CSA
units that are based at each given time. The outputs
produced at time ¢ can be supplied as inputs at time
t in an arbitrary manner. If more items are consumed
at time ¢ than produced then the network may receive
some external inputs at time ¢. If more items are pro-
duced than consumed, then the network produces some
external outputs at time ¢.
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For every N > 0 we construct a CSA-network‘in which
¢t = [A/)X' + b] copies of G are based at time ¢ for
0 <t <T where A = A\g, A = N/(Ahg), b=1/(A-1)
and T = [logy A] < [log, N]. The coefficient of z*

in the characteristic function, 2;1;0 c,z‘) g(z), of the

network, gives the number of inputs or outputs required
or supplied at time t. A negative number denotes inputs
while a positive number denotes outputs.

We claim that this network accepts at least NV inputs at
or after time 0, and produces only a constant number
of outputs, no later than time 7'+ m < [logy, N| + m.
This follows from the next lemma.

Lemma 3.2

T
v (Z ) g(z) < b+ Dh(2) .

t=0
Proof :
T
N+ ZrA//\' +b]2ig(2) =
t=0

T T
N+ Y TA/A 4812 h(2) — Y [A/A + 5] Azth(2)
t=0 t=0
= N+ [A/AT +0]2T+h(z) — [A + b AR(z) +
T
D ([A/X1 48] — [A/A! +b]2) 2*h(2)

[A/AT + 52T+ A(z)

2T+1(b 4 2)h(2).

We used the fact that [B + b] < [B/A + b]h/\ for any
B > 0. The number b was chosen to ensure this. O

The constant number of outputs produced by these net-
works could be reduced to two using an additional fixed
delay, independent of N.

A TA
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Figure 4.1: An implementation of an FAs ;.

4 A 6— 3 Carry Save Adder

An implementation of an FAs is given in Fig. 4.1(a).
The implementation uses seven half adders (HA) and
three XOR gates. A HA is composed of an XOR gate
and an AND gate. The left output of an HA with
inputs a,b is a @ b (the sum) and the right output is
a A b (the carry). The three separate XOR gates used
in Fig. 4.1(a) could in fact be replaced by OR gates.

In order to verify the validity of this implementation we
imagine at first that the three XOR gates are replaced
by HA’s. Notice that the connections between the HA’s
respect the significances of the inputs and outputs. The
significance associated with each wire in the circuit is
written next to that wire in Fig. 4.1(a). The inputs
z1,...,Zs have significance 0 while z¢ has significance 1.
It is easy to check that the carry output of the three
HA’s that we used to replace the XOR gates are always
zero so the HA’s could be replaced by XOR gates or by
OR gates.

Note that the input z5 is supplied to this unit two units
of time after z1,...,z4 are supplied and that yq is then
obtained one unit of time later, even before z¢ needs
to be supplied. The outputs y; and y, are obtained
one and two units of time after z¢ is supplied. This
behaviour is depicted in Fig. 4.1(b). The CSA¢_.3 con-
strucped using this FAs ; will have the same delay char-
acteristics.

The results of the previous section give us the optimal
way of combining these CSAg_,3’s into networks. The
delay of these networks for the (carry save) addition of n
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numbers will be approximately log, n =~ 3.57 log, n time
units where A ~ 1.21486 is the root of the polynomial

equation A + A5 — At 4+ A3 - A2 -4=0.

5 An 11 — 4 Carry Save Adder

The CSAg_.3 described in the previous section relied
heavily on the use of XOR gates. An XOR gate could
always be replaced by three AND-like gates with a total
delay of two time units. Better results are obtained
however by using a completely different design.

Khrapchenko [9] gave the design of an FA; with which a
CSA 7,3 with the characteristics given in Fig. 5.2 could
be constructed. He also described networks based on
this CSA with asymptotic delay of 5.12 log, n. The net-
works that he described were not optimal ﬁowever. Us-
ing the designs of section 3, or even the less general
designs described in [11],[12], better networks of delay
5.07log, n can be obtained. '

In this section we give an implementation of an FA7 4 us-
ing which the preceding results can be further improved.
Since the design of this unit is based on Khrapchenko’s
design, we give a concise summary of his construction
in Fig. 5.1.

In Figs. 5.1 and 5.3 we use the following notation. We
denote by S# the symmetric function of k variables
which takes the value 1 for inputs z,,...,z; if and only
if 3" z; € A. For example, S3°7 stands for the majority
function on seven variables. For conciseness we write
U, for S4(u) where u = (1, z2, z3), and V, for S{(v)
where v = (z4, zs, 26, 27), and so on.



Notation: £ = 212223 T4T5T6T7
N e’ e,

u v
4666666 Yo = Sias-[ = UpaVia V U13Vp24
5667777 i = SET = UpVou VUi VUG V2 V UpsVa
5666666 y2 = ST = ViV Ui23Vaq V UasVazs V UsViaaa
233 Un = Uss
244 U = Uss
233 Ui2 = Ups
122 Uz = zi1(zo23)
233 Uz = T (5253) \% 1‘1(1:2.’173)
244 Uiz = 51(1'-22‘3 \% sza) \% 1)1(5253 \% xgxs)
233 Uz = z1(z2Vas)Vzazs
122 U123 = Iy \% (2)2 \Y 1‘3)
4444 V1 = 2_t4f5g51'7 \ xefqv) \Y (f41‘5 \% 1'4?5)55?7
4444 Vo = VaagVas
4444 Vs = (_541‘5 \ :0455).1'5:07 \Y .’B41!5)(55.’L‘7 \ 1'557)
4444 V13 = V024
2222 V4 = X4T5Xe27
3333 Voua = ZT4TsTeT7 V T4T5T6T7
3333 V34 = (.’841‘5 \% 261’7;(-73436 \% .‘L'51‘7)
4444 Vipy = (T4Ts5 V 2425)(TeTr V z67) V (Tazs V 24Fs5)(Tez7 V 26F7)
3333 Vazs = (z4Vzs)(zeVazr)V(zaVze)(asV z7)
2222 Vigas = x4VzsVizgVar

Figure 5.1: Khrapchenko’s construction of an FAs.
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Figure 5.2: The delay characteristics of Khrapchenko’s construction.
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4666666 Yo = Siss7
78899996666 1. = SoiasTiaV S23e7T024
89999997777 Yy = gS4567T04 V S2345T1) V (So123T2 V So1e7T3)
78888886666 Ys = (Szaase7T34V SerTiz34) V Toaa(Saser V 1)

56666664444 Siser V Ty (Uz3Vasa V Ur23Vaq) V (UsVizas V Vi) V T)

5667777 So14s = S2367

5666666 Soier = 52345

5666666 50123 = 54567

5666666 Sazss = SzaserSer

4555555 Saasser = UizaVizaa V (Uas V Vaza)
4555555 Ser = Uz3VaV U3Vay

Figure 5.3: The new FA7 4 construction.

XpX3 § 19y Y% ’;4--*7 «
X 811
! l_U Uz | | V1234 '
Uzs V34 Ups Viq v,

Xy ¥y

Suse7 v Ta

Figure 5.4: The final stages in the computation of Sss67 V T3.

Figure 5.5: The final stages in the computation of ya.
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Figure 5.6: The delay characteristics of the new FAz7 4.

The numbers given to the left of each formula in Fig. 5.1
are the depths of the variables in that formula. They
will be called delay vectors. The delay characteris-
tics of the three output bits yq, y;,y2 that compose
Khrapchenko’s FA; are described in Fig. 5.2(a). In
[12] it is shown that the optimal way of combining
these three units into a single unit is as presented in
Fig. 5.2(b).

The construction of our new FAz 4 is given in Fig. 5.3.
Figures 5.4 and 5.5 depict the final stages in the con-
struction of y3. The delay characteristics of yo, y1, y2, ¥3
are shown in Fig. 5.6(a) and we see that we can fit them
all into the unit outlined in Fig. 5.6(b).

By the results of section 3, we can combine the new
CSA 11.4’s into networks of asymptotic depth log, n =~
4.95log, n where A =~ 1.15041 is the principal root of

the equation 2A% + A8 4+ A6 —4X2 _ A -6 = 0.

6 Concluding remarks

We have presented a general construction and some spe-
cific designs which yield circuits for carry save addition
which are faster than those previously published. Al-
though we have only given asymptotic results here, the
same methods provide efficient networks for small num-
bers of inputs. There is a polynomial time algorithm
which, for any CSA G and any n, gives an optimal-
depth network of G’s for the carry save addition of n
inputs.

Our constants will no doubt be improved before

long, but the techniques provide a simple construction
method which may be of more durable value.
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