Constant Time Arbitrary Length
Synchronous Binary Counters

J. E. Vuillemin
Digital Equipment Corp.
Paris Research Laboratory
85 Av. Victor Hugo
92500 Rueil-Malmaison, France

Abstract

We introduce a synchronous binary counter which can
be operated under a high clock frequency, independent
of the counter’s length n: all signals traverse alt most
two 3-inputs logic gates during each clock phase. The
proposed design is simple enough to have practical im-
plications, as tllustrated by a cMOS programmable gate
array implementation which has counted up to 2%° with
a 40MHz clock. The area required for laying out our de-
sign is no larger than that of the (much slower) carry-
ripple counter.

1 Introduction

Binary counters are found in nearly all digital systems,
and their design is extensively covered in all hardware
courses and textbooks.

e Since their implementation is so simple, binary
counters are seldom in the critical path of a syn-
chronous digital design. Whatever device the
counter is controlling is typically more complex,
hence slower than our small friend.

¢ Even in technologies where a synchronous counter
can be operated with a 1GHz (1ns period) clock,
one can only count up to about 2°° during the
course of one day. Practical uses for longer counters
are thus doubtful.

We have nevertheless two reasons for being interested
in fast counters.

1. Counters provide the most basic mean for testing,
debugging and measuring digital systems. In or-
der for such an instrumentation to be effective, it
needs to operate faster than the system under ob-
servation. In this context, counters thus naturally
need to be the fastest possible designs in any given
technology.

2. The theory of binary arithmetic circuits has
reached a very clean conceptual state: time logs(n)
is necessary and sufficient for both n bits addition
([2],[7],[4]) and multiplication ([6],[8],[5]).

CH3015-5/91/0000/0180$01.00 © 1991 IEEE

180

While the logz(n) lower bound of [7] also applies to
circuits performing combinatorial incrementation,
it breaks down for synchronous counters. This is
shown by [3], who construct a synchronous binary
counter whose clock period is independent of the
counter size, thus showing that incrementation can
be performed substantially faster than addition.

3. The counter presented here is similar in nature to
that of [3]; it is, however, somewhat simpler, using
half as many flip-flops, with the same clock speed.
In a comparative 64 bits test implementation (see
below), our counter’s area is twice smaller than that

of [3].

We exclude from our discussion carry-save, pipelined
and asynchronous counters, which share some, but not
all features in our design. Our timing model is the sim-
ple gate-depth count, with limited fan-in. It ignores fan-
out and far-away signal distribution problems, which
have to be delt with specifically for each implementa-
tion technology.

2 Linear time binary counters

Let us review some classical designs, starting with the
carry ripple counter:

4 bits carry ripple counter.

The counter’s only input (besides the clock) is the in-

crement signal co. Each sum bit S = 3[ses1--] =
Yis0si2' is the output s; = pi(s}) of a synchronous
register whose input is the corresponding bit of the next
sum §' = (s8] -] = Li508i2' = S + co. Each bit of

S’ is the ezclusive or s} = si ®¢; = s;i +¢i — 28 X ¢

of the corresponding sum and carry bits. Each consec-
utive carry ¢;4+1 = 8; A ¢; = s; X ¢; is the logical and
between the previous carry and sum bit. The carry
ripple counter is therefore completely specified by the
following equations:
si =pi(si), si=s:iDeci, ciy1=siA¢c;fori>0.

Let cgo)cgl) x ~c((f) -+« denote the boolean values of the
counter’s increment at times 01 ---¢- - -; the correspond-
ing counter’s values S(®.5(1) ... S() ... sum up in binary
the increments seen up to time t:

SO A0 A== T 4

i>0 0<k<t
The value of S’ at time t is that of S at time t + 1, so
5 = §t+1) = SO 4 (Y The carry vector C() =
S @5t = z[cgt)c(lt) 1= iso cgt)2‘ is the bit-wise
exclusive or of S and §’. A small simulation will refresh
our memory of the binary number system:

P U U E A U Y
010 0 0 0 1 0 0 0 0
1] 1 0 0 0 1 1 0 0 0
21 0 1 0 0 1 0 0 0 0
311 1 0 0 1 1 1 0 0
41 0 0 1 0 1 0 0 0 0
51 1 0 1 0 1 1 0 0 0
6] 0 1 1 0 1 0 0 0 0
71 1 1 1 0 1 1 1 1 0
8¢ 0 0 0 1 1 0 0 0 0

Let us assume that any logic gate with up to 3 inputs has
a unit deley 7. The minimal clock period under which
we may correctly operate a n bit carry ripple counter
(cre) is:

nxr.

Tcrc(n) (1)

Attempts to operate the cre under a lower clock period
will fail: consider a time ¢t when the counter’s value is

S=2"—1=5[11--], with ¢! =0, 50 C® = 0 =
2[00--]. An increment cE,"H) = 1 in that state causes
all carries and sum bits to change; this requires a n x 7

combinatorial delay for the increment signal to ripple
through up to the n-th bit.

Consider now the following carry anticipate counter:

Co

4 bits carry anticipate counter.

181

It is derived from the carry ripple counter by setting
the initial carry to 1, and by enabling the sum registers
through the increment signal ¢o. Its defining equations
are thus:

i pi(if co = 1thens; else s;),
s si@r;, fori >0,
s; Ari, for ¢ > 0 with ro = 1.

1l

Tit1

Using the same notations as before, we have: S() =
D o<k<t c(()k), S’ = S+1, R = S®S’. Our interest for the
carry anticipate counter (cas) is not immediate, since

Tcac(n) (2)

which gets established through the very same argument
as (1). We can however operate a n bits carry anticipate
counter at full clock speed T,r. = 7 provided that we
restrict the non-zero increments to only occur during
clocks phases which are at least n cycles apart. In-
deed in this case, two time instants ¢; and ¢5, for which

) = cgt’) =1 and cgt) = 0 for t; < t < ta, are such
tgat ta —t; > n x r. It follows that the length n — 1

carry chain R(1) = S(1) @ (S(*1) 4 1) reaches a stable

state no later than time ¢, — 7. Any subsequent non-zero

increment ng) at time ¢t > t5 will make the input mul-
tiplexer to each sum bit switch within delay 7 after the
clock pulse, so the correct value of S’ will be latched.
This observation, together with an (easy) analysis of the
frequency of non-zero carries c; is the key to designing
a constant time binary counter.

nxr,

3 Constant time binary counter

The constant time T(n) = 2 x 7 (independent of n)
counter is organized as a sequence of carry anticipate
counter blocks. In an actual implementation, choices
for the blocks’ lengths may be different from the ones
given below. Our choices match the clock period 2 x T,
under the assumption that any logic gate up to 3 inputs
has internal delay less than 7. The first block is a one
bit cre:

G

with defining equations: sg = pi(co @ so), c1 = co A so.
The second block is a 4 bits carry anticipate counter:

with defining sum equations:
sy = pi(if ¢y = 1then sy @ lelse sy),

s2 = pi(if c1 = 1then sy @ rp else s2),
s3 = pe(if c1 = 1then s3 @ r3 else s3),
s4 = pi(if c1 = 1 then s4 @ rq else s4).

The carry equations for this 4 bits cac block are:

Ty =81, 13 =12 A S, 14 = T3 A 83, 3)
rs =14 ASg, 5 =715 ASg A cCy.

In order to verify that this § bits counter correctly op-
erates within clock period 2 x 7, consider a time ¢ when
the carry chain Rz5 = 3[rersrars] changes state, i.e.
517! # s!. Since the value of s; changes at most ev-
ery second clock tick, the earliest time ¢’ when state
Ry s may change again is such that t' —t > 4 x 7. The
gate depth of equations (3) being less than 3 x 7 for
each r; (2 < i < 5), we see that ry, r3, 74 and rg reach
their stable value no later than time t' — 7; it follows
that »[s)shshs}] has the correct value 1 + [s1525354)
no later than time t'. By the same reasoning carry cs
has its correct value at all times.

For most practical purposes, we are through with our
counter design. When properly adapted to the charac-
teristics of a given technology, the first counter block
will typically have k ~ 3 to 8 bits, and the second block
more than 2% bits, so there is no need for a third block.
In order to implement such a counter in a given tech-
nology, one has to:

1. Derive from the technology parameters an a-prior:
estimate for gate, signal distribution and register
delays, in order to determine a structure for the first
k bits counter block. The logic gate computing the
enabling carry ¢x = ¢o A r; to the next block must
be carefully implemented so as to be glitch-free.

2. Design and optimize for the given technology the
second level cac block.

3. Implement, test and measure the resulting counter.
If measurement does not validates the initial as-
sumptions, another design iteration is called for.

With help from Alan Skea, we have carried out this
task for an existing 7 = 10ns (100MHz) ¢cMOS pro-
cess, based upon Xilinx’s programmable gate array [9]
and our own PAM technology [BRV89]. The resulting
counter, with a k = 3 bits first block, has been tested
and measured. It runs at 40MHz (slightly under the the-
oretical 50MHz limit), for over 40 bits, which is as far as
we could test it within a work-day. It has proved over
20 % faster than a similarly inspired counter, designed
by Peter Alfke, which is part of the standard library in
that technology [9].

For the sole benefit of our theoretically minded reader,
let us pursue our counter’s construction. The 3-rd block

182

is a carry anticipate counter of length 64 = 2 x 2% with
defining sum equations:

8; = pi(if cs = 1 then s; @ rielse s;) for 5 < ¢ < 64.

The corresponding carry equations are: r¢ = Sg, Ti41 =
r; A s; for 5 < i < 64. This 63 long carry chain has
enough (63 x 7) time to settle, since state changes in
bits s55¢ - - - of the counter are at least 32 cycles (> 647)
apart. By now, the reader has presumably infered the
general pattern for our counter. The 4-th block is an
intimidating 2°° bits long cac!, with enable signal

cey = (Co Asg A (7’5 A 7'69))-

An observer of gate cgg and rgg better be patient, since
not much happens until clock ticks T and T3, deter-

mined by 37, ., cgk) =2%-32and 3, .7, cgk) = 2%,
By clock tick T3 — 1, enough cycles have gone by so rgg
has settled to 1, no later than time (273 — 1)7, and no
earlier than time 27, 7. At this point, ¢o = r5 = 169 = 1,
but sg = 0 s0 cgg = 0. During the next clock cycle To,
signals cp = r5 = rg9 = 1 keep their value 1, but our
counter has just changed its parity so = 1; so cgy be-
comes 1 no later than one gate delay 7 after the clock
tick; just in time to enable the multiplexer controlling
the next value of bit sgg. Bit sgg is thus set to 1 at the
next clock tick while all 69 previous bits and carries are
reset to 0.

The 5-th block? is a cac of length {(5) = 272 — 1. The
carry enable cp(4), with L(4) =T = 25% into this block
gets computed by :

cra) = (co Aso A(rs Ares A rL(a)))-

In general, the k-th cac block has length I(k) = oLek)
k/2, where L(k) = 3~;; {(1) is the sum of the lengths
of the preceding blocks. The incoming carry to block &
is:

CL(k) = (Co Asg A (T’L(g) A 7'L(3)(AT'L(4) <A T'L(k))).

In picture:

While the depth of such gates grows as k/2, this (tiny)

delay gets absorbed by our choice I(k) = 2L(F) — k/2in
the block length.

lover a billion Tera bits!
2by now, we have far exceeded the time and space limits of the
known Universe!

4 Conclusion

What makes this design work is the very structure of the
binary number system. Let the 2adic valuation va(n) of
integer n > 0 be the exponent of the largest power of 2
which divides n, so n = 292(*)(2p + 1) for some natural
number p > 0. The number of non-zero carries in the
n-th line of the binary table is precisely 1 + vz(n + 1).
The total number of carries C(n) effectively propagated
when we increment consecutive integers from 1 up ton
is C(n) = Y gcicn(l +v2(n + 1)) = 2n — v1(n), where
vi(n) = Y ;5 ni is the number of non zero bits when

one writes n = 3[nony---] in binary. It follows that
n < C(n) < 2n, and we can say that the average carry
chain in a counter has length (almost) 2. What our
counter effectively does is to amortize throughout all
cycles the bursts of long yet rare carry chains which
plague the worst case behaviour of naive implementa-
tions. From the above analysis (C(n)/n ~ 2), we are
tempted to conjecture that the clock period T'=2 x 7
cannot be reduced to T = 7, under our limited 3 fan-in
assumption.

To conclude, we leave the following as an open question:
is it possible to design a synchronous, arbitrary length,
constant time up-down® counter?

Acknowledgements

Thanks to Alan Skea for a fine implementation and chal-
lenging test of the counter. Thanks to Patrice Bertin for
stimulating observations.

3a counter which may be incremented or decremented at each

cycle.

183

References

(1] Xilinx, The Programmable Gate Array Data Book,
Product Briefs, Xilinx Inc., 1987.

[2] V. S. Burtsev, “Accelerating Multiplication and Di-
vision Operations in High Speed Digital Comput-
ers,” Ezact Mechanics and Computing Techniques,
Moscow Academy of Sciences, 1958.

M. Ercegovac, T. Lang, “Binary Counter with
Counting Period of One Half Adder Independent of
Counter Size,” IEEE Trans. on Circuits and Sys-
tems, Vol. 36, No 6, pp. 924-926, 1989.

L. Guibas, J. E. Vuillemin, “On fast binary addition
in n-MOS technologies,” Proc. of ICCC 82, IEEE
New York, pp. 147-151, 1982.

(3]

(4]

[5] J. E. Vuillemin, A very fast multiplication algo-
rithm for VLSI implementation, INTEGRATION,
the VLSI Journal, Vol. 1, No 1, pp. 39-52 1983.

C. S. Wallace, A suggestion for a Fast Multiplier,
IEEE Trans. El. Comp., Vol. EC-13, No 1, pp. 14-
17, 1964.

(6]

[7] S. Winograd, On the time required to perform addi-
tion, J. ACM, 12,2, pp. 277-285, 1965.

[8] S. Winograd, On the time required to perform mul-
tiplication, J. ACM, 14,4, pp. 793-802, 1967.

[9] Xilinx, The Programmable Gate Array Data Book,
Product Briefs, Xilinx Inc., 1987.

