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Abstract

This paper is concerned with extended arithmetic
operations, such as forming scalar products, in symmetric
level index, SLI, arithmetic. Schemes for the
implementation of such algorithms are described and
analysed both in terms of comparative timings for these
operations and their floating-point counterparts and in
terms of the control of errors in the computation. It is
seen that with sufficient parallelism available in the SLI
processor the computation can be as fast as for floating-
point operations. Also we see that the SLI operation can
be modified to produce just a single rounding error from
extended operations very economically.

1 Introduction

The level-index number system for computer arithmetic
was first suggested in Clenshaw and Olver [1],[2]. The
scheme was extended to the symmetric level index, SLI,
representation in [4] and has been studied in several
further papers in the last few years. Much of the earlier
work is summarized in the introductory survey [3]. The
primary virtue of SLI arithmetic is its freedom from
overflow and underflow and the consequent ease of
algorithm development available to the scientific software
designer. This is not the only arithmetic system that has
been proposed with this aim; for example the work of
Matsui and Iri [10] and Hamada {6] suggested modified
floating-point systems which share some of the properties
of level-index.

Possible hardware implementations of SLI arithmetic were
discussed in [13] and [14] while a software
implementation incorporating some extended arithmetic
was described in [16]. The error analysis of SLI
arithmetic is discussed in [2] and {4] and is extended in
[8], [11] and [12]. Applications and software engineering
aspects of the level-index system have been discussed in
[51,[9] and [15].

In this paper, we concentrate on the extended arithmetic

CH3015-5/91/0000/0118$01.00 © 1991 IEEE

118

operations, such as forming scalar products of two
vectors, which are of fundamental importance in scientific
computing. At the heart of any such operation is the
extended addition of a finite series of terms. This
operation was studied in some detail for interval
arithmetic [7] and a greatly extended accumulator was
designed to return the result with just a single roundoff
error. In this paper we consider the implementation of
extended summation algorithms for the SLI system and
their analysis. We see that the time penalty associated
with SLI arithmetic is reduced so sharply that, with
sufficient parallelism available in the SLI processor, the
summation could even be faster than conventional
floating-point ~ arithmetic. Moreover the analysis
demonstrates that the objective of a single rounding error
for the extended summation can be achieved at very
modest cost of increasing the precision of the internal
computation very slightly.

We begin with a brief review of the SLI representation
and its arithmetic. In Section 2, we describe the
algorithms for extended summation and their
implementation. Section 3 is concerned with the timings
of these algorithms and their comparison with floating-
point systems. In Section 4, we present the error analysis
of these operations and its implications for the control of
the overall error.

The symmetric level index representation of a real
number X is given by
X = s5,0(x)*

where the two signs sy and ry are *1 and the generalized
exponential function is defined for x>0 by

(¢Y)

x 0<x<],
o) = { @
exp(p(x-1)) =x>1.
It follows that for X>1,
X = exp(exp(...(expp...)) (&)

where the exponentiation is performed /=[x] times and
x=I+f. The integer part, / of x is called the level and the



fractional part, f is called the index. The freedom of this
system from over- and underflow results from the fact
that, working to a precision of no more than 5,500,000
decimal places in the index, the system is closed under
the four basic arithmetic operations apart from division by
zero. This is discussed briefly in [1], [4] and considered
in some detail in [8].

The appropriate error measure for computation in the
level index system is no longer relative error (which
corresponds approximately to absolute precision in the
mantissa of floating-point numbers) but generalized
precision which corresponds to absolute precision in the
index. This error measure is introduced in [1].

In order to study the extended SLI operations which are
at the heart of the present work, it is desirable to remind
the reader of the fundamentals of the basic arithmetic
algorithms for the SLI system. The properties of the
natural logarithm function reduce all such operations to
addition or subtraction. The algorithms are described in
some detail in [4].

The basic problem is that of finding the SLI

representation s, d(z)” of Z=X+Y where X, Y are also
given by their SLI representations. Without loss of
generality, we may assume that X>Y>0 so that s,=+1. The
computation entails the calculation of the members of
three short sequences which vary according to the
particular circumstances. In every case, the sequence
defined by

a = ¢(i—1) G =1-1,1-2,..0) )

where I=[x], is computed using the recurrence relation
a,, = exp(-1/a); e’ ®

Depending on the values of ry, 7, and r; the other

sequences that may be required aregiven, for appropriate
starting values, by

4, =

b = ¢(y_j)’ B, = ‘b(x'j)’ a = 1
7 dkx-p ¢(I ) oo-N" 1 0D (6)
- Z-]. - _
C’ —¢(x-j)’ hj ¢(z j)

The ranges of their values are always suitably bounded
and the terms are computed according to recurrence
relations similar to (5) using exponentials and logarithms
of special arguments. See [4] for full details of the
algorithms and {13], [14] for possible schemes for
hardware implementation. The particular implementation
of extended operations presented in Section 2 is based on
the modified CORDIC approach of [14].
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2 Extended Algorithms and their

Implementation

In this section, we first describe the mathematical
algorithm for extended summation and then consider how
this algorithm may be implemented in an efficient manner
on a machine with a high degree of parallelism available
in its (hypothetical) SLI processor. The operation of
summing the elements of a sequence or the components
of a vector plays a central role in much scientific
computing especially in the formation of scalar products
and in quadrature.

The specific task then is to find the SLI representation

N

s,0@)* of Z = ¥ X, where each component X; is given
=0

by its SLI representation. Thus we seek sz, z, r; such that

N

Y sdx)" M
=0

where we shall assume that X >0 is the largest component
in the sum. (Of course, our algorithm must identify this
maximum element and the time for this operation must be
included in our timing comparisons in the next section.)

5@ =

In all cases, the computation begins with the calculation
of the terms of the sequence
1
a; =
&(xo-)

using the recurrence relation (5). The rest of the algorithm
is divided into two cases depending on whether X>1. If
X,21, then the b-sequence is computed for each term X;
(i21) for which r=+1 to yield b,,. The a-sequence is
computed for terms with 7=-1 and the product a0, is
formed. The important observation here is that, given
sufficient parallelism in the processor, all of these
sequences may be computed simultaneously.

The results of these calculations can be combined to yield
=1+ sbo+ 3 580, ®)

r=+1 r=-1

from which the remaining terms of the ¢c-sequence may be
computed as usual, together with any of the A; that may
be necessary. For the case where X<1, in which case all
terms in the sum are "small" similar computation with the
B-sequences is used to obtain

! N
=1+Y 5,8,
st

The recurrence relations for the c- and h-sequences are

®

U
o =
Co



included in the following description of the complete
algorithm. Those for the b- and B-sequences are included
in the discussion of possible hardware implementations of
the algorithm. The detailed derivations of these sequences
can be found in [7] and [9].

Algorithm 1 Extended SLI summation
Input: s(x)" (i=0,1,....N)
with s,=1 and (x> d(x)" (i>1)
Xy =[xl +fy
Compute: a, = 1/¢(xo-N) (=I[x]-1,..,0) using (4)
If r&=+1 (Case 1) then
fori=1to N
if r=+1 compute b,y = d(x)/$(xy
if r=-1 compute g, = afd(x) = 1/d(x)d(x)
rz=+1; ¢=1+Y 5bo+ Yy 5,808,4

rE=+l r=-1

If r,=-1 (Case 2) then
for i=1 to N compute Bio = d(xp/d(x)

N
-5 oe=1 +ESIBI.0
i=1
If ¢=0 then Z=0; return
else 5, =sgn(c);, c=]c|, I,=1
Case 1: if c<a, then ry=-1; h=-In(c/ay

compute h-sequence:
repeat

h=ln h; 1,=1,+1
until i<1
z = l;+h; return
Case 2: if ca>1 then r, = +1; h=Inca,
compute h-sequence;
z = I, +h; retum
If [x]=1 then A =fy+relnc;
compute h-sequence;
z = I, +h; retum

ry=

¢ =1l+ranc
For i=1 to [x]-2
if c<a; then z = I, + c/a;; return
else ,=1,+1; c=1 +a Inc
If €156y, then z = I, + c/a
else I=[x]; h = fy+Inc
compute h-sequence
z = l,+h; retumn.
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This is the algorithm which is implemented in the
software implementation of SLI arithmetic described in
[16] although it was convenient there to implement

separate c-sequences for the two cases. Our primary
concern here though is with potential hardware
implementations of the SLI system including the extended
summation operation.

The implementation described here is an extension of the
ideas of [14] using modified CORDIC algorithms for the
computation of the various sequences.

The preliminary step is the determination of the maximal
element in the sum. We recall from [16] that the
electronic representation of the SLI system is such that
the order relations are precisely those of the same bit-
strings compared as 2’s complement integers.

It follows that this preliminary step can be achieved with
a simple tree of "integer-discriminators”. This tree will
have log,(N+1) stages assuming sufficient parallelism that
at least (N+1)/2 such discriminators can operate
simultaneously.

It is clearly important here that an efficient integer
discrimination algorithm is used here. The comparison of
integers is essentially the same operation as the
determination of the sign of a "double number" which
was a critical operation in the modified CORDIC
approach to SLI arithmetic outlined in [14]. We digress
briefly to consider this operation and to present an
efficient low-level algorithm for integer comparison.

Consider then the operation of determining which is the
larger of two 2’s complement integers p and ¢. The
algorithm proceeds as though both representations were
standard binary integers and then reverses the outcome if
the sign bit of p is a 1. It suffices therefore that our
algorithm determines the larger of two aligned positive
binary numbers of n+1 bits.

The first stage of the algorithm replaces each pair of bits
(p»q) with the pair (d,p,) (i=0,1,...,n) where
P#*a, (10)

1

0 P,
Now if d=1 and d=0 for j<i then p>q if p=1 while p<q
if p=0. (If there is no d=1 then p=q.) The task is
therefore to find the first such d; and the corresponding D

This is achieved through a tree of single bit tests as
follows.

d, = p,XOR g, = p,+q, mod2 =

For simplicity, we assume here that n=2*1 so that the
word length is a power of 2. (Clearly any shorter words
can be extended with 0’s.) The second phase is a k-stage
process in each stage of which we consider successive



pairs (d,,p,) and (d,;,,,P2.1). The first of these is retained
if d,=1 while the second is selected otherwise. These
single-bit tests can be effected simultaneously for each
pair. The number of such pairs is thus halved at each step
so that, after & such steps, there is only one pair (D,P) say
remaining. If D=0 then p=q, whereas if D=1, then p>q if
and only if P=1. For 2’s complement representations, the
final decision is reversed if p=1.

The algorithm is summarized for positive numbers below.
Clearly the arguments could be any aligned
representations though we describe the process for
integers.

Algorithm 2 Fast discriminator
Input: Positive binary integers p, q of 2* bits.
Initialize:
For i=0 to 21 set d,p®) = (pNg,p) (Parallel)
Loop: For j=1to k (Serial)
for i=0 to 2%-1 (Parallel)
g+ G+ @d.pd) ifd)=1
@ p ) = D 0 g}
(@y.1:Py.y)  if dyy =0
If 4;") =0 then p=¢
else p>q & pg‘)= 1
The process is illustrated in the following examples.

Output:

Example 1

We consider two examples using 8-bit words.

@ p=11001010 @® p=10101010
g=10111110 g=10111110

Initialization:
d=01110100
p=11001010

d=00010100
p=10101010

Jj=1 N/ N/ NN N/ NSNS
d=11 1 0 d=01 10
p=10 00 p=00 0 0

J=2 NN NSNS
d= 1 1 d 1 1
p= 1 0 P 0 0

J=3 N \ /
d= 1 d= 1
P= 1 p= 0

Output: p>q p<gq

In both cases, p=1 and so the conclusion would be
reversed if these were 2’s complement integers. Note how

the first (i.e left most) pair in (d®,p®) for which d® = 1
is preserved throughout the process to yield the required

result. If d2=d? -0 then there is no difference
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between p and q in the appropriate positions. The fact that
it is the second pair which are transmitted to the next
phase in this situation is an arbitrary decision - but this is
choice which allows the simple one-bit tests to be
performed in the (parallel) inner loop.

It should be observed that this integer discriminator could
easily be incorporated into floating-point hardware too.

The motivation for this discriminator in the present
context was the need to detect the sign of a "double
number" quickly. That is we have a quantity x represented
by the sum of two aligned 2’s complement words p and
g; we wish to identify the sign of x. This can be achieved
using the same idea. If the sign bits of the two
components are the same then clearly x has this same
sign. Otherwise we must identify the value of the first bit
of p for which the corresponding bit of ¢ is the same.
This is achieved by simply reversing the test in the inner
loop in Algorithm 1. If no such bit exists then p and ¢ are
1’s complements and so their sum is negative; otherwise
x is positive if and only if the appropriate p=1.

It follows that the determination of the sign of a double
number can be achieved in [log,n| one-bit
discrimination steps for a wordlength of » bits.

Returning to the main objective of this section, we are
now in position to start Algorithm 1. The a-sequence for
this largest component can be computed exactly as in [14]
which is based on the CORDIC-like algorithm for ¢'*
defined by

vi=1u =K

8, = -sgn(v) \ an
Uy = Uy +14,8,2
Vi =Vt 8,8,
where
§,=xe, e, =tanh™ 2% 12)

K= H coshe,
with the usual repetitions in the sequence e, and the
product K. Two additional steps using e,=tanh™1/2 are
also included in order to extend the range of convergence
of the algorithm. Of course, the same algorithm is used to
generate any o-sequences which are needed in Case 1.

The b- and B-sequences are computed using similar
relations:

b’ = exp((bj+l - l)lal* l)
B] = exp((ﬁ,q‘ l)lalqppl)

with appropriate starting values. Minor modifications of

13)



the above algorithm can be used to compute these terms.

One important observation here is that all of these
sequences can be computed simultaneously which has an
obviously beneficial effect on the speed of extended
summation. We shall also see later that compressing the
operation in this manner reduces the overall rounding
error inherent in the operation to a significant extent.

The next stage is the accumulation of ¢,. This is the result
of summation of 1 and N fixed-point fractions. (Recall
that all the internal arithmetic required for the SLI system
can be performed to fixed absolute precisions.)

One aspect of the implementation proposed in [14] was
the use of a "double-number” format throughout the
internal arithmetic. This facility is retained by the
extended operation so that the formation of ¢, is reduced
to the summation of 2N+1 fixed point fractions using a
tree of Carry Save Adders to obtain the double-number
representation of c,.

The remainder of Algorithm 1 can be implemented just as
it would be for a single SLI arithmetic operation. The
terms of the c-sequence can again be computed using a
modified CORDIC algorithm for the function alnc in
which the constants used are

a, =ae, = atanh™'2°% (14)

These, like the &, of (12), can be computed in parallel.
The standard CORDIC logarithm algorithm can be used
for any terms of the h-sequence which are needed. The
reader is referred to [14] for a full description of these
modified algorithms in which again "double number”
representations are used throughout the internal
computation.

3. Timing Estimates and Comparisons

We begin this section with estimated timings for the
extended SLI summation algorithm. We shall also make
comparisons of these estimates with serial and parallel
floating-point implementations. Throughout this section
we shall assume that the prospective SLI hardware unit
has "sufficient” parallelism that any operations which can,
in principle, be performed simultaneously, can be so
performed in practice.

We list below our notation and assumptions regarding the
relative timings of the underlying basic operations
measured in some base "time unit”, t.u. The basis of our
comparisons will be single precision SLI against single
precision floating-point operations, which we shall assume
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take approximately 2¢ t.u.

Operation Time in t.u.s
3 to 2 Carry Save Adder operation a
Shift left or right b =a/3
32-bit Carry propagate adder c=32a
32-bit aligned discrimination d=5¢e=a
One-bit logical test or negation e=a/5

On a serial machine therefore, the floating-point
summation of the terms X,,....X, will require
approximately 2Nc tu. For a machine with sufficient
parallelism to perform this summation using a typical
reduction algorithm, the number of separate reduction
stages required is [log,N+1] so that the overall timing
is then approximately 2c log,N+1. These are the two
quantities with which we make our comparisons later.

We note that the time taken for the SLI operation will
vary according to the levels of the maximum element and
the final result. As in [14] we shall make a "worst case"
estimate in which both of these quantities are at level 5
and a "typical” estimate using level 3. It should be noted
at the outset that the worst case comparison is especially
unfair to the SLI system since the corresponding
floating-point computation could NOT be performed
by any straightforward means.

With the use of the algorithm of the previous section for
the signs of the double number representations (and a
slightly improved "squarer”) it follows that the timings
given in [14] for single SLI operations are overestimated.
If we also modify the computation of the starting value
for the b-sequence so that this sequence is computed
entirely in parallel with the a-sequence, the "typical" and
"worst case" times quoted there can be reduced to 30c
and 49c t.u. respectively.

This represents a slowdown by a factor of about 15
compared to the same algorithm executed in floating-point
on a fast serial machine. Much of this loss may well be
recovered by the fact SLI arithmetic allows much simpler
program structures to be used since it does not need
protecting from possible overflow or underflow problems.

The principal finding of this section is that by using the
extended Algorithm 1, this loss of speed is significantly
reduced or even removed.

The precomputation of the largest component requires
log,(N+1) steps each of which is an integer discriminator
implemented according to Algorithm 2 in Se t.u.



The remainder of the algorithm splits into two principal
cases depending on whether X,>1. We shall concentrate
first on the "large" case, that is X>1 or, equivalently,
re=+1. We shall subdivide this case further but the
computation proceeds the same way at least as far as the
computation of c¢,,.

The computation of the a-sequence for X, is common to
all cases and is achieved as in [14] in a total of
78a+39b+39d + ([x]-1)(132a+50b+41d) t.u.

It was observed in [14] that the b-sequence can be
computed in parallel with the a-sequence provided that
the starting value is defined appropriately. The less severe
precision requirement for terms of this sequence also
implies that it can be computed alongside the a-sequence
at no extra cost in time.

For terms of magnitude less than 1, the a-sequence is
required. The computation is just the same as for the a-
sequence and so can also be computed in the same time.
For each such term we then need the multiplication of the
two representations of a, and o,. These are both 37-bit
double numbers and so 148 terms need to be summed
with a CSA-tree. This multiplication requires 12a+b t.u.

It follows that the total time required to produce all the
components of the sum which forms ¢, is

90a+40b+39d + (I,...-1)(132a+50b+41d) t.u.
where [, is the maximum level of any component of the
sum. (This could be greater than [x] if very small
quantities with reciprocals greater than |X,| are present.)

The next stage is the summation of N double numbers
and 1. This can be achieved with another CSA-tree in
approximately log;,(2N+1)=1.7(1+log,N) steps. This
requires 1.7(1+log,N)a t.u.

There are now three possibilities: namely |Z|>|X,],
1<|Z|<|X,| or the "flip-down" case where |Z|<1 for
which the final result must be represented in reciprocal
form. In each of the first two of these cases, the
remaining parts of the algorithm are performed as in the
proposed implementation in [14]. The only difference of
any significance is the possibility that a longer A-sequence
is needed. In ordinary SLI addition at most one term of
this sequence is needed. Here there is a possibility of
needing up to 4 such terms if the series is very long and
all terms are close to unity. However the total length of
the c-sequence and A-sequence will still not exceed 5 for
nontrivial summation. Since the terms of the h-sequence
are computed by a straightforward logarithm routine,
which is quicker than the modified CORDIC algorithm
for the c-sequence, we obtain an upper bound for the time

by taking each step (except possibly the final one) to be
a computation of the form 1 +alnc. The time obtained
for this operation in [14] is 83a+37b+34d t.u. per step.
The final step in the case where [z]2[x,] is necessarily
just a logarithm (of a double number) which can be
achieved in 70a+35b+34d t.u. Finally, we must convert
the final result to "single" form using the Carry Propagate
(or Carry Look-Ahead) adder.

For the “flip-down"case where |X,|21>|Z|, the
computation of a c-sequence is replaced with an A-
sequence which as we have already observed is a quicker
calculation.

Summarizing, in the case of "large" extended summation
the total time for the "worst case" where [x]=[z]=5 is
given by

Find X, log,(N+1)*5¢
a-,b-,0-sequences 90a+40b+39d + 4(132a+50b+41d)
Co 1.7(1+log,Ma
c-,h-sequences 70a+35b+34d + 4(83a+37b+34d)
Final CPA c

TOTAL  1022a+423b+c+373d+[log,(N+1)](Se+1.7a)
= 49c + 2.7a[log,(N+1)]

< 50c t.u for N<2™,

We see immediately that this operation can be expected
to be faster than the floating-point calculation would be
for N>25 on a serial machine - but of course the floating-
point computation would be impossible.

For a more typical estimate, we consider the case where
no component of the sum or the result is at a level
exceeding 3. The corresponding total is now
592a+249b+c+223d+2.7a[log,(N+1)] < 30c t.u. for the
same range of N. In this case the extended summation -
even of 2000 terms - compares favorably with the serial
floating-point summation of just 15 terms.

We see that the fact that the summation is compressed
into the formation of c, has the effect of making the
extended aspect of the operation virtually free. This
statement remains valid for the case of the extended
summation of small quantities. The only important
difference from the point of view of timing the operation
is the replacement of the b-sequence with the B-sequence.
Comparing the two equations in (13), we see that the
essential difference is the extra multiplication a;, B, ;.

This operation entails forming the product of two double
numbers of which B has the shorter wordlength. We find
that we must sum 128 terms; using a CSA tree this is



reduced to just two in 11a+b tu. This together with the
standard b-sequence calculation still implies that the
computation of the next term of the B-sequence is quicker
than that of the a-sequence. It follows that the bound on
the time taken to produce c, for the large case remains
valid here.

The final stages of the "Case 2" algorithm are identical
with those of the large case above. The only time loss is
derived from the slightly slower test of ca,>1 rather than
c<a, This entails a further "double X double"
multiplication which adds 11a+b tu. to the overall time.
The approximate timings quoted above remain valid.

The comparisons made above were not entirely fair since
we assumed considerable parallelism in the SLI
computation but only a serial architecture for the floating-
point summation. Of course this is not entirely unfair
either as it points to a possible trade-off to be considered
in deciding how faster technology is best utilized.

We conclude this section with a comparison of projected
times for our parallel SLI implementation with floating-
point computation using similar parallelism. The
summation of N+1 terms on a sufficiently parallel
floating-point architecture will require [log,(N+1)] steps
of a typical reduction algorithm which takes, under our
assumptions, 2c[log,(N+1)] t.u. For the "typical" range
calculation, the SLI summation takes
29c + 2.7aflog,(N+1)] t.u. compared with
49c + 1.7a[log,(N+1)] t.u. for the "worst case". In Table
1, below, we show the relative timings for different vector
lengths. Again recall that floating-point would fail for the
worst case computation.

Table 1 Comparison of extended summation times for
floating-point and SLI arithmetic on parallel architectures

#terms Flp "Typical” SLIflp "Worst case”
time SLI time SLI time
16 8c 30c 4:1 50c
64 12¢ 30c 2.5:1 50c
256 16¢ 30c 2:1 50c
1024 20c 30c 1.5:1 50¢
4096 24c 30c 1.25:1 50c

It is clear from the table that for even moderate length
sums, the time-penalty incurred by the more robust SLI
arithmetic is very small while for massively parallel
machines it may be almost undetectable.

From the entries in Table 1, we can also deduce relative
timings for scalar products of two vectors. On our
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"sufficiently paralle]” machine, the floating-point
calculation requires just one more parallel multiplication
increasing each of the quoted times by 2c tu. The
corresponding SLI multiplications can also be performed
simultaneously - but more slowly.

Since the multiplication of two SLI quantities is
equivalent to the addition of their logarithms the effective
levels of all quantities are reduced by one. It follows that
the "worst case" and "typical" timings are reduced to 40c
and 20c t.u. respectively. The corresponding overall times
for the scalar product are therefore 90c and 50c t.u. The
slowdown ratios for scalar products of vectors of the
same lengths as in Table 1 thus vary from 5:1 down to
2:1.

4. Error Analysis and Control

In much the same way as for the consideration of timings,
in order to obtain error bounds for these extended
operations, we must consider separate cases. We shall
again treat one of the main cases in some detail and then
describe the differences and summarize the results for the
others. In the spirit of [4], the aim of the analysis is to
demonstrate that the rounding errors involved in
Algorithm 1 can be restricted to the order of the inherent
error in the operation. As in [4], we find that working to
fixed absolute precisions in the various stages of the
internal computation achieves the desired control. We
begin by studying the case of "large" arithmetic with a
“large” result; that is, |X,|,|Z|21. Note here that we do
NOT assume that all terms are of the same sign, nor even
that the signs of X, and Z are the same.

In this case, the inherent error can be approximated by
linear perturbation theory to obtain

|¢’(xo>|+g [ve| | ¢@ || as
|¢@ | o] | Per))

where each component is correct to the accuracy, Y, of
the representation, so that |8x,| < y,. Also using the facts
that ¢’ 1is an increasing function,
$?()/d' (%) = d@)/$/(x-1) and [d(x)/$/(x-1)| 2 1 for x21
(see Lemma 3.1 of [4]) it follows for the case where 22x,
that this inherent error is bounded by (N+1)y,. If, on the
other hand, z<x, then the appropriate bound is
(N+1)Y,¢/(xp)/#'(z). These are the bounds which our

algorithm should be designed to achieve by choosing
appropriate working precisions.

|8z] <

Many of the details are similar to the analysis used in [4].
The error bounds for the computation of individual a-, b-



or a-sequences are unchanged for the extended algorithm
from those obtained in [2]. Thus, we have

[8a,], [8a;| < Ay,

1855 < ¢/Gx-1)p(y,+ Ay /€
where 7,, v, are the working precisions to which terms
of the a- and b-sequences are computed and
_ 4+’

eﬂ

(16)

A

w175, p= Y —— <24, (D
0 ¢

For the extended sum under present consideration, this
allows us to bound the error in c;:

|8cy| < Np(y,+e Ay ¢/ (x-1)

which is just N times the error bound at this stage in the
simple large addition algorithm.

(18)

The improvement in the error control for the extended
sum derives from the fact that only one c- or h-sequence
is needed so that the propagation of this error is
minimized. In the situation where |Z| > |X;|, the analysis
continues precisely as for the addition case in [2] except
that additional terms of the h-sequence may be needed.
The propagation of the error through the calculation of
the remainder of the c-sequence (with working precision
Y,) yields the bound

|8c| < p(N(Yz"'AY]/e)"’Yz"'AY]ln(]-/Yz)) (19)

The computation of the necessary terms of the A-sequence
adds at most a further py, to the overall error. (See [4],
for details.) It follows that the final error is bounded by

82] < p(y,(N+2) + Ay, (Nfe + In(1/y,)) @0

The main term in the bound for a single addition is
2(p+1)y, since y, «y,. It follows that the error in this

extended sum of N+1 terms is less than N/2 times that for
the single operation.

For the situation where z<x,, the inherent error is bounded

by (N+1)7,%'(x)/¢/(z). This is the situation where some
cancellation has occurred but it has not been so severe as
to cause the result to flip down to reciprocal form. The
algorithm, and its analysis, are unchanged for the
computation of ¢, Since |Z|>1, it follows that

co = S@IG0Y = by = Gy 2 ¥y

Just as with the large subtraction algorithm considered in
[2], the c-sequence is increasing and so we have

lne,| < In1fy,

@1

for every j for which the sequence is to be computed.
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The obvious modifications to the analysis of [2] can now
be used to obtain the final error bound

loz| < ::f‘; {1l + PN+ 1)) + A,(1+ p¥fe + a1y,
Z

(22)
in which we again sec that the dominant term is less than
N/2 times that for the single subtraction algorithm.

The last case we consider in any detail is the one which
might be expected to be most troublesome. This is the
situation where |X,|>1>|Z| which is the case of severe
cancellation. Specifically then we have

N
5@ = b6 + Y s )" 23)
i=1

which has the inherent error

Vo] |¢@)] | ¥
el = ¢2(Z){| Lr?;x ! V@ l: H&(xw(z)ﬂ“

¢/ |
which, by a similar argument, we may bound by
¢/ (x0()
¢'(z-1)
Yet again the analysis is unchanged as far as the
calculation of ¢, At this stage, for this case we have
c<a, and we form h, = -In(cyay) and proceed to
compute further terms of the h-sequence as necessary.

The analysis of [4] for the case of large subtraction with
cancellation can now be used to obtain

/
b4
I32] &' (xpd(2)
/ _1)
Again the rounding error is magnified by less than N/2.

In the various cases of extended "small" sums, in which
r=-1 for every i, the inherent error is bounded by

[8z] < (N+1)yq 29

{YA1+p(N+1)) + Ay, (1 +Npe)). (25)

82| < (N+1)y HE- 1@ (26)
S/ (z-1)
for |Z|<1 and by
8] < (V+1yy, LED @n

Y637 463)

for the "flip-up" case where |Z|>1. Extensions of the
analysis of [4] similar to those used above yields an error
bound for the cancellation case (which for small
arithmetic corresponds to z>x;) which shows an increase
by a factor of about 7N/12 over the single small
subtraction algorithm. Similar results apply to the
remaining cases so that in all cases the roundoff error of
the extended operations is increased by only about half
the expected factor. It follows that with the same working



precisions as suggested in [4] - and used in the software
implementation in [16] - the roundoff errors of extended
summation are only about half of the inherent error
bounds.

The corresponding bounds in [4] were used to find
working precisions which control the roundoff error io be
of the order of the inherent error. The same reasoning
here allows us the opportunity to control the error of
extended summation to give the effect of only a single
rounding error - at least for the cases where severe
cancellation does not occur. The extra precision needed is
clearly dependent on the maximum vector length available
in the extended algorithm. For illustrative purposes we
shall take this maximum to be N+1=1024. Since in (4],

we had y, <273, it follows that, in the case where
|Z|>[Xo|21, we must choose v, so that 2.5x2'%,<y,.
For single length SLI arithmetic, Yo=27 and so using
¥,=2"22=2% will suffice.

This amounts to adding just 9 bits of precision to the
internal computation of the SLI algorithm. This is a very
low cost in order to achieve the often sought after goal of
a single roundoff error for extended summation.

S. CONCLUSIONS

In this paper, we have described an algorithm for
extended arithmetic operations in SLI arithmetic and
discussed its possible hardware implementation and error
analysis.

The implementation details suggest that any time-penalty
associated with the use of SLI arithmetic can be kept to
a very small factor on highly parallel computers - perhaps
of the order of just 2 or 3 for typical scientific computing
programs. Not only do we see that extended operations
can be executed in times comparable with single SLI
arithmetic operations, the use of this extended algorithm
also results in a significant relative reduction in the
roundoff error bound. We see t0o that the error analysis
of such extended operations with elements of mixed sign
is more straightforward than has sometimes been
suggested.

Putting these results together provides us with alternatives
for the uiilization of improved technology and massive
parallelism. One possibility is that any such improvements
be used to provide more raw speed. Perhaps a better
solution would be to compromise by accepting about half
the potential speed-up and using SLI arithmetic instead.
A speed-up by a factor of 5 rather than 10, for example,
may well be an acceptable "price” for freedom from
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scaling problems in order to avoid overflow or underflow.
We might even conclude that a smaller speed-up would
be acceptable in order to perform the internal arithmetic
to greater accuracy and so compute vector sums and
scalar products with just a single roundoff error.
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