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Abstract

In this paper, the design of residue generators and multi-
operand modular adders is studied. New highly-parallel
schemes using carry-save adders with end-around carry
are proposed for either type of circuit. They are derived
on the basis of the periodicity of the series of powers of
2 taken modulo A (A is a module). The new circuits are
faster and use less hardware than similar circuits known
to date.

1 Introduction

Residue arithmetic has been used in digital computing
systems for various purposes for many years, see for ex-
ample [1], [2], [4], and [3]. The two most important
applications of residue arithmetic are:

o high-performance digital signal processing hard-
ware which makes use of the parallel nature of the
residue number systems (RNSs) arithmetic; and

e fault-tolerant digital systems protected against un-
detected errors using arithmetic error detecting
and/or error correcting codes.

Either class of a system uses a generator mod A, ie.
a circuit that computes [X]4, the residue modulo 4,
from a given binary number X. In an RNS-based dig-
ital system it is used to build a binary-to-residue con-
verter [1], [3], while in a fault-tolerant digital system
using an arithmetic error detecting code (EDC) it is
used to build an encoding/decoding circuitry [5], [9],
and [10]. However, since in either application the gen-
erator is the overhead which can compromise the speed
of the system, it should be a fast circuit realized with
the minimal amount of hardware.

Consider a generator mod A with n inputs {xn_1,...
,z1,z0} and a outputs {ss—1,...,51,80}, where a
[logzA]. The generator converts an integer X
Z;';OI 2z into [X]a = 27;01 2s;, i.e. 1t computes
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Xla =[S 225, 1)

j=0 . .
The most obvious scheme of generating [X]4 is a divi-
sion of X by A to find the remainder, but this technique
is very slow. A more efficient algorithm given in [1], is

based on the expression .
n—

Xla=[ D [2az; |4 (2)
j=0

If the values of [2/]4 are directly available, [X]a may be
computed by merely adding mod A those terms [2]a
for which z; = 1. The summation mod A of n residues
can be performed by a [log(n — 1)]-level tree of n — 1
two-operand binary adders mod A, a regular but costly
and time-consuming scheme (by logn we always denote
logarithm of n to the base 2). This approach was the ba-
sis for implementations of universal area-time efficient
VLSI networks for converting an integer from binary
system to residue number system [14]. The residue
generator from [14] uses [n/logn] Brent-Kung paral-
lel adders which perform the addition of two residues
mod A in O(logn) parallel steps, each step performed
in O(log log A)=0(loga) time. This method aimed for
RNS-based systems, where n is relatively small, seems
inefficient (both in terms of cost and speed) to realize
encoding and decoding circuitry for arithmetic EDCs,
where it is not uncommon that n > 32. An alternative
method to construct the generator by using look-up ta-
ble implemented with ROMs was considered in [13].

The generator mod A = 2% — 1 needs a special consider-
ation since the residue [X]2_1 can be obtained by mod
96 _ 1 addition of a-bit bytes of X, due to the identity

21 = 1. (3)
Thus the computation of [X]s._1 can be accomplished
with a Llog(b —1)]-level tree of b— 1 adders mod 29 -1,
where [n/a]. This elegant and efficient genera-
tor was proposed by Avizienis [11], [12] to implement
checking algorithms for arithmetic codes. Since the
generators available for A # 2% — 1 has been signifi-
cantly more complex than for A = 2% — 1, arithmetic



EDCs with the check base A = 2% — 1 have been called
low — cost arithmetic codes since then. This scheme
has been recommended for implementation of encod-
ing/decoding algorithms for low-cost arithmetic codes
in all the literature known to the author, e.g. E], [4],
(5], [6], [7], [8], and [9]. Also, only low-cost arithmetic
codes have been used 1n practical applications reported
to date.

A multi — operand modular adder (MOMA) is another
circuit frequently used in modular arithmetic applica-
tions. In particular, it can be used to build a residue
generator but, as far as we know, this concept has not
been considered explicitly in the literature. The design
of multi-operand adders mod A was considered in [15]
(only for A = 2% — 1), and most recently in [19], [16],
17] (only for A = 2°~1+1), and [18]. The MOMA from
19] implemented by associative table look-up process-
ing is generally more complex than any scheme using
carry-save adder (CSA) network. The most efficient are
the designs from [15]—for A = 2% —1, and from ng]—for
any other A. Only the design from [15] uses a CSA with
end-around carry (EAC).

In this paper, we show how to design new faster and
less complex residue generators and MOMAs for any A.
The design of either circuit is based on the extensive use
of highly-parallel circuitry such as a CSA network with
EAC. The design of a CSA with EAC proposed here
was made possible by exploiting the periodicity of the
series of powers of 2 taken mod A. Actually, the residue
generators proposed here are the first ever designs which
use CSAs.

2 Periodic Properties of [2J],

The periodicity of the series of powers of 2 taken mod
A is of key importance in the new design methods for
the generator mod A and multi-operand adder mod A
proposed in this paper. We start with the following
definition adapted from [20].

Definition : The period of the odd module A P(A) is
the minimum distance between two distinct 1’s in the
sequence of residues of powers of 2 taken mod A. This
is formally written as: P(A) = min{j | j > 0 and

Table I. Periods P(A) of odd modules A < 65.

A [ 3] s 7] 9[1uJ13[15][17
PA) | 2] 4] 3] 6]10]12] 4] 8
A 192123252729 ]31]33
P(A) (18] 611 ]20]18]28] 5] 10
A [35[37[39]41 43454749
P(A) |12 |36 122014 [ 1223 [ 42
A 151]53]55]57][59]61]63]65
P(A) ] 8152201858 60] 612
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Figure 1. CSA network with EAC for 4-operand adder
mod 7 or 12-bit generator mod 7: (A) detailed scheme;
and (B) shorthand description.

[2/]4 = 1}. Henceforth P(A) will be simply called the
period of A.

P(A) can be calculated by using the following recursive

equation ) i

(274 =[2027"a ], (4)
However, for some A the following formulas are known
to compute P(A) [20]:

e P(2°-1)=gq;

o P(2%1 4 1) = 2(a—1);

o If A = kB with k and B odd then P(A) is some
multiple of P(B).

Now, with the concept of the period of A, we generalize
the identity (3) which holds for A = 2% — 1 only, to the
following identity which holds for any A

[QtP(A)]zP(M-l =1, (5)
where ¢ is any nonnegative integer.
3 Carry-Cave Adder Networks with

End-Around Carry

The concept of carry — save addition has been used for
many years to speed up multi-operand binary addition
[15] and to implement MOMAs [15], [16], [17], and [18].
The MOMA for A = 2% — 1 given in {15] (pp. 98-100) 1s
the only example of using a CSA with EAC that has
been reported in the literature. It is illustrated with the
following example.



Ezample 1 : Design the 4-operand adder mod 7 us-
ing a CSA with EAC. The input 12-tuple are four
residues mod 7: X = {zoz120}, X2 = {zs52423}, X3 =
{zsz7z6}, and X4 = {z11210z9}. The set of input bits
is partitioned onto a=3 disjoint sets Gj with the bits
of the same weight [27];: GO = {zo, 23,25, 29}, Gl =
{21, 74,27, 210}, and G2 = {z,, 25,23, 211 }.

Figure 1(A) shows a detailed scheme of the circuit, while
Fig. 1(B) shows its shorthand description, where the
columns Gj indicate the number of bits of weight [2/];
in the current stage of computation. The latter scheme
will be used henceforth to describe any CSA network).

The operation of the above circuit as well as any other

a-bit CSA network with EAC is justified by (3) for A =

2% — 1. Since P(2% — 1) = a, one can expect that a
similar concept can be applied to any other A, provided
that a P(A)-bit CSA network with EAC is considered
and a more general identity (5) is taken into account.
Below we will show that this is indeed the case.

Suppose that we wish to add k > 3 P(A)-bit num-

bers mod 2P(4) — 1, A4 is an odd integer. A P(4) -
bit CSA with EAC is a natural generalization of the
well known a-bit CSA with EAC used for 4 = 2¢ — 1.
This is because a FA with inputs of weight [2P(4)-1],

generates the carry signal of weight [2[2P(4)=1],], = 1
that can be directed to the FA with inputs of weight
1. Similarly, the a-bit binary adder with EAC used for
A = 2% —1 can be generalized to a P(A)-bit binary
adder with EAC used for any A. A remarkable fea-
ture of this circuit, which is of our particular concern, is
the cyclic nature of the addition mod A with the cycle
length P(A). 1t allows any P(A)-bit adder with EAC
to begin and end operation at any point of the cycle.
In our applications, this adder executes at most one full
cycle of length P(A). Thus, in the worst case, if the
P(A)-bit adder with EAC begins operation from Gj,
its operation ends at G(j — 1) with the last carry signal
directed to Gj (see, for example, Fig. 5). Henceforth,
the P(A)-bit adder with EAC which goes through p
p < P(A)) stages will be called a p — bit cyclic adder.

ne limitation of the P(A)-bit adder is that its delay
grows with P(A) and it can be prohibitively large for
some A. In such a case, we suggest to use the following
scheme for large P(A). Some other modifications of the
new basic generator scheme, which allow to avoid this
problem, will be given in the next section.

If P(A) is large we can partition P(A) cyclically ordered
sets Gj onto w groups S;, each group S; containing
subsequent sets Gj, 1 < i < w. If the groups S; are
of similar sizes, the addition of two P(A)-bit operands
can be performed in parallel by w shorter binary adders
of length no more than [P(A)/w]. This implementation
involves w — 1 extra inputs to the final converter of the
generator (see Fig. 3 and Section 4), since now there
are w > 1 sets GGj with two bits. The following example
clarifies such a case.

Ezample 2 : A CSA network with EAC for the 32-bit
generator mod 13 is given on Fig. 2. The set of 32 input
bits is partitioned onto P(13) = 12 sets Gj. The 8-bit
CSA reduces the input bits from n = 32 to n’ = 24,
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Figure 2. CSA network for 32-input generator mod 13.

Figure 3. General structure of the new n-input
generator mod A and the k-operand adder mod A.

which are uniformly distributed due to four HAs. Now
a 12-bit adder with EAC could be used to reduce the
bits from n’ = 24 to n” = 13. However, if it is too slow
a viable alternative are two 6-bit adders used as shown
on Fig. 2.

4 New Generators Mod A

In this section, we propose three new schemes of the n-
input generator mod A which cover the whole spectrum
of A and n; two of them make use of the CSA network
with EAC.

4.1

Here we will propose a new n-input generator mod A
that computes (2) using a CSA network.

Let n = uP(A) 4+ v, u=0,1,2,... and 0 < v < P(4) ~ 1.
For n > P(A) we have u > 1 and v > 0. It follows
from (5) that for any j (0 < j < P(A) — 1) and any
nonnegative integer ¢

[2POH], = [27],, (6)
which implies that u + 1 bits Tj, TP(A)4jr-r TuP(A)+
represent the same residue [27]4 for any j < v. The
same holds for u bits z;,zp(a)yj,. -, T(u-1)P(a)4j fOT
any j > v. This leads us to the partitioning of n
input bits onto P(A) subsets Gj defined as Gj
{zg 1 ([2%a = j) and (0 < ¢ < n-1)}, 5 =
{0,1,2,...,P(A) — 1}. The sets Gj are cyclically or-
dered according to increasing indices j taken mod P(A);
in particular, the sets G(P(A)—1) and GO are adjacent
and hence GO follows G(P(A) — 1). This leads us to a
new general structure of the n-input generator mod A,
shown on Fig. 3. It is designed by using the following
procedure.
Procedure 1

General Design Procedure

Step 1: Partition the set of input bits {]:co, z3,
.., ZTn-1} onto P(A) sets Gj = {z, | [29]4 = j},
0<j<P(A)—1.

Step 2: If n < 2P(A) + 1 assume n’ = n and go to
Step 3. Otherwise, reduce the total number of bits
from n to n' (n' = 2P(A) or 2P(A) + 1) using a



CSA with EAC of length up to P(A).
For n’ = 2P(A) any set Gj has two bits, whereas
for n’ = 2P(A) + 1 one set, say Gj*, has three bits
while all other sets Gj have two bits.

Step 3: Reduce the number of bits from n’ to n”
P(A) + 1 by using a p-bit cyclic adder.
a) If n’ = n then p = n’ — P(A) and the adder
starts with GO;
b) If n’ = 2P(A) then p = P(A) and the adder
can start with any set Gj;
c) If n’ = 2P(A)+1 then p = P(A) and the adder
starts with Gj*.
In any case, every set Gj but one, say Gr, contains
a single bit at the end of the addition; dependin
on the case r equals: a) n’ — P(A); b) j+1;0or c%
J + 1L
Step 4: Compute [ y[2%4 + (24 + ... + ¥.[27]a +
W2 la+ . +ypay-1[2PMY4 ],

Step 4 is executed by the final converter which is noth-
ing else but an n”-input generator mod A. It can be
implemented using one of the schemes proposed in Sub-
sections 4.2 and 4.3. The final converter is not used for
A =2%—1 because n’ = a.

Basically, Proc. 1 can be used to design a generator for
any A and n such that n > P(A), but its efficiency
grows with the ratio n/P(A). The major limitation
of Procedure 1 is that we cannot take the full advan-
tage of an extensive use of the CSA network (if at all)
when n/P(A) < 3, and in such a case most bits must
be reduced by the final converter. Table I shows that
there are many A for which P(A) is small, e.g. for
A € {5,9,17,21,51} we have P(A) < 8, for which an
efficient generator can be designed even for small n. Un-
fortunately, P(A) can also be prohibitively large, e.g.
for A € {29,37,49,53,59,61} we have P(A) > 28, and
for any such A, Procedure 1 can provide an efficient
generator for very large n only. Thus, for any pair of n
and A with a small ratio n/P(A) two special schemes of
the generator mod A are proposed below. They can be
used to implement the whole n-input generator or only
the n”-input final converter for the generator designed
by using Proc. 1.

Ezample 3 : A CSA network for the 32-bit generator
mod 9 is given on Fig. 4. The input bits are partitioned
onto P(9) = 6 sets GO = {0, 6, 212, T18, T24, T30}, - - -,
and G5 = g:c5,1:11, Ti7,T23,L29}. The whole CSA net-
work is built of 25 FAs and one HA and it introduces
the delay of 9A (A is the delay introduced by a single
FA). The final converter which computes

[Lyo+2u +40h+ 495 + 895+ Tya+5.35 | ,.
can best be realized with a 128 x 4 ROM.
4.2 Generator Mod A for n<P(A)
If n < P(A) then every coefficient [2],4,0<i<n—1,
represents a different residue mod A. Thus, to com-

pute (2) we propose a special scheme, shown on Fig.
5. The set of n input bits is partitioned onto two
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Figure 5. New generator mod A for n < P(A).

disjoint subsets X; = {zp.1,...,2a4+1,24} and X, =
ZTg—1,...,21,20}. The n — a bits from X, feed the
n — a)-input generator mod A that computes

[2a2]a + zaq1[2°M a4 A 2aci[27 4 ], (7)

and should be implemented with a PLA or ROM. The
remaining a-tuple X3 = (z,_;...2120) represents an
integer M, 0 < M < 2% — 1, which can be treated as a
residue mod A with or without overflow. To find [M]4
a correction circuit with a multiplexer is employed. The
correction circuit that computes M — A can be imple-
mented either as an a-bit adder with a PLA or asa ROM
correction table. The carry bit generated from the cor-
rection circuit indicates whether M is greater than A.
A multiplexer controlled by the carry selects the correct
output from M and M — A

The range of applications of the above scheme is limited,
probably to 10 < n < 10 + a, because of the following
reasons. For n < 10 the whole generator can best be im-
plemented with a single specially tailored 2" x a ROM.
For n > 10 + a the (n — a)-bit generator mod A would
require more than one ROM and then a pure look-up
table or any other implementation of the whole n-bit
generator could be better. Nevertheless, this scheme is
more efficient than any scheme based on the concept
from (1], since, if implemented using modular adders, it
uses a-1 modular additions less.
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Figure 6. 32-input generator mod 25 using 6-operand
adder mod 25.

4.3 Generator Mod A Using a MOMA

Here we propose the third scheme of the residue genera-
tor which handles the whole range of A and n for which
two schemes proposed above are inefficient. The scheme
described here first translates the groups of those bits
which cannot be reduced by using a CSA network onto
residues mod A. These residues are then added mod A
by a MOMA. The efficiency of this scheme is a natural
consequence of using a CSA-based MOMA (described
in Section 5).

Ezample 4 : Design the 32-input generator mod 25.
First consider the generator designed by using Proc. 1.
The input bits are partitioned onto P(25) = 20 sets
Gj = {zj,2j4+20 |0 < j < 11} and Gj = {z; | 12 <
j < 31}. Thus the whole generator consists of a 12-bit
binary adder with inputs from the sets Gj with 0 <
j < 11 and the final converter with 21 inputs. A ROM
implementation of the latter needs one 2K x 5 ROM
and one 1K x 5 ROM at the first stage, and one 2K x 5
ROM at the second stage.

A significantly more efficient generator, shown on Fig.
6, uses the 6-operand adder mod 25. Ten bits from the
sets Gj, 0 < j < 4, are treated as two operands (the
fact that they may not be residues mod 25 is immaterial
here), while remaining four operands are residues mod
25 generated by four small ROMs (or PLAs) from 22
bits from the sets Gj, 5 < j < 19. The 6-operand
adder mod 25 can be designed by using Proc. 2 given in
Section 5: it is built of 23 FAs, one HA, and one 256 x 5
ROM, and it introduces the delay of 7TA + d(ROM).

4.4 Complexity Estimation

The CSA network that reduces the number of bits from
n to n” is built of a total of n — n” FAs and a few HAs.
Hardware complexity of the final converter depends on
a particular scheme used. The delay d(A,n) introduced
by the generator designed by using Proc. 1 equals

8
where: ®

d(A,n) = 8(k).A + d(p) + d(A,n”),

e 4(k), the minimum number of levels in the CSA
tree with k operands (k, can be found in Table II,
where: k = u—for v={0 or 1},and ¥ = u + 1—for
v> 1.
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Table I1. The minimum number of levels #(k) on a CSA
tree that processes k input operands [15].

k 374]5=6|7+9]| 1013 | 14+19 | 20+28

ok) [112| 3 | 4 5 6 7

. dg;l? is the delay introduced by the p-bit binary
adder; and

e d(A,n”) is the delay introduced by the final con-
verter.

It is clear that the delay of the CSA tree is significantly
smaller than the delay introduced by the p-bit adder and
the final converter. Therefore, to improve the speed of
the generator, it can be desirable to implement either
the final converter or even the p-bit adder and the final

generator together, with a 27" x a or 2% x a ROM, re-
spectively. On the other hand, the hardware complexity
of the generator can be reduced in various ways at the
cost of speed. For instance, for k > 4 a viable alter-
native is to replace the CSA tree with a single bank of
P(A) FAs followed by a 2P(A)-bit carry-save register
(CSR) which operates in k —2 4 p cycles. The trade-off
is a 2P(A)-bit CSR and extra delay of [k — 2 — 8(k)]A
for n — n’ — P(A) FAs less.

4.5 Comparison

The superiority of the designs proposed here over con-
ventional approaches results from the following argu-
ment.

Any new generator operates as the circuit that reduces
the number of input bits with weights being residues
mod A from n to a. Thus, it seems appropriate to
estimate the average amount of hardware required to
reduce the number of bits by one. With a CSA net-
work, one FA reduces the number of bits by one. To
the author’s best knowledge, there is no other scheme
that does the same with less hardware and no residue
generator using a CSA network has been reported in the
open literature as well. For comparison, any generator
based on the concept from [1] uses two a-bit adders to
reduce the number of bits by one while a look-up ta-
ble approach from [13] is more complex as well. These
observations support our claim that any generator pro-
posed here uses less hardware than any other existing
design. The more so that the schemes used to imple-
ment the final converter, proposed in Subsections 4.2
and 4.3, are also less complex than existing designs.

The main contributors to the delay introduced by the
generators proposed here are the p-bit cyclic adder and
the final converter. Since the delay of the p-bit cyclic
adder can be as large as P(A), its partitioning onto
smaller adders (suggested in Section 3) or implement-
ing the whole generator mod A (or the final converter
only) using a MOMA, can be used to improve perfor-
mance of a generator. Thus, any new generator can be
implemented using at most two relatively short binary
adders. This clearly shows its superior speed compared
to any scheme based on the concept from [1] which in-
troduces the delay equal 2[log(n — 1)].d(a).A.




Finally, we should comment a new scheme of the gener-
ator for a special case of A = 2% —1 which is very similar
to the k-operand adder mod A = 2% — 1 from [15]). The
only difference between them is that the generator may
have n # ka inputs and needs [n/a]a — n extra HAs
for better performance. This now obvious and simple
generator should be confronted with the scheme that
has been commonly used to build the error checking
circuitry for arithmetic codes with A = 2% — 1 for about
thirty years [11]. It has benn a tree of a-bit adders with
EAC, despite that a significantly faster generator could
have been built using CSA approach. This claim is true
for all monographs on the design of fault-tolerant hard-
ware known to the author (including [4], [5], H?L [7], and
[8]) as well as for all papers on self-testing checkers for
arithmetic codes with A = 2% — 1, see e.g. [9]. The
superiority of the CSA-based generator mod 2% — 1 over
the conventional scheme is clear: either scheme is built
of n — a FAs, but the new one introduces a significantly
smaller delay — [0([n/a])+2a]A vs. 2a[log(n/a)]A. (It
is assumed that the delay introduced by the a-bit adder
with EAC is 2aA.)

5 Multi-Operand Adder Mod A

Let X (Zaz1,...,21,20), Xo (z2a-1,
BN ,xa+1,:ca), ey and Xk = (Lkag-1,-- .,m(k_l)a) be
k residues mod A. A k~opera£d adder mod A computes

(Xla =] ZX‘ la 9
which is equivalent to i =
Xla=[ Y O iars) [2]al, (10)

j=0 i=0
The new technique proposed here first performs the

summation .
a
[ § :(E xia+j)'[2j]A ]2P(A)_1 (11)
j=0 =0

using a CSA network with EAC, and then it performs
the final evaluation of

a k
[0 QO  wiati) (24 Lyrear_y)a (12)
j=0 i=0
using a look-up table.

5.1

A new k-operand adder mod A that implements (12)
employs similar ideas and the same general structure as
the generator mod A, shown on Fig. 3.

Design Procedure

The maximum of sets Gj which will eventually be used
in the CSA network of the new MOMA is given by

¢ = min{P(A),m}. (13)
where m = [logk(A — 1)] is the number of bits needed
to encode the largest number resulting from the sum-
mation of k£ residues mod A in binary.

A new k-operand adder mod A can be designed by using
the following procedure.

Procedure 2
Step 1: Find m = [logk(A - 1)].
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Figure 8. CSA network for 8-operand adder mod 25.

Step 2: Let {X; = (Cia—1,.. - L(i—1ya), 1 < i < k} be
the set of input operands. Partition n = ka input
bits onto a subsets Gj = {zra4j |0 <7 <k —1},
0<j<a-1,and assume Gj=0,a<j<m.

Step 3: Reduce the total number of bits from n to n’
by using the CSAs with EAC of length up to ¢
(¢ = min{P(A),m}) until at most one set Gj has
three bits while all other sets Gj have two or one
bit.

Step 4: Reduce the number of bits from n’ to n” by
using a p-bit cyclic adder (usually n” = g or ¢+ 1).

Step 5: Compute [ %o[2%]4 + v1[2Ya + ... + v [27]a +
U2 a4+ A Ymo1[27 4 ]A. by using one of the
realizations of the final converter described in Sec-

tion 4; Gr = {y,,y, } denotes the set with two bits,
provided that such a set occurs.

5.2 Examples

The following examples illustrate the operation with
and without cyclic mode of the CSA network used in
the MOMA designed according to Proc. 2.

Ezample 5 : A CSA network for the 4-operand adder
mod 5 is shown on Fig. 7. It uses seven FAs and one
HA, and its delay is 5A. The final converter can best
be implemented with a 5-input PLA. An alternative im-
plementation of the CSA network using a single-stage
4-bit CSA and an 8-bit CSR introduces the same delay.
It uses three FAs less at the cost of an 8-bit CSR.



Ezample 6 : A CSA network for the 8-operand adder
mod 25 is given on Fig. 8. Since P(25) = 20 and
m = [log192] = 8 we have g=minP(25), m=8 and the
cycle does not occur. Its high-speed (HS) version uses
32 FAs, two HAs, and 256 x5 ROM, and introduces the
delay of 7A 4+ d(ROM). Its cost-effective (CE) version
uses seven FAs, a 14-bit CSR, and 256x5 ROM, and
introduces the delay of 11A +d(ROM). In this case, the
CE version is a viable alternative to the HS version since
the former is slightly slower (by 2A) but allows to save
a large amount of hardware.

Notes:

1. The analysis of many examples showed that if HAs
are used then the p-bit cyclic adder has p < a.

2. For large k, a more viable is to implement the CSA
network using a single-stage ¢-bit CSA with a 2¢-
bit CSR (g < m+ 1) which operates in k— 2+ q or
k — 3+ a cycles.

5.3 Complexity Estimation of the New
MOMA

The complexity of two basic blocks of the new MOMA :
the CSA network and the final converter, will be con-
sidered separately.

The CSA network used in the new MOMA reduces n =
ka input bits to n”, i.e. it is built of ka — n” FAs. Most
of the FAs work in the carry-save mode, since the length
of a single cyclic adder is a or a-1 only. Thus the delay
of the CSA network is upper-bounded by [(k) + a]A.

Now recall that the final converter is a special case of
the generator mod A, in which the CSA network can
hardly be used. Since its ROM (or PLA) implemen-
tation seems the most feasible, its complexity can be
appropriately estimated by the number of inputs n”.
Obviously, n” is upper-bounded by P(A)+1 for any k.
An equality holds when the CSA network operates in
the cyclic mode, i.e. for any k > k.(A), where

ke(A) = [2P) /(4 - 1)].
For A odd we distinguish the following cases:

(14)

(a) for A =2% — 1 the cyclic mode occurs for any k;

(b) for A with P(A) < 8 the values of k.(A) are tabu-
lated in Table III;

(¢) for any other A we have P(A4) > 10 and k(A) > 32.
Thus, it seems unlikely that for any such A the
cyclic mode occurs for any practical k.

Since in the case (b) we have n” < 9 for any k, the
implementation of the final converter with a single ROM
is feasible.

Now we will consider the case (¢). Suppose that m <
P(A). It implies that either n” = m or n” = m+1. The
largest number of operands (which are residues mod A)
such that their sum can be encoded with m bits equals

kn(A) = |(2™ - 1)/(A-1)]. (15)
The values of kg(A) for some A are tabulated in Table
IV. It is observed that for sufficiently large a we have
km(2071 4 1) = 2m=a41 _ | ang k,,(2¢ — 3) = 2m-a,
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Table III. The values of k.(A) for A with P(A) < 8.

A 5 1 9 17 | 21 51
PA) ]| 4 [ s 8 6 8
k(A) ] 4 | 8 16 4 6

Table IV. The values of kg(A) for some A.

a 4 5 [ 6
A 11 | 13 117 (19 (23129 || 33 | 61
ks(A) |23 |19 |15 |13 11| 8] 7] 4
Table V. Characteristics of various MOMAs.
Version FAs CSR ROM Delay
New CE m 2m < 2m+l | [9(k) + a]A + d(ROM)
(18] | Basic 2a+7 4a+10 — (4k +2a - 4)A
New | BS |<(k-la-m-1] — |<2° | (k+ta-2)A+d(ROM)
[18] | Parallel 3a+9 4a + 10 — (4k+a-6)A

Note: for k < 16 we have m=min{P(A),a + 4} and 4(k) < 6.

(Note that A = 297141 and A = 2%—3 are the smallest
and the largest A that can be encoded with a bits in the
case (c).) Table IV shows that for m = 8 these limits
are attained for a = 5. It is clear that the final converter
has no more than a + 4 inputs for any 4 and k ranging
from 16 up to 31. This proves that also in the case
(c) the ROM implementation of the final converter is
feasible for large k£ and for many A, since for any a < 6
the ROM size does not exceed 1K x a.

5.4 Comparison

The MOMA from [15] is the most efficent scheme known
for A = 2% — 1; it is also the special case of Proc. 2.
Therefore new MOMAs designed by Proc. 2 will be
compared only for A # 2% — 1 against the best known
design obtained by using Algorithm C from [18].

Algorithm C from [18] computes (10) in the following
way. During first k-2 cycles Step 2 of Alg. C is executed.
Each cycle involves adding X; and subtracting A per-
formed by the (a+3)-bit CSA which are followed by the
sign estimation of the partial sums, performed by the 2-
bit carry-lookahead adder; the partial sums are stored
in two 2(a + 3)-bit CSRs. The final reduction involves:
either 2(a + 2) additions performed by the (a + 2)-bit
CSA — in a basic version; or ¢ + 2 additions performed
by two (a4 2)-bit CSAs — in a parallel version. Either
version uses two (a + 2)-bit CSRs to store the results
before the correct sum is chosen.

Table V compares the exact characteristics of the de-
signs from [18] against the upper-bounds of the designs
obtained by using Proc. 2. The comparison reveals that
either version of our MOMA introduces significantly less
delay than the design from [18]. Essential speed im-
provement can be attributed to the concept used in our
design: the estimation of the sum is postponed to the
last stage and, unlike in Alg. C from [18], no time is
wasted for corrections and sign estimation during the
carry-save stage of operation (they cause that the delay
is proportional to 4k in Alg. C). Table V also reveals
that our high-speed version becomes too complex when
k grows (probably for k > 5). However, the complexity




of our CE version and the basic version from [18] seem
comparable.

6 Conclusions

The new procedures for synthesizing residue genera-
tors and multi-operand modular adders (MOMAs) using
CSA are presented. First, it is observed that the peri-
odic properties of the series of powers of 2 taken mod A,
previously observed and exploited in [11] for A = 2% -1,
can be extended to any A. It is shown that a CSA with
EAC can be built for any A but not only for A =2%—1
as it has been thought to date. Based on the CSA with
EAC network, the first ever n-input generator mod A
using CSA network is obtained. Three design schemes
of the n-input generator mod A are proposed to suit
various needs for A and n. Any new generator is su-
perior to any conventional design with respect to speed
and amount of hardware used. In particular, it is shown
that the CSA-based generator mod A = 2% — 1 should
replace a scheme commonly used in the literature (built
of two-operand adders mod A = 2% — 1), since it of-
fers essential speed improvement virtually at no cost.
Finally, a new general procedure of a MOMA using a
CSA with EAC is proposed. For any A # 2% — 1 the
new scheme shows significant speed improvement com-
pared to the existing designs. For many A and k (k is
the number of operands) the hardware reduction is also
observed.

We believe that the results presented here will be
beneficial for researchers and practitioners working on
hardware supporting highly-reliable digital systems pro-
tected against errors by using arithmetic codes as well
as high-performance RNS-based systems. In particular,
they may originate interest for application of arithmetic
EDCs with check bases other than A = 2% — 1 since low-
cost encoding and decoding circuitry can be constructed
for them now. Also, these results may give a new in-
sight into the selection criteria of moduli used to form
an RNS.
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