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Abstract

A scheme for the singular value decomposition (SVD)
problem, based on on-line arithmetic, is discussed. The
design, using radiz-2 floating-point on-line operations,
implemented in the LSI' HCMOS gate array technol-
ogy, is compared with a compatible conventional arith-
metic implementation. The preliminary results indicate
that the proposed on-line approach achieves a speedup of
2.4-3.2 with respect to the conventional solutions, with
1.3 - 5.5 more gates and more than 6 times fewer inter-
connections.

1 Introduction

In this paper we explore the effectiveness of implement-
ing numerical computations with on-line arithmetic al-
gorithms. Of interest are the characteristics of compu-
tations that make them suitable for on-line implementa-
tion and the cost and performance features of such on-
line computations. Since on-line algorithms operate in
a digit-pipelined fashion, it is essential that the critical
path of its application contain long sequences of arith-
metic operations. The singular value decomposition
(SVD)[13] is one such application. Other approaches
in implementing SVD are described in [2, 4, 6, 10, 8, 7].

In order to conduct comparison with conventional ap-
proaches, we give estimates of the complexity and per-
formance parameters of the on-line approach based on
the LSI gate array designs given in [15, 16, 17]. The
on-line algorithms have been implemented according to
the LSI Logic gate array design guidelines using View-
logic Workview CAD tools{18]. Complexity figures are
calculated directly from the designs, and delays are mea-
sured from library components using the data given in
[15]. Although the discussed on-line SVD system has
not been completely implemented, the presented gate
counts and delays provide, in our opinion, useful esti-
mate about the feasibility and performance of on-line
approach. The results presented here are preliminary
and limited. We did not study in depth the effects of
cancellation of leading digits in floating-point additions
which present challenging design problems. We do, how-
ever, discuss the problems and outline some solutions.
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We have not compared the cost/performance of the on-
line SVD with other special-purpose designs [6, 2] be-
cause of incompatible technology or lack of design de-
tails.

In the following, we first give an overview of the SVD
algorithm. Then the on-line scheme for the SVD com-
putation is presented. It is assumed that standardized
single-operation on-line units are used for the imple-
mentation. The on-line scheme is compared with the
conventional approach in Section 4.

2 The SVD algorithm

The singular value decomposition (SVD) is one of the
basic matrix operations required for many important
modern signal processing computations[13]. The SVD
of a matrix A is defined as the factorization

A=uUzsV7T

where UTU =1, VTV =1, and ¥ is a diagonal matrix
with non-negative diagonal elements. For many real-
time signal processing applications, numerically stable
SVD algorithms that are suitable for implementation on
parallel computer architectures are desirable.

We adopt the algorithm by Brent, Luk and van Loan[12]
which computes the SVD of an n x n matrix A on a
mesh-connected processor array. It has been shown in
[11] that this algorithm converges when n is odd, and
does not always converge when n is even. In our discus-
sion on-line arithmetic is used as the low level realiza-
tion of arithmetic operations of a numerical computa-
tion, and it is assumed that for the on-line computation
to generate the correct result, the high level algorithm
must be numerically correct when realized by conven-
tional parallel arithmetic algorithms. Our emphasis is
on the implementation efficiency and performance, not
the convergence of the computation. For the sake of
clarity in our illustration, we assume that A is real and
n is even. The same conclusions apply when n is odd.

In this scheme, the array consists of n/2 x n/2 proces-
sors, where each processor operates on a 2 x 2 submatrix
of A (Fig. 1). A series of 2 x 2 SVDs is performed on
submatrices along the main diagonal of A, indicated by
the shaded areas in Fig. 1. Each 2 x 2 SVD is realized
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Figure 1: Mapping a matrix onto a processor array (n =

8)

by a 2-sided rotation that diagonalizes the submatrix.
’[I‘hjz rotation angles are computed by Algorithm FHSVD
12].
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Then the rotation is computed as
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where c{‘, s{‘, el and s® are the cosine and sine values

of the left and right rotation angles, respectively.

During each iteration, n/2 2 x 2 SVDs are performed in
parallel. Values of the left rotation angles are passed to
processors of the corresponding rows while values of the
right rotation angles are passed along the corresponding
columns, where 2 x 2 rotations are performed on the
submatrix in each processor,
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The 2-sided 2 x 2 rotation is computed as

cf sR
R R
7 J

—S§

! —_—
a;; =

Ry L L Ry L L

e ai; — sy it ;) — 85 (67 @ij41 = 8§ Gig1,541)
1
a; ., =
1,j+1

R/ L L R, L L

55 (e aiy — 87 aiv1 ) + ¢ (¢ i j41 — 87 Qig1,j41)
/ —
Git1j =

Ry L L R(.L L

i (s aij +ci'aig1,;) — 85 (57 @i j41 + €7 @ig1j41)
/
TGit1j+1 =

R/ L L R/ L L
si(siai; 4 ¢ aivn;) + ¢ (87 aij 41 + €7 Qig1,j+1)

After each iteration, rows and columns of the matrix are
exchanged between adjacent processors according to the
parallel ordering which is described in {1]. Under this
ordering, for each i and j, such that 1 <7 < j < n,
columns 7 and j of A are paired and rotated in the
same column of processors exactly once in every n — 1
consecutive iterations which are referred to as a sweep.
Likewise, for each 1 < i< j < n, rows i and j of A are
paired and rotated in the same row of processors exactly
once in every sweep. To simplify control, a fixed number
of S sweeps is performed to diagonalize A. It is shown
in [12] that § < 9 for n < 50.

Assuming that there is no data broadcasting among pro-
cessors, Figure 2 shows the processor array by Brent,
Luk and van Loan. The dashed arrow lines represent
the transmission of the rotation angles and the solid ar-
row lines represent the transmission of matrix elements.
Processors on the main diagonal compute the rotation
angles and the main diagonal elements of the matrix,
while those not on the main diagonal perform 2 x 2 ro-
tations.

The performance bottleneck of the SVD is clearly the
calculation of the rotation angle, which contains long
sequences of sequential operations and cannot be effec-
tively sped up by conventional techniques.
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Figure 2: Systolic array for the SVD by Brent, Luk and
van Loan (n = 8)

3 On-line scheme for computing the
SVD

We now describe the SVD scheme based on on-line
arithmetic[3, 5]. In this scheme each arithmetic opera-
tion in the computation is realized by a single-operation
on-line unit. All on-line units have the same inter-
faces, so successive units can be interconnected directly
with no intermediate data conversion. We assume that
the inter-processor transmission of the angles and the
matrix elements are on-line. On-line algorithms for
floating-point operations used are given in the appen-
dix. Their design appears in [15] and [17].

For each on-line operation, it is assumed that the input
operands are quasi-normalized, which is defined as |z| €
(5,1). The output is also quasi-normalized. This is
achieved by incorporating post-normalization step into
the on-line algorithms for addition, multiplication and
division operations. The on-line result of square root
operation is always quasi-normalized. Details of post-
normalization steps for different operations are given in
the Appendix. The most-significant bit of the mantissa
is always non-zero thus making the sign determination
simple. This also holds in the case of cancellation of
the most significant digits, since no output is delivered
before the result is quasi-normalized. While the on-
line delays of multiplication, division and square root
given in Table 3 are bounded by 7, 7 and 4, respectively,
the on-line delay of addition can be as large as 56 due
to cancellation of the most significant digits. This is
a serious problem that has not been included in the
perfromance analysis in this paper. However, the design
includes necessary on-line buffers to synchronize inputs
arriving out of phase due to cancellation.

248

Ait1,i+Bii Gi41, 041 Bitl i+ i Ai41,8484i41

m variable buffer

Figure 3: On-line scheme for algorithm FHSVD

3.1 Complexity of the on-line SVD

Figure 3 shows the on-line network for the FHSVD al-
gorithm. The e tests in the FHSVD algorithm are per-
formed concurrently with the computation of p;, 7, x:
and o;. If a test succeeds, the corresponding variables
are forced to 1 and 0, respectively. Two types of de-
lay buffers are used in the implementation. Fixed delay
buffers (FDB) are used to synchronize the arrival of
operands for some of the on-line units over the paths
with a fixed difference in on-line delays. The out-of-
phase inputs, caused by cancellation, are synchronized
through variable delay buffers (V.DB). These buffers
use a design similar to the mantissa alignmentrILlS] and
have an estimated cost of 1,150 gates/buffer. The sign
of a number can be obtained directly from the sign bit of
the first mantissa digit. Constants can be stored in reg-
isters and transmitted to the on-line units when needed.
The control of on-line units is simple and it is not in-
cluded in this study.

The on-line network for the rotation computation of
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Figure 4: On-line scheme for rotation of a diagonal pro-
cessor

main diagonal processors is shown in Figure 4. We as-
sume that six inputs to the upper and lower level mul-
tipliers are synchronized using 6 variable delay buffers
each. Figure 5 shows the on-line network for the rota-
tion computation of off-diagonal processors. The num-
ber of each type of arithmetic units and estimates of
their gate count for each processor are given in Table 1
for radix-2 computation, based on the designs described
in [15]. The cost of postnormalization is included. Each
input and output data requires 10 pins, 8 for the expo-
nent and 2 for the mantissa. Let Gaiag and Goss denote
the gate count for each main diagonal and off diagonal
processor, respectively. The total cost of an n/2 x n/2
processor array, which computes the SVD of an n x n
matrix, is

n n\? n
Gax2=Ggiag X 2 + Gopp X ((5) - 5) (1)

3.2 Performance of the on-line SVD

The SVD computation is composed of the rotation an-
gle calculation and the rotation calculation. The opera-
tions in the critical paths of these calculations are listed
in Table 2. Let Ty, denote the iteration cycle time,
defined as the number of clock cycles between starts of
consecutive iterations, and Tj:. the complete ileration
time, which is the number of clock cycles for a complete
iteration. Assume that it takes one clock cycle for data
to pass through a processor, and the exchange of ma-
trix elements between processors takes no extra time.
Then the complete sweep time, defined as the number
of clock cycles to compute a sweep, which consists of
n — 1 iterations, is

Tswe—_-(n - 2) . Tcyc + Tite (2)
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Figure 5: On-line scheme for rotation of an off-diagonal
processor

Main diag. proc. |Off diag. proc.

Arith. | Gate|Data|ang. | rot. [total rot.

unit |count|pins [unitsjunitsjunits| cost |units{ cost
Add 13371 30 | 14 6 20 (26700 8 10700
Mult {3941 30 | 10 | 12 | 22 |86700] 16 63100
Div 4261 30 | 6 0 6 [25600( O 0
Sqrt 42611 20 4 0 4 {17000{ O 0
VD 1150 5 12 | 17 [19950] 12 13800
Buffer
FD 100 6 0 6 600 0 0
Buffer
¢ Tests| 200 2 0 2 [400 | O 0
[Total cost [ ~ 176950 [ ~87600 |

Table 1: Processor cost of on-line SVD

[ Computation [ +/— [ x [ + | Nl
Angle calc. 5 41737 2
Rotation 2 2

Table 2: Critical path operations for the SVD



minimum
Operation | step-time Smin Smaz
Add” 14 ¢, 5 cycles | 5 cycles
Mult 15 ¢4 5 cycles | T cycles
Div 17t 6 cycles | 7 cycles
Sqrt 171, 4 cycles | 4 cycles

* no cancellation of leading digits

Table 3: On-line delay and step-time for radix-2 on-line
units

The total number of clock cycles for the SVD consisting
of S sweeps is

Tya=(S(n ~ 1) = 1) Toye + Tire &)

When post-normalization is performed in an on-line op-
eration, it costs an extra cycle to the on-line delay since
the second digit of the result is examined before deter-
mining whether the first digit can be output. When the
result contains leading zeros, the zeros are discarded and
more digits are examined. In the optimal case, there is
no leading zero generated in the mantissa, while in the
worst case (assuming no leading digit cancellation for
addition), up to 1 (addition), 2 (division) or 3 (multi-
plication) leading zeros may be present. Based on the
designs presented in [15], the required minimum step-
time and minimum and maximum on-line delays of the
radix-2 implementation of the basic operations are listed
in Table 3. The step-time is measured in units of 4,
which is roughly the delay of a nand gate with no more
than 4 inputs. In the following discussion, we define cy-
cles as the maximum of the minimum required step-time
for all individual operations. We also assume 6,,,,, for
each on-line unit. The delays of the components used in
the designs are listed in [15]. The on-line delays for the
rotation angle calculation and the rotation calculation,
denoted as Agpg and A, respectively, are

Aang = 82 cycles,Ar oy = 24 cycles

The iteration cycle time of the on-line SVD is limited
by two factors. 1. The availability of input. In the SVD
computation, the rotation angle calculation of each iter-
ation requires the result of the rotation from the previ-
ous iteration. The time between the start of the rotation
angle calculation and the arrival of data for the next it-
eration, denoted as Ay, includes the on-line delays of
the rotation angle calculation, of transmitting the com-
puted angles through one processor, and of the rotation
calculation on an off-diagonal processor, as is indicated
in Figure 2 by the dotted path a — b — ¢ — d. For
radix-2 computation, we have

Aite:Aang + 5pas + Aot
=82+ 1+ 24 = 107 cycles
where 6,4, is the number of cycles for data to pass
through a processor and is assumed to be 1.

2. The availability of the arithmetic units. For each
on-line unit, the next iteration can not start until it

has finished the computation of the previous iteration.
Since in on-line computations all units work in pipelined
fashion, the cycle time between iterations must be no
less than the largest busy cycle time of all on-line units
in the critical path of the computation. Assuming m+1
output digits are computed, the busy cycle of an on-line
unit is
ibu.syzé +m

where 6 is the on-line delay of the on-line unit. For
radix-2 computation, division has the largest busy cy-

cle with § = 7. For double precision computation of 8
exponent bits and 56 mantissa bits, we have

thusy=63 cycles

Both factors mentioned above present lower bounds on
T.yc. Assuming that the matrix size n > 4, we have

n
Tite:Aang + ('2_ - 2) . 6pa.; + Arot +m

then for radix-2 double precision floating-point compu-
tation, we have

Teye=0Djte = 107 cycles
Tite=160 + % cycles

1
Tywe=(107 + 5) -n — 54 cycles
Tywa=S-(n—1)- 107+ g + 53 cycles

The hardware utilization is measured in terms of
unit - cycle, which is defined as an arithmetic unit re-
source for one clock cycle during the computation. The
total amount of resource available for the SVD compu-
tation is

total resource=(total number of units) x Tyyq

and the amount of resources utilized during the compu-
tation is the summation of busy cycles of all units

Tbung Z tbusy

all units

The utilization factor of the computation is defined as
the ratio of Tju,y and the total resource,

- Tbusy
total resource

For the on-line SVD computation, each main diago-
nal processor has 20 addition units, 22 multiplication
units, 6 division units and 4 square root units. Each
off-diagonal processor has 8 addition units and 16 mul-
tiplication units. Assuming the worst case on-line delay
(6,,,“2 for each on-line operation, and no leading digit
calcellation in addition, the busy cycle for each addi-
tion, multiplication, division and square root unit is 61,
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Figure 6: Timing diagram for on-line SVD (n = 8)

63, 63 and 60, respectively. The utilization factor for

the on-line SVD is
2
P

(3224-f2'-+1496-((" 2
B

2
n
(52 -5+ ((
It can be shown that for S > 10 and n > 8, we have
Uor > 0.57. Figure 6 is a timing diagram that shows
the busy and idle periods of each of the main diagonal
and off-diagonal processors.

n

2
n

2

UoL=
n

2

4 Comparisons

We now compare the on-line implementation with con-
ventional special purpose designs for the SVD computa-
tion. The delays are measured in terms of gate delays,
denoted as ty, which is approximately the delay time
of a nand gate with no more than 4 inputs. The effect
of fanout is ignored in the comparison since it depends
on low level design details, and we assume that it af-
fects designs of both approaches similarly. Costs of the
designs are measured in terms of LSI equivalent gates,
which is defined in [9]. The data format of input and
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rith. | Main diag. proc. Of diag. proc.
unit inputs | num. || # inputs | num.
dd 5 8 2 8
ult 3 12 2 16
2 4
v 3 4
qrt 2 4
otal 2 8 2 24
3 16
5 8

Table 4: Multiplexers for arithmetic units (Case 1)

output of each arithmetic operation is double precision
floating-point with 8-bit exponent and 56-bit mantissa.

The designs of the on-line and conventional implemen-
tations are based on components available from the LSI
HCMOS gate array libraries[9]. The cost and perfor-
mance figures of the components for both approaches
are based on the discussion in [15]. Conventional
floating-point algorithms used in the study correspond
to typical designs described in the literature or imple-
mented on commercial chips. The floating-point adder
uses a barrel shifter and a 2-level carry-lookahead man-
tissa adder, performing a double-precision floating-point
addition in two clock cycles. The floating-point multi-
plier uses radix-4 recoded multiplier, a tree of carry-save
adders, and a 2-level carry-lookahead adder to produce
a double- precision product in six clock cycles. The
floating-point radix-4 divider corresponds to Taylor’s
scheme(14] augmented with the on-the-fly quotient con-
verter. It uses redundant remainders. Double-precision
quotient is obtained in 30 cycles. Similar characteristics
are assumed for the floating-point square-root unit.

From Table 3, the step-time of the on-line implementa-
tion is 16 ¢,. The step-time of the conventional approach
is assumed to be that of the 56-bit parallel adder, which
is 21 t,. The difference of step-time is taken into con-
sideration when comparing the schemes.

Case 1: Maximum parallelism

In this case we assume for the conventional approach
that there are as many arithmetic units available as
needed by the computation whenever data is ready. For
the processors on the main diagonal of the array, there
are 4 adders, 8 multipliers, 2 dividers and 2 square root
units. During each iteration, each adder is used 5 times,
each multiplier 3 times, each divider 3 times and each
square root unit 2 times. For the off-diagonal proces-
sors, there are 4 adders and 8 multipliers. Each adder
and multiplier is used 2 times per iteration. Table 4 lists
the multiplexers that are needed for each processor. The
total cost of each main diagonal processor is

Gdiag:4 *Jadd + 8 Imuit + 2-gdiv+2- Gsqrt
+8 - gmuzz + 16 - gmuz3 + 8- Gmuzs
149,400



Arith. | Main diag. proc. Off diag. proc.
unit [ # inputs | num. || # inputs | num.
dd 5 8 4 4

Mult 3 12 4 8

2 4

Div 3 4

Sqrt 2 4
otal 2 8 4 12

3 16
5 8

Table 5: Multiplexers for arithmetic units (Case 2)

and the cost of each off diagonal processor is

Gofs=4" gada + 8 gmutt + 24 * gmuz2
~120, 600

The number of cycles for each arithmetic operation are

taaa=2 cycles
tmult=6 cycles
taiv=30 cycles
tyqr1=29 cycles

From the critical path operations given in Table 2, the
number of cycles for the rotation angle calculation and
the rotation calculation are

Tang:5 “tadd + 4 tmurt + 3 taiv +2- tsqrt =182
Tr0t=2tada + 2 - tmune = 16

Then we have the iteration cycle time and the complete
iteration time for n > 4,

Teye=Tang + bpas + Tror = 199 cycles

n
Tite=Tang + (5 - 2) : 6pa.s + Trot

=196 + -g cycles

Case 2: Reduced complexity

Assume that each conventional processor on the main
diagonal of the array still has 4 adders, 8 multipliers,
2 dividers and 2 square root units, but let the off di-
agonal processors have 2 adders and 4 multipliers each.
Each off diagonal processor performs the rotation com-
putation twice per iteration, each time computing the
rotations of 2 of the matrix elements associated with the
processor. If a matrix element is going to be transmit-
ted to a main diagonal processor, it is always computed
in the first run. Each adder and multiplier of an off di-
agonal processor is used 4 times per iteration. Table 5
shows the number of multiplexers used in each proces-
sor. The cost for each off diagonal processor is

Goﬂ‘=2 *Jadd + 4- Imult + 12 Imuzx4
~62800

Because of the long computation delay of the rotation
angle calculation performed by the main diagonal pro-
cessors, Ty, remains the same as in case 1. The com-
plete iteration time becomes

n
Tite:Tang + (5 - 2) N 6pas +2- Trot
=212+ g— cycles

The utilization factor for this scheme is
n n\?2 n
(468- 3+ 112 ((5) - 5)) (n—1)-§
Ucz= n n\?2 n T
(‘6'5”' ((5) —5)) “Tovd

and for n = 8, $ = 10 we get Uca = 0.124.

Case 3: Maximum utilization

Assume that each main diagonal processor has one each
of adder, multiplier, divider and square root unit, and
each off-diagonal processor has one adder and one mul-
tiplier. For each iteration, each diagonal processor per-
forms 20 additions, 22 multiplications, 6 divisions, 4
square root operations, and each off diagonal proces-
sor performs 8 additions and 16 multiplications. Each
processor needs about 12 registers for buffering input,
output and intermediate results. The complexity of the
processors are

Giag=9add + Gmutt + aiv + gsqrt ~ 26800
Goss=9add + gmuir ~ 16800

Assume that the order of performing the arithmetic op-
erations is such that those operations in the critical path
always proceed when ready. The performance figures
are

Tang=235 cycles
Aang=221 cycles

T = 74 cycles diagonal processor
rot=1 98 cycles off-diagonal processor

Aror=38 cycles
Teyc=269 cycles

n n
nte:Aang + (5 - 2)6;)035 + Trot =317+ 5 cycles

Towe=(n = 2)Teye + Te = 269.5n — 221 cycles
nud:(s(" - 1) - l)Tcyc + Tite

=269S(n — 1)+ g — 48 cycles

The utilization factor is

(468x%+112x(( )2—%))x(n—l)x5

n
2
(1x5+2x ((3)'-5)) x Ts

Ucs=



on-line conventional

Parameter | (radix-2) [ Case 1 | Case 2 | Case 3
Teye 1 2.45 2.45 3.28
ite 1 1.60 1.73 2.56

swe 1 2.27 2.30 3.15
Tsva 1 2.42 2.43 3.21
Glaiag 1 0.84 0.84 0.15

° 1 1.38 0.77 0.19
Total cost 1 1.16 0.77 0.18

Table 6: Performance and cost ratio against on-line
scheme for n =8 and § = 10

Operation On-line | Conventional
Add 1337 4773
Multiply 3941 12063
Divide 4261 4993
Square root 4261 4993

Table 7: Cost comparison of on-line and conventional
arithmetic unit design

For n = 8 and S = 10 we have Upcz = 0.3.

Table 6 shows the performance and cost ratio for the
conventional and on-line SVD with n = 8 and § = 10,
assuming no cancellation of leading digits. The fig-
ures also reflect the ratio between the step-times of the
schemes.

The comparison shows that for n 8, the on-line
scheme achieves a speedup of about 2.4 over Case 2
of the conventional implementation and about 3.2 over
Case 3, and the gate count ranging from factor 1.3 to
5.5 of the conventional approach. For each processor,
the on-line scheme requires 80 data connections, while
the conventional scheme needs 512 data connections.

5

This paper reports a preliminary results on the imple-
mentation cost and performance of on-line arithmetic
with respect to conventional arithmetic for a particu-
lar technology (gate arrays) and a particular applica-
tion (SVD). The system itself has not yet been fully
implemented. Our estimates are based on the gate-level
designs of individual on-line units and provide a good
estimate of the system gate-count. The results indicate
that for double precision floating-point computations,
the designs of the on-line arithmetic units have less com-
plexity than the conventional designs. Table 7 compares
the gate counts of the designs. For the SVD computa-
tion, the on-line scheme has a much larger number of
arithmetic units and a greater gate count than the con-
ventional scheme. We note that because of the overlap-
ping of the on-line operations, the hardware utilization
of the on-line scheme is much higher than the conven-
tional designs. Moreover, on-line approach reduces for
each processor the communication bandwidth from 512
to 80 data connections which is of significance in system

Concluding remarks
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packaging.

The results presented here are limited in several re-
spects. We did not analyze performance in the case of
cancellation of leading digits. This is a serious problem
especially for on-line arithmetic because of performance
degradation. Cancellation can increase the on-line de-
lay up to the working precision, i.e., 56. The numerical
behavior and its relation to cost and performance of an
SVD on-line arithmetic system need to be addressed.
In our study of the system cost we included the nec-
essary variable delay buffers to synchronize operands
which get out of phase due cancellation. To reduce the
buffering cost, an alternative is to have control with
blocking mechanisms. We note that when operands to
a floating-point on-line adder are generated by an on-
line multiplier, the least significant half of the product is
available in parallel form and, at a cost of two shift reg-
isters, it can be used to extend the number of significant
digits to the adder. Another issue is the interface with a
host system and mechanisms for significance monitoring
in on-line algorithms.
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Appendix: Floating-Point Algorithms
A Radix-2 on-line addition

Step 1. [Initialization and alignment]
eq — €z — ey
e, — max(ez, ey) + 1
A[-2]=0, z=0
for j=1,---, |ed| do
if e4 > 0 then
;i =z;, y;=0
else
1;.’7. =0, y; =y

for j=leq| +1,---,m do

if e4 > 0 then

A —

;= Tjs Y5 = Yieled

else

T;=Tileaty Y; =Y

for j=-1,--+,0 do

Alj] — 240 - 1]+ (x}+2 + y}+2)2_2

254

Step 2. [result generation]
for j=1,---,m+1 do
AU] - 2(AL7 —1]-2-1)
+($]+2 + +2)2-
/* A[j] has 3 blts of precision */

—~1if A[j]< 27!
zj < 0 if —r*<AM<21
1if A[j]>27!
Zout — postnormgg,(2j, 2j41)s Zm42 =0

end.

The post-normalization for addition works as {follows:

1. Examine the first two digits (21, 22) of the result.

2. If the values of the digits being examined, (z, z3), are
(1,0), (1,1), (-1,0), or (-1,-1), then the result is quasi-
normalized. These digits and the rest of the result are
output in sequence.

3. Otherwise, we combine the two digits as
z21=2-21 + 23 (4)

the result exponent is decremented, and we get the next
result digit z5 — Zzneaz:-

4. Steps 2 and 3 are repeated until either m result digits
have been examined without satisfying the condition of
step 2, in which case the output is zero, or the condi-
tion in step 2 is satisfied, in which case 21,25 and the
remaining result digits are output.

In the optimal case where the condition of step 2 is satified
for the first 2 digits of the result, the total on-line delay is
§ = 5, where 1 cycle is nedded to calculate the difference of
the exponents, 3 cycles are needed to generate the first digit
of the result, and 1 cycle is needed to get the second result
digit.

In the worst case when all digits are exausted and the output
is zero, the total on-line delay is the total number of cycles
needed to obtain all digits of the result, which is Scancet <
m + 3, where m is the working precision.

B Radix-2 on-line multiplication
Step 1. [Initialization]
e, —ez+ey
X[-3]=0, Y[ 3]_0 A[=3]=0,2=0
for j=-2,- do
X[5] ‘—X[J - 1]+-"3J+32 i=
Alj] — 24 - 1]+ (%+3Y[J — 1]+ y+3X[1])27
Y[l = Y[i— 1] +yj43277"
Step 2. [product generation)
for j=1,---,m+3 do
X[j] = X[ = 1]+ 240279
Alj] = 2(A[j — 1] - zj-1)
+(zip3Y [ — 1]+ yipaX[])27°



Y[l = Y- 1]+ yj4a277 72
/* A[j] has 3 bits */
-1 if A[]] <-27'
0if —2! <A[]]<2"
1if A[]] >2-!
Zout +— postnormy, (2, 2zj+1)s Zm4a = 0

zj —

end.
The post-normalization for multiplication works as the fol-
lowing.

1. Examine the first two digits (21, z2) of the result.

2. If the values of the digits being examined, (zi, 23), are
(1,0), (1,1), (-1,0), or (-1,-1), then the result is quasi-
normalized. The digits being examined and the rest of
the result are output in sequence.

. Otherwise, we combine the two digits as

(%)

the result exponent is decremented, and we get the next
result digit 25 «— znes:-

! 1 !
z1=2-2) + 2

. Steps 2 and 3 are repeated until either the condition in
step 2 is satisfied, when z{, z5 and the remaining result
digits are output, or z4 has been examined, in which
case the output digits are z{, zs, -+ and the rest of the
result digits.

In the optimal case where the condition of step 2 is satisfied
for the first 2 digits of the result, the total on-line delay is
8min = 5, where 4 cycles are needed to generate the first
digit of the result, and 1 cycle is needed to get the second
result digit.

In the worst case there can be at most 3 leading zeros in the
result. The total online delay is the total number of cycles
needed to obtain the first four digits of the result, which is

maz = 1.

C Radix-2 on-line division

Step 1. [Initialization and shifting]
eg—en—eg+1

Af0] = Y ni27 !

= 1

Zd 277

if D[0] < 2‘1 then
D[O] -2 D[O] + dnext2‘4,
eg—¢e;+1
Q0] —0;  go—0
Step 2. [quotient generation)]
for j = ,m+ 2 do
DE]]] - D[J - 1] +dnert2 i-4
— AA[ — 1] - 41 DL])
+"ne1'12 nertQ[] - 2]2_4

D[0] —

255

/* A[j] has 6 bits */

-1 if A[]] < ':i
g =20 if ——<A[]]<16
1 if A[J]

QL]+ Qli — 1]+ ¢;27 g
Gout +— postnorm;,(g;, Qj+1), gm+3 =0
end.

The post-normalization for division works as follows.

1. Examine the first two digits (g1, g2) of the result.

2. If the values of the digits being examined, (q;,¢2), are
(1,0), (1,1), (-1,0), or (-1,-1), then the result is quasi-
normalized. The digits being examined and the rest of
the result are output in sequence.

. Otherwise, we combine the two digits as
(6)

the result exponent is decremented, and we get the next

$=2-q +¢

result digit ¢ « gnest-

Steps 2 and 3 are repeated until either the condition in
step 2 is satisfied, when ¢{, g5 and the remaining result
digits are output, or gs has been examined, in which
case the output digits are gi, g, - -- and the rest of the
result digits.

In the optimal case where the condition of step 2 is satisfied
for the first 2 digits of the result, the total on-line delay is 6,
where 5 cycles are needed to generate the first digit of the
result, and 1 cycle is needed to get the second result digit.
In the worst case there can be at most 2 leading zeros in the
generated result. The total online delay is the total number
of cycles needed to obtain the first three digits of the result,
which is bmaz = 7.

D Radix-2 on-line square root

Step 1. [Initialization and shifting]
if e; odd then
2

Af0] < D z2!
i=1

else
A[0] — 2,273
ey — lez/2] +1
Step 2. [output generation)

for j=1,---,m do
Afj] =2 (A[J —1]-y-1(Y[i-2]
+Y [J - 1])) + Ine:t2-4
/* A[ j] has 7 bits */
/* Sygre is the selection function defined in [15]. */
Y — Ssgri(A[]) ,
Y{j] = Y[i-1]+y277

end.



