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Abstract

The use of finite polynomial rings to design
algorithms for the processing of digital signals
has received considerable attention in recent
years. The authors have recently introduced a
method which utilizes the bit patterns of the input
data to directly compute the polynomial
coefficients; this technique is straightforward and
preserves, in part, some of the magnitude
information. The new magnitude information
coding allows different scaling and conversion
algorithms than those required for standard RNS
decoding. This paper discusses new polynomial
mapping strategies involving replications of very
small rings modulo 3, 5 and 7 including a
scaling and conversion algorithm for such a
mapping.

1. Introduction

Finite rings can offer considerable advantages
over binary arithmetic in performing integer
arithmetic. The most visible use of such finite
rings is in the coding of integers as elements of a
set of rings, with relatively prime moduli,
allowing large dynamic range closed operations
(addition, multiplication) to be carried out by a
set of parallel small ring calculations. This is
known as the Residue Number System (RNS)
[6]. If the calculations are carried out
simultaneously, the independence of the
calculations (there are no dynamic range carries)
allows a relaxation in synchronization
requirements that can have considerable
advantages in VLSI implementations [3].

If M is a positive integer which factors as
M =11 m; with the {m;} all pairwise
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relatively prime, then an isomorphism between
the ring Zps and the direct-product ring:

z

XZ, X..XZ
m my mg

is well-known (the inverse isomorphism is
known as the Chinese Remainder Theorem
(CRT)). Any computation which can be
embedded into Zys can thus be considered as a
computation in the direct-product ring. In the
latter, the computations are performed
simultaneously and independently, which leads
to a great simplification in hardware and allows
the pipelining of data through each of the
arithmetic units.

Some disadvantages of the RNS are:

1. The necessarily large size imposed on the
modulus M in order to obtain the
embedding of the calculation (M must
accommodate the full dynamic range of
the calculation, even though the smaller
moduli mg need not).

2. The residues of the input data must be
computed (mod my,) for each k.

3. The resulting answers must be assembled,
to yield the correct answer, by means of
the CRT or the equivalent Mixed Radix
Method.

4. Scaling can pose considerable difficulties,
partly because magnitude information has
been completely lost in the finite-ring
representation.



An optional method of proceeding is based on
the use of finite polynomial rings, where the
polynomials have coefficients which are
considered in Zyy, and the indeterminates are
used to indicate bit information (or, occasionally,
the complex unit). This method is known as the
Modulus Replication RNS [10], or MRRNS,
and consists of encoding integer data as
polynomials in several indeterminates[9].

2. The MRRNS technique

In the MRRNS technique the integer data are
mapped to a polynomial ring. This idea has been
explored by other authors [1][2][7], but the
work normally assumes fairly complicated
mapping strategies between overspanned
complex numbers and polynomial coefficients.
In the original MRRNS technique, the data are
first rewritten as polynomials in some fixed radix

2B, For theoretical purposes we use the
indeterminate X in place of this radix, thus
enabling us to represent the data as polynomials
in X. The coefficients of these polynomials are
then integers which are smaller in magnitude

than 28, This mapping (which is trivial) is then
followed by a mapping to the direct-product ring
Z, XZ, %X . ..X Z,. The computations can
now be carried out using independent linear
pipelines, each computing over the same ring, at
the end of which the inverse of the original
mapping is applied. The forward and inverse
mappings (to and from the direct product ring)
are themselves linear pipelines, and so we have
rendered the complete system as a set of linear
pipelines operating over a finite ring, modulo m.
The output of the inverse mapping stage is a
redundantly coded number (here the redundancy
arises because of the magnitude overlap of the
polynomial coefficients) which is converted back
into a non-redundant representation using a
combination of scaling and binary addition. For
complex data we may use the QRNS mapping
strategy [4] prior to the MRRNS mapping, and
invert the QRNS mapping after the inverse
MRRNS mapping. In this way complex
computations are mapped to the direct product
ring, again yielding to linear pipeline
implementation.
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A disadvantage of the technique is a large
redundancy in the finite-ring representation of
data, which results in a need for considerable
replication of the hardware used to perform the
computations. This replication is ameliorated,
however, by the repeated use of very small
moduli, allowing for the simple design of
computational hardware. Moreover, linear
pipelining and its attendant advantages in fault
tolerance, testing and skewed clocking, make
fabrication using wafer scale integration look
encouraging. In this paper we use a different
mapping strategy in which the data are written as
polynomials in several variables, each
representing a different power of 2. This will
have the effect of increasing the dynamic range
of the calculation, though it will increase the
redundancy of the computational hardware. A
major advantage of this scheme is that it allows
us to utilize very small moduli, namely 3, 5, and
7. Thus all the data will be mapped to
polynomials whose coefficients lie in the ring
Z105, and can thus be treated as elements of the
three rings Z3, Zs, and Z7. This in turn allows a
very simple design of the hardware necessary for
the computations within these small rings.
Clearly the method will also work for larger
moduli; in fact, the number of parallel channels
will drastically reduce. Our concern in this
paper, however, is to show that residue
calculations over very small rings can still
perform large dynamic range arithmetic. By way
of example, we will use the MRRNS technique
for the computation of a 1024-point FFT using a
multiplexed radix 4 computational element and
moduli 3, 5, and 7.

3. The Mapping Strategy

We write the integers representing the real and
imaginary parts of the data, together with the
coefficients of the FFT, as polynomials in the
variables W, X, Y and Z, where W =2, X =4,
Y =16, and Z = 256. With this notation, any
positive integer < 216 can be written in a unique
fashion as a sum:

11X12 Yl3Zl4
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with the coefficients equal to O or 1. Similarly,

any negative integer > —216 can be written in the
same form with coefficients 0 or —1 (note that the
use of 0 and *1 implies a signed bit
representation of the coefficients). To obtain
representations for complex integers we should
like to use the QRNS method, but we cannot
inasmuch as the moduli 3 and 7 do not support a
complex unit. To avoid this obstacle and yet still
preserve a channel-independent mode of
multiplication, we wuse an additional
indeterminate, which we call T, to represent the
complex unit j. The indeterminate T cannot
satisfy the polynomial equation 72 + I =0
(because 3 and 7 do not support roots of —1).
Instead, we use the polynomial T(T2 - 1) =0 to
define the mapping. This polynomial always has
three roots in any finite ring Z,,, provided m > 2;
the penalty we pay for this modification is a 50%
increase in the number of rings in the direct
product, the advantage is that these rings are
very small. Since each of the 'bit
indeterminates' also form 1st order polynomials,
we may use the same 3 root polynomial to form
the direct product mapping. The amazing feature
about this mapping is that the complex operator
and the bit operators are interchangeable,
allowing a variety of binary representations of
complex numbers to be simply mapped to the
direct product ring. This map is performed by
evaluating each of the five variables W, X,Y, Z
and T at each of the three roots 0, +1 and -1.
This results in 35 = 243 results for each of the
moduli 3, 5, and 7. Observe that the map is very
simple, consisting of nothing more difficult than
sign changes and additions.

As an illustration, Figure 1 depicts the forward
mapping of an 8-bit integer map to three
indeterminates: W, X, Y, producing 27 elements
for each bit. The mapping elements for bit-5 are
shown explicitly. Each mapping layer
corresponds to a separate bit; the monomials
corresponding to that bit position are shown
alongside the map layer. Note that the mapping
will be performed for each of the three moduli:
3, 5, 7. This will result in 81 parallel
computations over small ring moduli (although
the mapping is shown as 3-dimensional in Fig.
1, the implementation uses independent
channels). An inner product on the bit mappings
results in the 81 inputs to the computational inner
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product required by the algorithm.
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Fig. 1 Mapping for an 8-bit system

In terms of complex numbers we may map the ¥
indeterminate to j and treat the 8-bit number as a
concatenation of a 4-bit real and a 4-bit
imaginary Gaussian number. If we decide to
map X to j, then the 8-bit sequence represents a
'digit division multiplex' type of decimation,
between the real and imaginary parts. If we
wish to code the sequence as an 8-bit real
number, then each of the indeterminates will
represent a power of 2. Only at the inverse map,
when the indeterminates are replaced by the
quantity they represent, will their relevance
become clear. If the forward map is formally
treated as a map on three coefficients, namely the
coefficients of 1, W, and W2, even though the
coefficient of W2 is always zero, we can use this
formalism to invert the above map; this inverse is
performed after the computation of the required
algorithm (in this paper a radix-4 DFT
computational element) has been performed
independently in each of the direct product rings.
In a hardware implementation we need only
consider the two coefficient forward map; the
inverse map will, in general, use three
coefficients.

We now set T = j, so that T2 = —1. (This is
allowed at this time since the complex
multiplications have already been performed.
Moreover, the isomorphism involving T has
been accomplished both forward and backward.)
This blends two of the three streams into one,




each stream being the coefficients of the real and
imaginary polynomials which represent the final
result as polynomials over the rings Z3, Zs, and
Z7. By using the CRT, and a combined scaling
algorithm, we can finally combine these
coefficients to give coefficients in the ring Z95
the input wordlengths having been been selected
in such a way that modular overflow is either not
possible or has very low probability. The
scaling and conversion algorithm is presented in
the next section.

4. Scaling and Decoding

Each coefficient in the inverse mapped
polynomial represents a weighting by a specific
power of 2. Table 1 shows the monomial
equivalences for the first seven powers of 2
weightings.

Weight Equivalences

W

22 w2 X

B g wkx | x2 | v

4 | w2y | xv

S | w2z | xz | w2y2| xy2

26 |Ww2xy| x2v | Y2 z

o7 |w2xz| x2z | vz
Table 1

The representation is redundant since each of the
coefficients is in the range [-52,52] while the
weightings are in ascending powers of 2.
Conversion is performed by summing
coefficients that have the same power of 2; it
turns out that these additions do not cause
overflow (a proof of which will be presented in a
later publication) and so the additions can be
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carried out over the rings, simply extending the
inverse mapping computational array. We now
have polynomials in powers of 2 which have
coefficients given by their residues modulo 3, 5,
and 7, respectively. These coefficients are then
decoded by means of the CRT (mixed radix
conversion is preferred in our implementation),
and will all lie in the interval [-52, 52]. Some
rare exceptions to this are allowed as discussed
in the error analysis below.

We now perform the scaling by using a factor

25. A low error method of applying this scale
factor is to use the recursive relationship:

lfor0 i<
) Ci-I or i<s
Y
2 0 fori>s
Using this method, the coefficients

corresponding to the first s powers of 2 are
processed using 5-bit additions.

so o127
The error is limited to 2 =
=1

- 1< 1.
1.2
The recovery array is more clearly evident in
Fig. 2. The total number of bits of the full
dynamic range conversion is B, the number of
scaling bits is s. The e blocks represent least
significant bit removal (divide by 2). A very
important point is that we are doing most of the
work in linear small ring pipelines with the final
output generated by standard binary adders. The
only RNS type of structure we require is the 3
ring converter to map each coefficient to a mod
105 ring. The 3 rings total only 8-bits, and the
conversion can be performed with a single 8
input circuit. This circuit can also provide
mapping to any weighted magnitude protocol.

For example, a redundant mapping protocol
could be implemented if redundant addition is
desired for the conversion process. Our new
technique of applying switching trees to a
dynamic CMOS implementation yields efficient
implementations of such small input bit circuits.
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Fig. 2 Scaling and Binary Conversion

5. Experimental Error Analysis

For the purpose of measuring scaling error we
have simulated the MRRNS technique with input
data consisting of random complex integers. We
assumed complex integers whose real and
imaginary parts consist each of 14 bit random
integers (plus an additional sign bit). For the
twiddle factors we used approximations of 15
bits. The distribution of relative errors was
measured in the sense of relative root mean
square, and the results are given in Graph 1. The
average relative root mean square error (RRMS

error) was 1.96 x 107, A comparison was

made against a QRNS system using moduli 61,
53, 41, 37, and 29 with twiddle factors
quantized to 14-bits. This comparison yielded a

1.08 x 107 RRMS error for the QRNS system

versus a 1.96 x 10-4RRMS error for the

MRRNS technique. This demonstrates the
ability of a very small ring system to offer
significant dynamic range. The hardware
difference is considerable. The QRNS system
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has much smaller redundancy, but the lack of an
efficient general multiplication structure [8]
(compared to fixed multiplication) and the very
large overhead, and awkward structure,
associated with converting 6-bit modulus
systems [3] make the MRRNS technique much
more attractive.

Errors in 1024 Point FFT Using MRRNS With
Moduli 3, 5, and 7
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6. VLSI Implementation Considerations

Our preferred approach to the implementation is
to use switching trees implementing dynamic
pipelined logic. Because of space limitations we
cannot discuss the concept in any detail. The
reader is directed to [11] for an introduction to
some of the basic concepts of dynamic logic. In
brief, dynamic logic differs from static logic in
that the parasitic capacitance of the evaluation
(logic output) node is precharged to a logic '1'
level. After pre-charge, a network of transistors
is used to evaluate the node. For our purposes, if
the network provides a path to ground for the
evaluation node, then this is considered to be a
logic 1" output. If the network provides an open
circuit between the evaluation node and ground,
this is considered to be a logic '0". The logic
function of the transistor network is therefore to
discharge the evaluation node for every minterm




that is included in the boolean algebra expression
of the switching function. The basic concept
behind switching tree cells is to implement the
transistor network as a look-up table, but to
construct the table as a minimized tree. The
minimization is based on the electrical
characteristics required of the switching circuit
(i.e. the discharge and charge sharing
characteristics in evaluation and pre-charge,
respectively) and does not involve either the
usual Boolean algebra minimization or the
concept of logic gate primitives. Because we
will minimize the table directly, an initial choice
has to be made regarding the dimensionality of
the table decomposition (it is to be noted here
that a normal ROM is decomposed into 2-
dimensions - rows and columns).

The dimensionality of the decomposition directly
leads to the number of series transistors in the
switching circuit, and hence to the speed
performance. The decoders represent the first
stage of a two-stage circuit implementation
process (decode, look-up) and their complexity
will determine whether the two stages are to be
treated as a single pipelined combinational logic
circuit, or as a two-stage pipeline. Clearly the
former is preferable, since the latency will be
doubled if a two-stage pipeline look-up has to be
performed. This determination is decided purely
on the complexity of the decoders. For n input
lines the decoders of the n-dimensional table are
simply inverters and will not require an
additional pipeline stage. Itis interesting to note
that the 1-dimensional table is multiplexer logic,
and the n-dimensional table is a binary decision-
tree.

We have determined that a discharge chain with
6 transistors in series yields dynamic pipeline
speeds in excess of SOMHz for a conservative
3um CMOS process. Since 6-inputs
corresponds to the maximum general logic block
for two 3-bit ring values, we can use a binary
decision tree, and reduce the decoders to simple
logic inverters. We therefore construct a binary
tree of transistors in 6 variables and program the
bottom of the tree according to the truth table
entries (place a transistor for a '1' and remove
the transistor for a '0'). The true and
complement inputs to the tree are connected to
the gates of the transistors such that only one
path is available for a given input word. The
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presence, or absence, of a bottom transistor will
determine the state of the evaluation node.

6.1 A 3-bit finite ring multiplier

As an example we show the minimized
switching tree for bit zero of a mod 7 finite ring
multiplier. The tree is minimized using simple
rules and the final minimized tree is shown in
Fig. 3. The tree has been minimized from the full
6-input binary tree by applying 3 simple
graphical rules [12]. This results in some of the
transistors being replaced by wire connections.

Evaluation Node

'JIIIII/IIIlIIII

Fig. 3 Bit Zero of Mod 7 Multiplier
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The thin lines indicate paths taken when the logic
input at that particular level is a '0', the bold
lines indicate paths taken when the logic level is
a'l'. A wire is shown as a hatched line. Each
level corresponds to one dimension of the table
(accessed by one of the logic inputs) with the
levels ordered hierarchically in correspondence
with the logic input ordering on the truth table. It
is important to note that our starting point for the
minimization is a diagram that can be directly
implemented in silicon by simply transforming
paths into transistors. Minimization procedures
will therefore be directly mappable to silicon. In
the case of finite ring circuits there will always
be don't care states providing the modulus is not
a power of 2. We use these states to advantage
in minimizing the tree, and have reduced the
maximum tree length to 5.
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Fig. 4 Dynamic pipeline circuitry

For a linear pipeline implementation, the tree can
be simply embedded in a dynamic pipeline
structure [5]. Our preferred technique is to use
an integrated evaluate/latch structure and to
connect the evaluate node to a restoring latch.
This eliminates the need for any charge sharing
pull-up transistors. The pipeline structure with a
single 6-transistor switching path is shown in
Fig. 4. In the final implementation the 6-
transistor series path is replaced by the switching
tree. The electrical characteristics of the tree will
be virtually the same as those of the series path
shown.

The transistor circuit, and a metal only layout of
the tree, implemented in a 3um CMOS double
metal technology are shown in Fig. 5. The tree
replaces the single 6-transistor path shown in
Fig. 4. A complete multiplier, including pipeline
circuitry, and appropriate drivers has been sent
for fabrication. The layout is shown in Fig. 6
along with SPICE simulation results for a
50MH?z clock input. The 3 switching trees are at
the bottom with pipeline circuitry and drivers
placed above.

7. Conclusions

This paper has discussed mapping, scaling and
conversion processes using a new mapping
strategy for the modulus replication RNS
(MRRNS).
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Fig. 5 Schematic and layout for bit O of the mod
7 multiplier

The strategy allows direct mapping of bits of
either a purely real or multiplexed bit coded
complex number to a set of independent rings,
defined by moduli 3, 5 and 7. Although the use
of such small rings in a traditional RNS system
would yield an inadequate computational
dynamic range, the MRRNS technique has been
shown to be superior to a large OQRNS system
operating with a computational dynamic range of
over 27 bits. A classical radix-4 implementation
of a 1024 FFT was used for the comparison.
The scaling and conversion procedure has been
shown to be a set of finite ring calculations
followed by an array of ordinary binary adders.
The VLSI implementation of the most complex
finite ring circuit required (a Mod 7 multiplier)
has been shown to be easily implemented using
the switching tree approach, and mask extracted
simulations at SOMH:z have been used to
demonstrate the embedding of the switching
trees in a dynamic pipeline/evaluate circuit with
restoring latch.



Fig.6 SPICE simulation results at SOMHz and
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