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Abstract

A fast radiz-§ modular multiplication hardware algo-
rithm ts proposed. It is efficient especially in applica-
tions, such as encryption/decryption in RSA cryptosys-
tem, where modular multiplications are carried out iter-
atively. Each subiraction for the division for residue cal-
culation is embedded in the repeated multiply-addition.
Numbers are represented in a redundani representation
and addition/subtractions are performed without carry
propagation. A serial-parallel modular multiplier based
on the algorithm has a regular cellular array structure
with a bit slice feature suitable for VLSI implementa-
tion.

1 Introduction

In encryption/decryption in RSA cryptosystem [1],
modular multiplications with a large modulus (longer
than 500-bit) are carried out iteratively. Design of a
fast algorithm for modular multiplication with a large
modulus is the key to developing a high performance
encryption/decryption circuit for such a cryptosystem.
In this paper, we propose a fast modular multiplication
hardware algorithm which is efficient especially in ap-
plications where modular multiplications are carried out
iteratively.

Various algorithms for modular multiplication have
been proposed and some of them have been real-
ized [2]. Most of them are classified into two meth-
ods, 1.e., ”division-after-multiplication” and ”division-
during-multiplication”. In an n-bit modular multipli-
cation by the former method, an ordinary n-bit mul-
tiplication is carried out first and then a 2n-bit by n-
bit division for residue calculation is performed. In
the latter method, each subtraction step for the divi-
sion for residue calculation is embedded in the repeated
multiply-addition {3]. The latter requires a less amount
of hardware than the former does [4]. However, in gen-
eral, the latter requires more addition/subtractions than
the former does [5]. In either method, the key point to
increasing the computation speed is to perform addi-
tion/subtractions of long numbers fast.

We can perform addition/subtractions of long num-
bers fast without carry propagation by the use of
a redundant representation, such as the carry save
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form and the signed-digit representations. Vandemeule-
broecke et al proposed a division-after-multiplication
algorithm with the redundant binary representation,
i.e, the radix-2 signed-digit representation where addi-
tion/subtractions for the division as well as for the mul-
tiplication are performed without carry propagation [5].
Preparata and Vuillemin showed an efficient division-
during-multiplication algorithm with redundant repre-
sentations as an application of their cellular division
method [6]. Morita proposed a similar algorithm with
the carry save form based on a higher radix, indepen-
dently [4]. Recently, we developed aradix-2 and a radix-
4 division-during-multiplication algorithm with the re-
dundant binary representation [7].

Preparata et al’s algorithm, as well as Morita’s, over-
came the drawback of the division-during-multiplication
method. Namely, the number of addition/subtractions
required by them is almost the same as that required by
the division-after-multiplication method. In particular,
the radix-4 version of Morita’s algorithm is very effi-
cient, because we can generate the multiples of the mod-
ulus required for residue calculation, as well as the mul-
tiples of the multiplicand, by negating (complementing)
and/or shifting them. However, 1n these algorithms, the
operands have to be in the ordinary binary representa-
tion, while the intermediate results are in redundant
representations. This fact decreases the computation
speed of iterative multiplications where the product of
the former multiplication is used as the operands of the
next multiplication, because a time-consuming conver-
sion which includes a carry-propagate addition of long
numbers is required at each multiplication. Our former
algorithms do not have this drawback but require more
addition/subtractions.

In this paper, we propose a new radix-4 modular mul-
tiplication algorithm with a redundant binary represen-
tation. It is a kind of division-during-multiplication
method. The number of required addition/subtractions
is as the same as that required by Morita’s radix-4 al-
%orithm and is about the half of that required by our
ormer radix-4 algorithm. The multiplicand, as well as
the multiplier, can be in a redundant representation.
The product is also in the same redundant represen-
tation as the operands. Hence, the product can be
used as either of the operands of the next multiplica-
tion in iterative multiplications. Namely, we can keep



the intermediate results in the redundant representa-
tion, and perform the conversions only at the begin-
ning and the end of the whole iterative multiplications.
We do not need the time-consuming conversion of long
numbers at each multiplication. Therefore, our algo-
rithm is more efficient than Preparata and Vuillemin’s
and Morita’s in iterative multiplications for, e.g., RSA
encryption/decryption.

A serial-parallel modular multiplier based on the pro-
posed algorithm has a regular cellular array structure
with a bit slice feature suitable for VLSI implemen-
tation. The depth of its combinational circuit part is
a constant independent of n, the length of the mod-
ulus, and therefore, it can operate with a fast clock.
Its amount of hardware is proportional to n. It seems
easy to implement a high performance RSA encryp-
tion/decryption circuit based on the multiplier on a
VLSI chip using today’s technology.

In the next section, we describe redundant represen-
tations for a residue class based on the redundant bi-
nary representation. We propose a radix-4 modular
multiplication hardware algorithm, and show its cor-
rectness in Section 3. In Section 4, we consider a
serial-parallel modular multiplier based on the algo-
rithm. In Section 5, we apply the multiplier to RSA
encryption/decryption. Section 6 is a conclusion. We
explain how the proposed algorithm has been derived,
in Appendix.

2 Redundant Representations for a
Residue Class

We consider multiplication in a residue class Zg =
{0,1,...,Q — 1} where 271 < Q < 2". We assume that
the multiplicand and the multiplier are represented in
a redundant representation, and calculate the product
represented in the same redundant representation. We
use a redundant representation based on the redundant
binary representation, i.e., the radix-2 signed-digit rep-
resentation. We also represent all partial products (in-
termediate results) in another redundant representation
which is also based on the redundant binary representa-
tion. We perform all calculations for modular multipli-
cation in the redundant binary representation. For the
partial products, we use a representation which is more
redundant than that for the operands and the product.
This is one of the key points to getting our very efficient
algorithm.

The redundant binary representation has a fixed radix
2 and a digit set {1,0,1}, where 1 denotes —1 [§8]. An
n-digit redundant binary number 4 = [a,_1an_2...a¢]

(a; € {1,0,1}) has the value E:';J a; - 2¢. Hereafter,
we use A to denote both a representation and its value.
Note that there may be several redundant binary num-
bers which have a certain value. Using this redundancy,
we can add two redundant binary numbers without
carry propagation. For the details of carry-propagation-
free addition, see, e.g., [9]. We can get a negation of a
redundant binary number by changing the signs of all
nonzero digits in it.

For the multiplicand, the multiplier and the product,
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we represent a € Zg by an n-digit redundant binary
number, A, which satisfies —d1-Q < A< d;-Qand A =
a (mod Q). For the partial products, we represent
B8 € Zg by an (n + 2)-digit redundant binary number,
B, which satisfies —dy - Q < B < dy-Q and B =
(mod Q). d; and dj can be any numbers which satisfy
the following conditions.

5 <di <5
§$<dy <35
2~d1+3~d2§8
4-dy > ds

We will show how the above conditions have been de-
rived, in Appendix.

We can convert (the ordinary unsigned binary represen-
tation of) a (€ Zg) to the former redundant represen-
tation by comparing o with Q/2 down to the (n — 5)th
position and subtracting Q from « if the former is larger.
(The i-th position of a number means the i-th position
from the least significant position, which has the weight
2¢ when the number is in radix-2.) We can perform
the subtraction in the redundant binary representation
without carry propagation. On the other hand, we can
convert A to o by an ordinary binary subtraction and an
addition. Namely, we calculate A* —A~ or At —A~+Q
and chose the former as « if it is non-negative, where
At and A~ are n-bit binary numbers formed from pos-
itive and negative digits of A respectively. We need
subtraction and addition with carry propagation in this
conversion. Note that these conversions are required
only at the beginning and the end of the whole iterative
multiplications.

3 A Radix-4 Modular Multiplication
Algorithm

We consider a modular multiplication in the former re-
dundant representation shown in the previous section.
Namely, the multiplicand X and the multiplier Y, as
well as the product P are n-digit redundant binary num-
bers whose absolute values are less than d; - @), and
P=XxY (mod Q) holds.

The algorithm is based on the following recursion equa-
tion.

Pi=4.Pip1+9 -X—4¢-Q
Initially, we set P|n/2)41 to 0. P_;/4 is the product.

y; is the j-th digit of the recoded multiplier Y.
We recode the multiplier Y to a (|n/2] + 1)-digit
radix-4 signed-digit number ¥ = [Gtns2)---90) (U; €
{2,1,0,1,2}) which has the same value as Y [7,10]. (2
denotes —2.? Table 1 shows a recoding rule of the mul-
tiplier. Each §; depends on only five digits of Y, i.e,,
Y241, Y255 Y2j-1, Y2j-2, and ya;_3. We let §_1 be 0, by
regarding y; as 0 for j < 0. We can obtain §; - X by
negating and/or shifting X .

In the calculation, we represent each partial product
Pj in the latter redundant representation shown in the



Table 1: A recoding rule of the multiplier

(a) Stage 1
Yuj41,Y8;
[woet\ye; [ T [ 0 [ 1]
1 1,1 ] *0,2/1,2 | 0,1
0 0,1 0,0 0,1
1 0,11]*1,2/0,2] 1,1

* @ yaj_1 is non-negative. / Otherwise.

(b) Stage 2
¥
[ytAye, [TT0]1]
2 x]2]1
1 21170
0 11011
1 011] 2
2 112 x

x: Never occurs.

previous section. Namely, we represent P; by an (n +
2)-digit redundant binary number which satisfies —dy -
Q <P <dy Q. We select ¢j from {2,1,0,1,2}, by
comparing 4- P 1+ §; - X with' £2.Q and 46 - @ down
to the (n—4)th position. Figure 1 shows the Robertson’s
diagram for the algorithm. We can obtain —4 . c; - Q
by complementing and /or shifting Q. We perform the
additions for the recursion equation in the redundant
binary representation without carry propagation.

The algorithm is as follows.

Algorithm [MODMUL]
(Inputs)
Modulus Q
(an n-bit binary number, 27-! < @ < 2n)
Multiplicand X
(an n-digit redundant binary number,
—di1-Q< X <di-Q)
Multiplier Y
(an n-digit redundant binary number,
—d1-Q<Y <d Q)
(Output)
Product P
{an n-digit redundant binary number,
-d1-Q<P<d-QP=XxY (mod Q))
(Algorithm)
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Figure 1: Robertson’s diagram for [MODMUL]

¢j=0, <=L

-(2d1+4d2

Step 1: Plajap41 =0
Step 2: for j := {n/2| down to —1 do
begin
Calculate g;
Rj=4-Pip+y - X
(redundant binary addition)

Cj =
2 if T(R;))<-T(6-Q)
1 if —T6~Q§ <TERJ-§§—T(2-Q)
0 if -T(2-Q)<T(R;)<T(2-Q)
1 if T2-Q)§T(R»§<T(6-Q)
2 if TgRj) >ST(6-O
Pj ::Rj—4-6j-Q
(redundant binary addition)
end
Step 3: P:=P_,/4 ]

R; is an (n+44)-digit redundant binary number, because
ot]its value. Table 2 shows a computation rule for this
addition. (sz; is the i-th digit of 9; - X and is z;_,
or Z; or 0 or z; or z;_; accordingly as Jiis2or1or
Oorlor2 (z;islor0Oor] accordingly as z; is 1
or 0 or 1.) We need a special computation rule at the
most significant two positions, in order to let R; be an
(n + 4)-digit number.)

T(R;) is the most significant 8 digits of R;. T(2-Q)
is the most significant 5 bits of ., We can calculate
T(6 - Q) from the most significant 6 digits of Q so that
[6-Q~T(6-Q) < 2"=%. (We can either calculate it
beforehand and store it or calculate it at each iteration
step.) In the determination of ¢;, each boundary can be
included in either of the corresponding regions.

Since @ is a binary number, the second redundant bj-
nary addition for obtaining P; is easier than the first
one. Table 3 shows a computation rule for this addi-
tion. (sq; is the i-th digit of —4 . ¢j - Q and is ¢;_3 or
gi—2 or 0 or g;_, or ¢/_j3 accordingly as ¢; is 2 or I or
Oorlor2 (gfis1or0 accordingly as g; is 0 or 1)
5¢n+35¢n+2 is 01 or 00 or 00 or 11 or 10 according to
¢j. We need a bit complicated rule at the most signifi-
cant four positions, in order to make P; an (n +2)-digit
number.)



Table 2: A computation rule for the first addition
(a) Stage 1

Tn+3,7tn42
[(Pagnpn | 1 ] 0] 1 ]
1 *1,1/x | 1,0 | *0,1/1,1
0 *0,1/1,1 | 0,0 | *1,1/0,1
1 *1,1/0,1 | 1,0 | *x/1,1

* . pn_1 is non-negative. / Otherwise.
x : Never occurs.

ofor0<i<n+1

ru;41,rt;
[piosz; | 1 [ o [ 1 7]
1 10 [*0,1/L1] 00
0 *0,1/1,1 0,0 *1,1/0,1
1 0,0 *1,1/0,1 1,0

* : Both p;_3 and sx;_; are non-negative. / Otherwise.

(b) Stage 2
ofor0<i<n+2
ri
rtiru; "TTOI 1 ]
1 x {110
0 1]011
1 011 x
(rug = 0)

x : Never occurs.

The most significant n digits of P_; is the product.
(Note that P_; is an (n + 2)-digit redundant binary
number and its least significant two digits are 0.)

Figure 2 shows an example of a modular multiplication
according to the algorithm [MODMUL). |n/2] + 2 clock
cycles are required to carry out a modular multiplication
excluding the I/O.

In the rest of this section, we show the correctness of
the algorithm [MODMUL].

First, we show that P, = X x ¥; (mod Q) holds for
all j’s (|n/2) +1 > j > —1), where 17J is the most
significant |n/2| —j+1 digits of V', i.e., ZLLQJ/ZJ g4,
Note that §_1 is 0 and that Y_; = 4-Y. We can prove
this fact by induction on j.

When j = [n/2] + 1, Plaj2j41 = 0 and ?LH/QHI =0.
Hence, the equation holds.

Assume that Pj4; = X x Yj41  (mod Q) holds. Since
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Table 3: A computation rule for the second addition

(a) Stage 1
ofor0<i<n+1

PUi4+1,Pti

[rdse [ O] 1 |
1 0,110,0

0 00| 1,1

1 11]1,0

(b) Stage 2
opv = 2ATn43 + $qn43) + (Tat2 + 3‘1n+2) + pun42
(pv must be T or O or 1.)

ofor0<i<n+1
Di

[ptapus J1O [ 1]

1 110
0 01

(pug = 0, if ¢; is non-negative. pug = 1, otherwise.)

(c) Stage 3

Pn+1,Pn
[ PWhnaahn ]| 1- J 01 JOOJ 01 ] 1 ]
L x | x [ x [L1]1pn
0 Prt1,Pn
1 Tim [ L] x | x | x

x : Never occurs.

ofor0<i<n-1 pi ‘= DPi

Pj=4-Pipi+§-X—4.¢;-Q, P =4-XxYVip+8-X
(mod @). Hence, P; = X xY; (mod Q) holds, and the
fact has been proved.

Next, we show that —d - Q@ < P; < d3 - @ holds for
all j’s. Again, we can prove this fact by induction on j.
Recall that 42 < dp < 32, that 2-d; 4 3-dz < 8, and
that Q > 271

When j = {n/2| +1, Plaj2)4+1 = 0. Hence, the inequal-
ity holds.

Assume that —dy - Q@ < Pj41 < dz - @ holds. Since
Ry =4 P11 +9 - X, —(4-d2-+2~d1)'Q< R; <
(4-da-+2-d1)-Q holds. (Note that —d;-Q < X < d1-Q
and that —2 < §; < 2.) Now, we have to consider the
following five cases.

(1) T(R;) £ -T(6-Q)
—(4~d2+2~d1)~Q<Rj<—-—6~Q+2-2"—4,



Q = 100101011 (299)

X =101100101 (165) ]
Y = 101100001 (~159 = 140 (mod 299)) = ¥ = 12201

4P
(h=1)

(e = 0)
P,

4P,

(53 =2)
Rs
(ca=0)
Py

4P,
(#2=2)
Ry
(e2=1)
P,

4P,

(5 =0)
R,
(a=2)
P,

4P
(fo=1)
Ro
(c0=2)
Po

4Py

0000O0O0OOO0OO0O00O0
+ 0101100101
000O0T1T1O0T1QO0O0T1TF0]1
+ 00 00O0O0O0O0UO0UO0O0 0 00

00010T10¢0T1ITO0O]1
0001 0I1I0010T1T020
+ 1011001010
0000101011010
+ 000O0O0O0DO0O0OO0 0 0 00)

00101001010
001010010T1TO0O0TE0
+ io11001010
01010111100T120
+ 001001010110 00

01 011000T1TI°O
0101100011000
+ 000O0O0GOO0GO0GOO
01 61100111000
+ 01001010110 0 00

11011000000
1101100000000
+ 0101100101

01011101111
+ 101101010011 11

000110111001
0001101110108
+ 0000O0O0OOO00O0
0001101011100
+ 00 00O0O0O0O0O0O0O0 0 00

11111001100

P = 111110011 (77)

Figure 2: An example of modular multiplication

and hence, —(8 + dz) Q< R;j < —(8-4d)-Q.

Since¢; =2, P, =R; +8-Q.

Therefore, —dy - Q < Pj < d3 - @ holds.
(2) =T(6- Q) < T(R;) < -T(2- Q)

—6-Q-2.2""*< R <-2.Q+2.2"%

and hence, —(d24+4) Q < Rj < —(4—-d2) - Q.

SinceCjzi,Pj:Rj+4~Q.

Therefore, —d - Q < P; < d» - @ holds.
@) -T2 Q) <T(R;)<T(2-Q)

~2.Q-2""*<R; <2.-Q+ 274

and hence, —dy - Q < R; < ds- Q.

Since ¢ = O, Pj = R]‘.
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Therefore, —ds - Q < P; < dy - Q holds.
(4) T2 Q) < T(R;) < T(6-Q)

—dy - Q < P; <djy-Q holds,

from a similar discussion to (2).
(5) T(R;) >T(6-Q)

—ds - Q< P]’ < dy - @ holds,

from a similar discussion to (1).

Thus, —d3 - Q < P; < d3 - Q holds in any case, and the
fact has been proved.

From the above facts, we get P.y = 4. (X xY)
(mod Q) and —dy - Q < Py < dy - Q. Since P_; is
obtained by the calculation of 4- Pg+0—4-.c_; - @, its
least significant two digits are 0. Hence, we can calcu-
late P := P_1/4 by just taking the most significant n
digits of P_;. Then, P satisfies P=X xY (mod Q)
and -—%-dz-Q < P < %de Since 4 . d, > do,
—d; -Q < P < dy - @ holds.

Thus, the obtained P satisfies P = X x Y (mod Q)
and —d; - Q < P < d; - Q. Therefore, the algorithm
[MODMUL] is correct.

4 A Serial-Parallel Modular Multiplier

A serial-parallel modular multiplier based on the algo-
rithm [MODMUL] has a regular cellular array structure
with a bit slice feature suitable for VLSI implementa-
tion. Figure 3 shows a block diagram of the multiplier.
Here, we assume that the multiplier performs one iter-
ation step in each clock cycle. The multiplier consists
of four registers and a combinational circuit part. The
registers are for storing redundant binary numbers X,
Y, and P;, and a binary number Q. The register for Y’
is a shift register, and Y is shifted with two positions
to the left in each clock cycle. When n is odd, initially,
we have to attach 0 to Y from the left (to the most sig-
nificant position). The combinational circuit part con-
sists of a §; calculating circuit, a ¢; selecting circuit,
and circuits for the slices. The circuit for the slices are
composed of a negate-shift-and-select circuit for gener-
ating §; - X, a redundant binary adder for calculating
R;, a complement-shift-and-select circuit for generating
—4 -¢; - Q, and a simpler redundant binary adder for
calculating P;. The depth of the combinational circuit
part is a constant independent of n. The amount of
hardware of the whole multiplier is proportional to n.

Figure 4 illustrates a block diagram of the combinational
circuit part of the slice for a middle position (the region
enclosed with the dashed line in Figure 3). It consists
of four basic cells, i.e., an XSEL for the generation of
#; - X, an RBA1 for the redundant binary addition for
Ié-, a QSEL for the generation of —4 - ¢; - @, and an
Ri3A2 for the simpler redundant binary addition for P;.
According to our CMOS logic designs, the depth and the
gate count of these cells are 3 and 5 (28 transistors), 4
and 7 (40 transistors), 2 and 2 (20 transistors), and
3 and 5 (24 transistors), respectively. We can shorten
the clock period by performing the calculation of §; in
the previous cycle concurrently with the addition for



Register (Y)
Register (X)
Register (P)
b

2 i

Negat :—shift-an'd-selec;torg

1 E

. Redundant binary adder I

¥ P

Redundant binary addc:r 2'

Complement—shift—and~sc:lec'lor

Register (Q)

Figure 3: A block diagram of a modular multiplier

calculating P; ;. When we prepare T'(6-Q) beforehand,
the depth of the combinational circuit part becomes 19.
(However, in practice, we need buffers for driving long
lines for g; and ¢;.) The gate count of a slice is 19
(112 transistors). The gate count of the combinational
circuit part of the whole multiplier is about 19n (112n
transistors) for a large n. The total number of bits for
the registers is about 7n. A 512-digit modular multiplier
will consist of about 100,000 transistors including the
buffers. It is expected to operate with about 33MHz
clock and to carry out 512-digit multiplication in about
7.8usec (excluding I/O), when it is fabricated with 2um
CMOS technology. It may operate with faster clock, if
it is fabricated with today’s advanced technologies.

Once a multiplier is fabricated, the length of its regis-
ters, adders and etc. is fixed. Assume that the length
of the register for the modulus is n’-bit. The multiplier
can perform any modular multiplication with a modu-
lus which is shorter than or equal to n’-bit. When the
modulus is shorter than n/-bit, we put the operands in
the registers from the left side and fill the rest with 0’s.
The number of required clock cycles for a multiplica-
tion depends on the length of the operands but does
not depend on the length of the registers.

As the advance of VLSI technologies, we may realize a
faster multiplier which performs more than one iteration
steps in each clock cycle.

pi Xi Xi-1 pi-2
f XSEL ‘
pxi R
y !
i+l RBALl le————rui
Ti
puis1 <— RBA2 f——pui
¢ T_ Sai i
QSEL
qi-2 gi3

Figure 4: A block diagram of a slice of the multiplier

5 Application to RSA Encryption/ De-
cryption

The proposed multiplier is efficient especially in appli-
cations where modular multiplications are performed it-
eratively. In such applications, we keep intermediate re-
sults in the redundant representation and convert only
the final result to the ordinary representation.

As an example of such an application, we consider RSA
encryption/decryption. In RSA encryption, we calcu-
late cipher := (message)® mod @, where e is an en-
cryption key. Decryption is carried out in the same way.
A simple way to perform modular exponentiation is to
repeat squaring and multiplication as shown below [1].
We assume e 1s represented by a k-bit binary number

lek_g...EO].)

C=M
for i := k — 2 down to 0 do
begin
C:=C?mod @
ife; =1 then C:=C - M mod @
end

Here, M is the message and the calculated C is the
cipher.

2k — 2 multiplications are required in the worst case.
(About 1.5k multiplications are required in the aver-
age.) We keep C in the redundant representation (the



former one shown in Section 2) during the calculation,
and convert only the final C to the ordinary binary rep-
resentation. We can convert the input into the redun-
dant representation in the same way as the calculation
of P from Py in the algorithm [MODMUL]. Therefore,
we do not need additional hardware for this conversion.
On the other hand, we need a carry propagate adder for
the conversion of the result from the redundant repre-
sentation to the ordinary binary.

In encryption of a message block sequence, we can per-
form the exponentiation concurrently with the input of
the next message block, and the conversion and the out-
put of the calculated cipher block. Namely, pipeline
processing for continuous blocks is possible. The pro-
cessing speed is dominated by the exponentiation speed.
When the size of the message block (the length of the
modulus) is 512-bit and the length of the encryption
key is also 512-bit, the throughput for encryption with
33MHz clock will be at least 65kbps, which is more than
6 times as large as that of the fastest actual RSA chip
listed in [2]. Note that we have used a very simple expo-
nentiation algorithm and have assumed the worst case.
(Recently, Shand et al reported a very high performance
RSA encryption/decryption system based on an efficient
modular multiplication algorithm cooperated with the
Chinese remaindering [11]. Our multiplier may have
comparable performance when it is cooperated with the
Chinese remaindering.)

6 Concluding Remarks

We have proposed a radix-4 modular multiplication
hardware algorithm, which is efficient especially in ap-
plications where modular multiplications are performed
iteratively. In the algorithm, we represent numbers in
redundant representations, and perform modular addi-
tions without carry propagation. We use a more re-
dundant representation for representing intermediate
results than for the operands. This enables us to re-
duce the number of addition/subtractions required in
the ”division-during-multiplication” method. This tech-
nique might be useful for design of new efficient arith-
metic algorithms with a redundant representation.

A serial-parallel modular multiplier based on the pro-
posed algorithm has a regular cellular array structure
with a bit slice feature suitable for VLSI implemen-
tation. It seems easy to fabricate an RSA encryp-
tion/decryption circuit based on the proposed multiplier
on a VLSI chip using today’s technology, which is ex-
pected to have a throughput of several times as large as
that of the fastest actual RSA chip.
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Appendix: Derivation of the Algorithm

Assume that the multiplicand, the multiplier and the
product are represented in n-digit redundant binary
numbers with the value larger than —d; - Q and smaller
than d; - Q. 2 -d; must be larger than or equal to 1.
Hence, d; > % Since 2! < @ < 2", n; = n +
[log, d1].

In general, a radix-4 modular multiplication algorithm
is based on the following recursion equation.

Pj =4- P+ <X —cly -Q
Initially, we set P|n, /2141 to 0. Pg is the product. g; (€
{2,1,0,1,2}) is the j-th digit of the recoded multiplier
Y. —cl; - Q is for the residue calculation.

We let c1; be 2"l . ¢; (r1 > 0) and select ¢; from
{2,1,0,1,2}, so that we can obtain cl; - @ by com-
plementing and/or shifting Q. Namely, we rewrite the
recursion equation as follows.

Pj :=4~Pj+1+fj]’ X -9t -Cj~Q
In the calculation, we represent each partial product F;
by an nj-digit redundant binary number which satisfies
—dy - Q < Pj < dy-Q. ny = n+ [logyda]. In order
that P; staysin this range, the followinginequality must
hold.

4.dy+2.-d —271.2< ds (1)
Furthermore, in order that we can determine ¢; by eval-
uating only several digits of 4- P; 11+ §; - X and Q, the
following inequality must hold. (There must exist an

overlap between each contiguous regions in the Robert-
son’s diagram shown in Figure 1.)

2l _dy < dy (2)

According to the above calculation, we obtain Py which
satisfies —dy - Q < Py < do - Q). We have to convert
it to P which satisfies —d; - Q@ < P < d; -Q and P =
Py (mod Q). We can perform this conversion by the
following calculation.

P = Po —c2- Q

As in the case of cl;, we let ¢2 be 22 . ¢ (2 > 0) and

select ¢ from {2,1,0,1,2}, so that we can obtain ¢2 - Q
by complementing and/or shifting Q. The following two
inequahities must hold.

dy—22.2< d,
2'2—d1<d1

3)
(4)
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Inequality (4) is the condition that we can determine ¢
by evaluating only several digits of Py and Q.

From (2), da > 27*-1. From (4), d; > %. Substituting
these to (1), we get r1 > 1. Since the increment of rl
causes the increment of ny, we should select r1 as small
as possible. Here, we select 2 as r1. Then, from (1) and
(2), we get 3-d2 +2-dy < 8 and dy > 2, respectively.
From these, d; < 1. From this and (4), we get 72 = 0.
Substituting r1 = 2 and r2 = 0 to the recursion equa-
tion and the equation for the conversion, we get the
following equations.

Pii=4.-Pin+4-X—-4-¢-Q

P:=Py—c-Q
Here, ¢; and c are selected from {2,1,0,1,2}.
We can rewrite the second equation as follows.

4. P=4.-Py—4.-¢-Q
When d; < 4 -dy, we can perform the final conver-
sion using the circuit for the iteration step. Then, we
can combine the above equations and get the following
equations for our algorithm.

P =4 -Pjg1+9; X —4-¢-Q

P = P_1/4
Substituting 1 = 2 and 72 = 0 to the inequalities, we
get 3 <di < 5, 2<dy<3,2-di+3-d2 <38,
and 4 - dy > da. We can select d; and dy so that they
satisfy these conditions. In any case, n; and ny become
n and n+ 2, respectively. The larger ds is, the fewer the

number of digits to be looked into in the determination
of ¢; is.

Now, we consider how many digits we should look into
for determining ¢;. Assume that we compare 4- Pj11 +
#; - X with £2.Q and +6-@Q down to the k-th position.
We should select k as large as possible to reduce the
hardware. k must satisfy the following condition.

2:28<(d2-2)-Q
Since @ can be 277!, k < n—2+log,(ds —2) must hold.
Since dy < %, k is at most n — 4. In reverse, k is n— 4
when dy > §. Hence, we get the condition dy > §.

Putting it all together, we get % < d; < £2, §

3—2,2-d1+3~d258, a.nd4~d12d2.

<da <



