A 160nS 54bit CMOS Division Implementation
Using Self-Timing and Symmetrically Overlapped SRT Stages

Ted E. Williams
HaL Computer Systems
1315 Dell Avenue
Campbell, CA, 95008

Abstract

A full-custom VLSI chip demonstrates an arithmetic
implementation for computing the mantissa of a 54bit
(floating-point double-precision) division operation in
45nS to 160nS, depending on the data. The design uses
self-timing to avoid the need to partition logic into clock
cycles and the need for high-speed clocks. Self-timing
allows the circuits to iterate with no overhead over the
pure combinational logic delays. It also allows a greater
efficiency symmetric overlapped execution of the SRT
stages because of “dynamic” path ordering. The design
has several other performance enhancements, and this
paper tabulates their effect on the performance.

1 Introduction

Previous division implementations have generally tried to
attain high-performance by increasing the complexity of
the logic function performed in each “cycle.” Higher radix
arithmetic can utilize this complexity to reduce the
number of clock cycles required in clocked designs [1], [2].
But as technology improves, it is increasingly more
difficult to fully utilize all clock cycles. An alternate
approach is to avoid clock cycle limitations altogether by
using self-timed logic. This paper describes several
implementation issues in the design of a self-timed
CMOS divider, including the methodology used to
eliminate latch delays between stages in an iterating ring,
a modification to the quotient selection logic that narrows
the remainder datapath, immediate done indication for
repeating quotients, and dynamic overlapping of action
between a stage and its neighbors without a pre-defined
grouping into pairs. As in RISC processor design [3],
each improvement can be judged by a version of Amdahl’s

law:
100 _ 1(1+100) 1
T ~ f A

where S is the percentage speedup of one part, fis the
fraction of the total delay attributable to that part, and T is
the percentage improvement in the total performance.

M

CH3015-5/91/0000/0210$01.00 © 1991 IEEE

210

Mark A. Horowitz
Center for Integrated Systems
Stanford University
Stanford, CA, 94305

Estimates for self-timed SRT division designs suggest a
radix 2 approach obtains the best performance because its
simplicity allows fast stages in a reasonable area.
Measurements from fabricated and tested CMOS VLSI
parts verify the ideas in this paper and demonstrate high-
performance without special technology.

2 Self-Timed Methodology

Self-timed components avoid the need of distributing
global clocks and the need of allowing for clock-skew in
synchronous systems. Variances and data dependencies in
delays can be used advantageously because each component
can begin when its required operands actually arrive rather
than always waiting for worst-case timing. The
performance is also the best possible for the actual
environmental conditions, without needing to de-rate
specifications to allow additional margins for the
conceived ranges of power supply voltage, die temperature,
and fabrication spread.

Circuits can achieve self-timed operation by carefully
matching delays between components or by encoding
completion information within data signals. An example
of the former method is a self-timed multiplier [6] chip,
which uses a matched on-chip clock generator to provide a
clock for the internal blocks. In contrast, our chip
demonstrates the latter method by using local completion
detectors and handshaking between fully asynchronous
blocks and operates correctly for any values of gate delays.
Completion-information is embedded in the data
throughout the design by using a pair of wires for each
bit. Called a “dual-monotonic pair,” the wires transmit
both a value and a timing signal by using the protocol in
Table 1.

Precharged function blocks use merged n-channel pull-
down networks to choose which of the wires in each pair
to set high when input data arrives. Completion detector
NOR gates examine the dual-monotonic pairs to generate
local done signals used to control the precharge signals. If

Wire AT | wire AF Signal A
0 0 Reset = Not Ready
0 1 Evaluated FALSE
1 0 Evaluated TRUE
1 1 Not used = Never occurs

Table 1: Encodings on a Dual-monotonic Wire Pair

the circuit is embedded in a synchronous system, the chip
Done signal can be used to stretch clock cycles as in [12],
or to indicate on which clock cycle the system may take
the outputs from the self-timed chip.

Because the iterative steps of SRT division need a
repetitive structure, the core of our chip is a ring of five
stages that iterates completely under self-timed control.
The ring achieves minimal latency operation because it
has directly concatenated precharged logic blocks in a
looped domino chain, as shown in Figure 1, without any
explicit latches. Each stage “falls like a domino” because
it evaluates as soon as its predecessor provides valid data,
without waiting for control or clocking. The looped chain
is thus like a ring-oscillator that computes. This is
possible because the precharge (reset) signals for each
block are controlled separately so each block can be used
as an implicit latch without adding any additional
transistors. The self-timed control precharges each block
after data has passed it, and removes the precharge signal
(thereby enabling its evaluation), before data has looped
around to its inputs again. The critical path goes solely
through the combinational data elements. Thus, the data
flows continually at the same rate it would flow through
an “unwrapped” combinational array implementing the
same functions. While previous asynchronous approaches
(51, [9] have suffered delays due to handshaking control,
this method of self-timing adds zero control overhead [11]
to the latency of the raw function computation.

18)sBey
18pUIBWIY

8 Bey yyg jond,
@ B8y Jys 10nD)]

v Bey HuS 1

Figure 1. Block diagram for the division circuit using a
ring of domino stages which iterates using self-
timing. Dotted lines show control signals; shaded
lines are dual-monotonic datapaths.

3 Quotient Digit Selection

The blocks of each stage in the iterative ring implement
one step of a modified radix 2 SRT division algorithm:

Pi+1=2Pj - Dq; ()
where D is the divisor, P; is the partial remainder at
stage 7, and g; is the quotient digit selected by that stage.
The probabilistic distribution of quotient digits is not
uniform due to the asymmetry of the two’s complement
number system. We wrote a computer program to collect
statistics by enumerating all possible data patterns in the
most significant bit positions. Because the SRT
algorithm deals only with the most significant bits, the
collected statistics became asymptotic for input data
patterns exceeding about 9 bits in significance. The
asymptotic values are therefore the correct statistics for
uniformly distributed inputs of all larger mantissa widths.
Table 2 shows the asymptotic distribution of the values
of the partial remainder approximation and the quotient
digits selected for radix 2 division.

The asymmetric distribution of quotient digits can be used
to speed the more frequently used circuit paths since the
self-timed implementation can take advantage of the
improvement. For example, our circuit used different
sized transistors in the replicated short adders (replicated
because of the overlapped execution feature to be discussed
in Section 5) preceding the next quotient digit selection
logic. We designed the q; = -1 adder arm with larger
transistors because the critical path goes through it most
frequently. We did not use larger transistors in the less
frequently chosen g; =+1 arm because the additional
loading on the wires also going to the q; = -1 arm would
have actually decreased the total performance. The effect
of this transistor optimization decreases the expected value
of the delay of driving these adder inputs by about 30%,
resulting in a 4% improvement in the total divider
performance.

When the most negative or two most positive possible
values for the partial remainder approximation occur, the
selected quotient digit does not change the sign of the next
remainder. So, in these cases the next quotient digit can
be chosen in advance to be the same as the current quotient

Remainder [-4 1 -3 [-2 -1] 0 [+1 [+2 [+3
Probability 3.29%9 11% | 28% 35%] 18%[4.6%|.40%] .05%
Quot Digit -1 0 +1
Probability 42% 35% 23%

211

Table 2: Statistics for Radix 2 SRT division.

digit. Table 2 shows the most negative approximated
remainder value occurs with a 3% probability and the two
most positive values occur with less than a 1%
probability. Based on these statistics, we chose to
implement a force-ahead for only the negative case with
the quotient selection logic equations:

gi=+1 if ﬁ,‘ >0 and F;1=0 3)
gi=0 if P,=-1 and Fi1=0 @
gi=-1 if ﬁ,‘ <-2 or Fiq=1 5)

F;=1if 16,' =-4or (F,'-1=1 and [}i-l]msb= 0) ©)

where ?’,‘ is the approximated partial remainder at stage 7,
and F; is the flag set to force the next quotient digit.
Allowing the quotient digit selection logic to leap ahead
one digit in 3% of all selections improves the total
performance by about 1% in itself, but it also enables the
additional optimization described in the next paragraph by
reducing the required size of the remainder datapath and the
adder widths.

The possible shifted remainder values in any maximally
redundant radix » SRT division step (just before reduction
by a quotient digit) range from -rD to +rD. When the
remainder is represented in carry-save form as the sum of
two numbers each in two’s complement form, it is
possible for each of these numbers to be in the range -2rD
to +2rD and previous implementations have required the
datapath be wide enough to hold the bits necessary to
represent those numbers. However, the approximation of
the remainder, formed by a short CPA combining the
sum and carry bits, must still have its actual value in
the range -rD-2U to +rD where U is the maximum value
of the unpropagated bits in either the sum or the carry
terms. Since the unpropagated bits are always positive, U
is always positive. If the minimum representable number
were only -rD, then values in the range -rD-2U to -rD
would be aliased as positive numbers in the range +rD-2U
to +rD because of the sign bit “falling off.” The incorrect
interpretation of the approximation would, of course,
cause the wrong quotient digit to be chosen. However,
for radix 2, this can only happen in the cases in which the
remainder is at the extreme of its possible valid range
where it was possible to predict two quotient digits in
advance. The quotient selection logic in equations (3)-(5)
never misinterprets an aliased remainder as a positive
number even when the sign bit falls off. Equation (6)
sets the force-next-digit flag when the most negative
quotient digit occurs or if the flag was set before and the
remainder is already aliased. The partial remainder need
only be able to represent numbers in the range -2D to
+2D, thus narrowing the datapath and shortening by one
bit the adders used to form the irredundant approximation.

212

The trimming of the datapath is only applicable in
maximally redundant SRT algorithms because the

minimum approximated remainder -er—l -2U of lower

redundancy choices (such as p=2, ¢; € {-2,-1,0,1,2} in
radix 4) can be represented in the same number of bits as

-ri)ﬁ . For radix 2, the only choice of redundancy, p=1,

is maximally redundant, and therefore the trimming can be
applied to make the adders need only 3 bits instead of the
4 bits used in previous implementations [4]. Since the
logic to force both the current and next quotient digits has
about 40% less delay than the delay of an extra bit in the
adders and this accounts for a sixth of the total delay
through a stage, the net total performance is improved by
5%.

4 AQuotient Accumulation and Early
Done Detection

As the quotient selection logic in the five stages of the
self-timed ring output quotient bits, they are collected by
five separate asynchronous shift registers composed of the
cells shown in Figure 2. Between each valid quotient
digit sent into a shift register, a reset spacer is sent to
separate the digits. The ring loops a maximum of 11
times to fill the five shift registers with a total of 55 bits
for a double-precision result. On each iteration, the
remainder comparison on the right side of Figure 1
determines if the partial remainder has remained unchanged
during the last iteration:

Piys=P;)
If the remainder repeats, then subsequent remainders and
quotient digits will also repeat:

Piy10=Piy5=Pi

qi+5=di

qi+6 =qi+1,

qi+7 = q4i+2

qi+8 = 4i+3:

qi+9=4qi+4
Since there is no need to compute the repeating digits
again, the iterations terminate and the division done signal
is generated carly. Even when the iterations terminate
early, the full quotient is immediately available from the
shift registers because the asynchronous design using
C-elements correctly ripples the quotient digits to their
final positions as they arrive rather than waiting for a fixed
number of clocks as would a synchronous shift register.
The repeated quotient digits are also immediately available
because they fill all of the positions behind each new
quotient digit as it ripples through a shift register. Only

®

Figure 2: A cell of the asynchronous shift registers
for capturing quotient digits on a triple-
monotonic wire set. Each quotient digit arrives
when one of the three input wires is set high, and
is followed by a “spacer,” where all three are
again low. A static C-element is defined at right.

after the remainder comparison determines more iterations
will be needed are reset spacers sent into the shift registers
to wipe out the repeated digits and prepare the shift
registers to accept the next digits. This interlocking of the
reset spacers does not add any delay to the overall
computation because it occurs in parallel with the
evaluation of other quotient digits.

The effect on performance of detecting repeating quotients
and finishing early is dependent upon the distribution of
input operands. Data from some algorithmic applications
may be likely to have more round numbers, and data from
an external input, like a sensor, may be uniformly
distributed only within a limited precision. For example,
the early done detection will speedup 12% of the cases in a
uniform distribution of 8bit input operands, for a total
performance improvement of 9%. A typical division
instruction operand mix might get half that speedup.

The final quotient can be rounded correctly even when the
iterations terminate early. In both the early done and the
normal case requiring all of the iterations, the remainder at
the stage where the iterations stopped can be sent through
a carry-look-ahead adder (CLA) to determine its sign. If
the remainder is negative, the quotient must be
decremented at the least-significant bit position to which
the remainder corresponds. This operation and the
conversion of the redundant quotient into a standard binary
form can be performed by a carry-select-adder with
multiple carry chains operating in parallel. The different
rounding possibilities and the remainder sign select the
correct CLA output. Thus, after the iterations terminate,
only a single CLA delay is required to resolve both the
final remainder and rounded quotient.

5 Dynamic Overlapping of Stages

Since the carry-save adders (CSA) used for the
computation of partial remainders provide only a redundant
result, short 3bit carry-propagate adders (CPA) are needed
to form an irredundant remainder approximation for input
to the quotient digit selection logic. While the traditional
SRT algorithm is purely sequential, the implementation
here, shown in Figure 3, overlaps the execution of
adjacent stages by replicating the CPAs for each possible
quotient digit so they can begin operation before the actual
quotient digit arrives and chooses the correct branch. Two
of the three CPAs are also preceded by CSAs to combine
the remainder respectively with the divisor and the
negation of the divisor. Actually, the logic for the sum
terms in these two CSAs is shared because the dual-
monotonic data convention already provides both the true
and complement of each bit. The carry terms cannot be
shared. While the arm for a zero quotient digit still
requires a CPA to combine the sum and carry terms of the
redundant representation, the zero arm requires no
preceding CSA.

The self-timed control for each stage is also shown in
Figure 3 and uses C-elements to combine the completion-
detector signals to produce the signals that reset each block
as soon as its outputs have been consumed. Since these
C-elements are never in the overall critical path they
introduce zero overhead.

Figure 4 shows the concatenation of the data elements for
any two adjoining stages. The overlapping of execution
allows the average delay through a stage to be the average
rather than the sum of the propagation delays through the
remainder and quotient digit selection paths. The

Remainder, Remainder
88 i-1 i
+Divisor 55b
CSA
0 Mux|
Reset. -Divisor Reset ;
[T | SRR & S 4o SN SN o
omp)
[Det
Quotient Quotient
Digit;_4 Digit ;

213

Figure 3: Internal structure of each stage in the ring
implementing an SRT division step with overlapped
execution and self-timed reset (precharge) control.

Remainder_4 Fiemainderi Remainderi g
I".I.I-.’_——— - _r N K N _N_] TEREERERERENENNENRENN]

1+D 55b =+D 55b

"o —| CsA 0 _.lcsa

: . .
Quot_Digit H:'D K Quot_Digit; | D~ Quo’t_Dlglt!;1
-.———-:-—— .'-.I------l i

E 3b s 3b I

1+D—3b). PA . |+D—1 30 L cPA_ _— =

e T P el) Lol

: CPA - L CPA s @

R T —d4 3b

D SA-I- 3b -D—CSA— 3b —

ICPA CPA

Figure 4: Dataflow through a pair of stages in the present overlapped execution scheme.

overlapping of these paths can be abstracted to the
arrangement of overlapping blocks shown in Figure 5.

pre—

Rt l_s— RI—R,
L
Q LE o] — %
i

Figure 5: Model for overlapped execution dataflow in each stage

When these blocks are self-timed and therefore operate as
soon as their required operands arrive, the average delay per
slage1 in a chain of identical stages of the overlapped
arrangement is

% { P+Q+R+S +max[0, absR-Q)-(P+9)] } Q)
The last term is usually negative and drops out, giving a
performance increase due to the factor of % in front. In

the overlapping of the stages for SRT division, the delay
of block P in the quotient selection path is the largest of
the delays because it contains the CPAs. The overlapping

reduces by one-half the effect of the delay in block P on
the total delay. When the added mux delays are taken into
account, the overlapping of the stages in a radix 2 design
increases performance by 35% over a standard sequential
arrangement of the same blocks.

The structure of our overlapping scheme results in a data
wavefront that leapfrogs down the succession of stages. If
the critical path goes through the quotient selection path
in one stage, it will likely go through the partial
remainder path in the next stage, and vice-versa. However,
data-dependent variances in delays make it possible for the
overall minimal critical path to go through the same path
in two adjacent stages. Delay variances arise because of
the varying number of bits propagated in the carry chains,
the occurrence of some zero quotient digits, and the cases
in which a negative quotient digit can be selected in
advance when a single stage can determine two quotient
digits. The self-timing of the datapath ensures data always
flows through the minimal critical path. Previous
overlapped execution schemes such as the one from [7]
have pre-grouped stages into pairs. Whereas our approach
makes all the stages symmetric, the scheme in Figure 6
does not replicate the first CPA. This lack of symmetry

1 An exact analysis of the delays of Figure 5 shows that the time the nth R block finishes in a chain of identical stages is

R, = g(‘P+Q+R+S) + max [S-u»g(R-S-P—Q), (% - 1)(Q—P»R-S),

when the chain’s inputs start at Ry = Q=0 and where e =

Symmetrically, the nth Q block finishes at time

1ifn
Oif n

Q, = '2‘—(p+Q+R+S) + max[Pk;(Q-P-R-S), (% - l)(R-S-PQ),

214

(QPRS),R-P-Q+ %(Q+P—R+S)]

odd
even)’

(RS-PQ), Q-R~S+§(R+S+P-Q)] .

Remainder ;_, Remainder ; Fiemainderi+1
- bkscsssssnnnasanP
+D 55b +D 55b
0 CSA 0 .4 CSA
|
iqit. .| i DA Quot_Digit
Quot_Digit . D | Quot_Digit ; . _Oigit,
—.——g_"l-——-l i S.'.........J ;-;
L . 3b |
CSA : ' +D—{ 3b CPA |
S Ir__.CSA"' -0 L |
+ | 3p : 3b 2 1
b -=1QSL[>~ }——— = ~qQSLf-
ICPA CPA
L b
-d 3b
.D—CSA " | 3b |~
CPA

Figure 6: Other implementations used asymmetric dataflows that enforced a specific grouping of the stages into pairs.

makes the critical path go through the same blocks every
time. Such a grouping loses about 5% in performance
because it enforces extra waiting in some cases and does
not achieve the additional path minimization possible with
self-timed overlapped execution, which allows a “dynamic”
adjustment of the execution order instead of a static
grouping of the stages into pairs.

The latch-free methodology introduced in Section 2 can
attain the full benefit of overlapped execution. Because
the remainder and quotient digits passed between the stages
are skewed, any imposed latch with a common clock
would add the delay of that skew, in addition to the
propagation delay through the latch and added margin to
tolerate skew between the clock and data. The
propagation delay through a latch would be about 15% of
the other delays through a pair of stages; the required clock
skew margin 5%; and the skew between remainder and
quotient digits is about 10%. So, since adding latches
would increase the delay through a pair of stages by a total
of 30%, using self-timing to remove the latches results in
a 23% performance improvement.

6 Choice of Radix

In an integrated circuit implementation, there are always
tradeoffs between speed, power, and chip area. Self-timing
provides a useful means of comparing performance
without constraints from fixed clock cycles, or delays from
latches or input/output considerations. In particular, VLSI
implementations of different radix approaches for SRT
division can tradeoff complexity amongst the various
arithmetic components [8]. This section states fair

relative comparisons by using the delay of a gate with
unity fan-in and fan-out as the basic speed unit. Real
gates have delays many times this basic unit because of
stacked transistors (fan-in) and loading (fan-out). The
delays stated for blocks include the delays due to buffers on
inputs and due to the loading of outputs.

Estimates for SRT radix 2 and radix 4 design choices, with
and without overlapped execution, are based on circuit
simulations and have been updated and calibrated with
measurements from the fabricated chips. Table 3
summarizes the comparisons of these implementation
choices. All of the parameters are for an implementation
with a minimal-latency self-timed ring. The radix 2
designs require five stages in the ring, while the radix 4
designs only require four stages since the propagation
delay of each individual stage is longer [10]. None of the
figures include the final 55bit CLA required for rounding
and converting the redundant representations back to
standard binary. The right two columns contain numbers
specific to the CMOS fabrication technology available.

Table 3 shows that radix 2 is slightly better than radix 4
when neither have overlapped execution. This is because
the additional complexity of the radix 4 quotient selection
does not quite justify the use of radix 4 when clocking
does not need to be considered. However, if a design were
clocked, the difficulty of supplying a clock at twice the
frequency might make radix 4 preferable. Overlapped
execution in either radix 2 or radix 4 gives a significant
performance increase, about 30% for radix 2 and 35% for
radix 4. The key advantage of the self-timed overlapped
execution style here is that the average critical path per

215

Radix & Style Average Critical Path Unity fan Latency for | Silicon Area
(OverExec = per Pair of Stages inout Gate | 54 bits with in 1.2n
Overlapped in Unity fan-in, Unity fan-out Delays per| 250pS Unit | Technology
Execution) gate delays Quot Bit | gate delays
Radix 2 2 (CPA3+QSL3+DMUX3+CSA55) 16.8 225 nS 7 mm2
2(57+38+28+45)=336
Radix 2, CSA3+CPA3+RMUX3+QSL3+DMUX3+CSAS55 11.8 160 nS 10 mm2
OverExec 39+49+35+38+28+4.7=236
Radix 4 2 (CPA7+QSL5+DMUX5+CSA56) 17.5 235 nS 12 mm?2
2(11+16+35+45)=70.0
Radix 4, CSA7+CPA7+RMUX5+QSL5+DMUX5+CSA56 11.2 150 nS 18 mm?2
OverExec 39+10+50+16+3.5+46.2=44.6

Table 3: Tradeoffs in Speed and Area for different implementation approaches.

stage has a factor of% times the delay from the CPAs and

quotient selection logic. Since, for higher radices, these
components occupy bigger proportions of the total delay,
the effect of overlapped execution is even more significant
for radix 4. To summarize, with overlapped execution,
radix 4 is faster than radix 2, but the area cost is mudh
higher because of the replication of the carry-propagate
adders. Not only are five adders required instead of only
three, but they are also larger. Still higher radices, such as
radix 8, would accentuate these tradeoff effects.
Overlapped execution would have an even greater
percentage reduction in delay, but at a formidable cost in
area.

7 Test Results

The tradeoffs discussed in the previous section led to the
choice of implementing radix 2 with overlapped execution.
We used MAGIC for the full-custom layout of the self-
timed divider. The 45K transistor design was fabricated in
1.2p CMOS technology through MOSIS. The ring's five
stages are columns which are mirrored appropriately to
weave the datapath and achieve equal path lengths. By
careful cell design and over-cell routing, the area cost of
using two wires for each bit in dual-monotonic pairs added
only about 20% to the total area. The die photo shown in
Figure 7 shows an active area of 9.7mm2, which contains
test registers surrounding a core iterating ring in the
central 6.8mm2.

The chips generate the correct data outputs over a wide
range of operating conditions. The actual operating
conditions determine the actual performance, and Figure 8
shows measured speeds for various voltages and

216

temperatures. For operation at 5V and 35°C ambient
temperature, quotient bits are produced internally every
2.8nS. The measured total latency for a 54bit quotient is
160nS for worst-case data, and 45nS for best-case data
requiring only two ring iterations. This large data-
dependency in timing shows the effect of the early-done
detection.

Since exponent logic can operate in parallel, a complete
floating-point division operation could be formed by
adding the measured delays for the mantissa operation to

st

Figure 7: Micrograph of the zero-overhead self-timed 54bit
divider in 1.2 CMOS technology.

5.0
4.57
4.0y
3.59
3.04
2.51
2.0%

1.57

Average Time per Quotient Bit (nS)

40 45 5.0 55 60 65

Power Supply Voltage (V)
Figure 8: Measured performance per quotient digit at various
voltages and temperatures

7.0

only the time required for the additional 55bit CLA to
round and resolve out of a redundant representation. In the
same technology, this delay would likely be 4nS to 8nS.

8 Summary

The set of enhancements in this paper and the performance
gained from each of them are summarized in Table 4. The
total effect of all the performance enhancements provides a
factor of two increase in performance due to architectural
improvements over a “straightforward” SRT approach.
Moreover, the table does not quantify some advantages
such as the benefit that self-timing does not require the
cost of global clock distribution.

The self-timed design methods in this paper enable an
iterative circuit to compute at the speed of a combinational

Enhancement Speedup
Resizing CSA inputs based on statistics 4%
Forcing gj,1 = -1 when possible 1%
Shortening Remainder Approx CPA by 1 bit 5%
Early Done Detection of Repeating Quotients 4%
Overlapped Stage Execution 35%
Dynamic Overlapping 5%
Latch-Free Self-Timing 23%
Total Effect of Performance Enhancements 100%

Table 4: Summary of gains from performance enhancements

217

array while only requiring a fraction of its silicon area.
Since the design produces a done indication, the outputs
can be used as soon as they are available without waiting
for worst case margins over the ranges of possible data
values, temperature, voltage, and fabrication spread.
Self-timing allows an overlapping of the execution of the
SRT stages to attain a dynamically adjusting data-
dependent minimal critical path. Measurements on
fabricated parts verified the architectural techniques achieve
high-performance even with ordinary CMOS technology.

References:

[11 D. Atkins, "Higher-Radix Division Using Estimates
of the Divisor and Partial Remainder,” IEEE Tran.
on Computers, vol. 17, no. 10, pp. 925-934,
Oct. 1968.

J. Fandrianto, "Algorithm for High Speed Shared
Radix 8 Division and Radix 8 Square Root," Proc.
9th Symp. Comp. Arith., pp. 68-75, Sept. 1989.

J. Hennessy, D. Patterson, Computer Architecture:
A Quantitative Approach, Palo Alto: Morgan
Kaufmann, pp. 5-12, 1990.

W. McAllister , D. Zuras, "An nMOS 64b Floating-
Point Chip Set,” ISSCC Digest of Technical
Papers, pp. 34-35, Feb. 1986.

T. Meng, R. Brodersen, D. Messerschmitt,
"Automatic Synthesis of Asynchronous Circuits
from High-Level Specifications,” IEEE Tran. on
Computer-Aided Design, vol. 8, no. 8, pp. 1185-
1205, Nov. 1989.

M. Santoro, M. Horowitz, "SPIM: A Pipelined
64x64-bit Iterative Multiplier,” IEEE Journal of
Solid-State Circuits, vol. 24, no. 2, pp. 487-493,
Apr. 1989.

G. Taylor, "Radix 16 SRT Dividers with Overlapped
Quotient Selection Stages,” Proc. 7th Symp.
Comp. Arith., pp. 64-71, June 1985.

T. Williams, M. Horowitz, "SRT Division
Diagrams and Their Usage in Designing Custom
Integrated Circuits for Division," Stanford Tech
Report CSL-TR-87-326, Nov. 1986.

T. Williams, M. Horowitz, et. al., "A Self-Timed
Chip for Division," Proc. Stanford Conference on
Advanced Research in VLSI, pp. 75-95, Mar. 1987.

(10] T. Williams, "Latency and Throughput Tradeoffs in
Self-Timed Asynchronous Pipelines and Rings,"
Stanford Tech Report CSL-TR-90-431, Aug. 1990.

(11] T. Williams, M. Horowitz, "A Zero-Overhead Self-
Timed 160nS 54b CMOS Divider," ISSCC Digest
of Technical Papers, pp. 98-99, Feb. 1991,

[12] G. Wolrich, E. McLellan, et.al., "A High
Performance Floating-Point Coprocessor," IEEE
Journal of Solid-State Circuits, vol. 19, no. 5,
pp. 690-696, Oct. 1984,

(21

3]

(4]

(5]

(61

{7

(8]

9

