Fast Division Using Accurate Quotient Approximations
to Reduce the Number of Iterations

Derek C. Wong and Michael J. Flynn
Electrical Engineering Department
Stanford University
Stanford, CA 94305

Abstract

A class of iterative integer division algorithms is pre-
sented based on look-up table and Taylor-series approz-
tmations to the reciprocal. The algorithm iterates by
using the reciprocal to find an approrimate quotient and
then subtracting the quotient multiplied by the divisor
from the dividend to find a remaining dividend. Fast
implementations can produce an average of either 14
or 27 bits per iteration, depending on whether the ba-
sic or advanced version of this method is implemented.
Detailed analyses are presented to support the claimed
accuracy per iteration. Speed estimates using state-of-
the-art ECL components show that this method is faster
than the Newton-Raphson technique and can produce 53-
bit quotients of 53-bit numbers in about 28 or 22 ns for
the basic and advanced versions. !

1 Introduction

This is a description of a high-speed divide algo-
rithm. The algorithm operates on positive, binary, non-
redundant integers. Since an exact remainder can be
produced, rounding is straightforward. A reduced num-
ber of iterations is used to produce the result, and the
algorithm is general and can be applied to any size num-
bers. With a sufficient number of iterations, any accu-
racy of quotient can be produced, with a well-defined
remainder (where remainder is defined relative to the
significance of the last digit of the quotient). For the
purposes of this paper, we concentrate our examples on
53-bit integers (same number of bits as the mantissa of
the IEEE floating-point standard).

Unlike other subtractive algorithms which produce 1-3
bits of quotient per iteration, a reasonable implementa-
tion of the basic algorithm takes 4 iterations to divide
53-bit numbers to produce a 53-bit quotient or about 14
bits/iteration. Implementations of the advanced version
of this algorithm can produce a 53-bit result in 2 or even
1 iteration.

Some comparative work may be found in the follow-
ing references. In references (1] and [E()}, Atkins and
Fandrianto describe higher-radix methods using SRT.
Krishnamurthy [9] describes a related idea for iterative

1 This work was performed with support from the Center for In-
tegrated Systems at Stanford University, and from NSF Contract
No. MIP88-22961 using equipment provided by NASA under con-
tract NAGW 419.

CH3015-5/91/0000/0191$01.00 © 1991 IEEE

191

division by transforming the range of the divisor to a
number close to one. In this case, the leading bits of
the dividend can be used as bits of the quotient. The
Cyrix co-processor’s division algorithm [11] is based on
an algorithm similar to the one discussed in section 2.2
(more details later in this paper).

As RAM density and speed increases, the use of larger
look-up tables becomes practical and advantageous.
This algorithm accurately estimates the reciprocal using
large look-up tables. Since the algorithm can then es-
timate quotients accurately, subtraction can reduce the
dividend by many bits per iteration.

This paper first outlines our method. This method is
then compared to other methods using reciprocal ap-
proximations. Then speed estimates are made for fast
implementations of this scheme. This is compared to the
performance of other algorithms using the same technol-
ogy assumptions.

2 The Algorithm

This algorithm uses a fixed look-up table to get adjust-
ments to the current quotient. Each adjustment, ap-
propriately shifted, is added to the previous cumulative
estimate of the quotient. Thus, each new estimate is
an adjusted version of the previous. In this method,
each estimate is always less than or equal to the true
quotient, so that each new adjustment is always non-
negative (unlike in non-restoring division methods).

The quotient is successively refined: after the N-th iter-
ation, the quotient is accurate to approximately within

1 part in 2(14*M) using the basic algorithm.

2.1 Notation

Denote the dividend register by X, the divisor register
by Y, and the quotient register by Q. Denote a bit of
a register using an index (e.g. Q;) with higher indices
indicating more significant bits. The LSB has index 0.

Without loss of generality, in this discussion, we con-
sider that the binary representations of X, Y, Q, and
other numbers are actually fixed-point fractional num-
bers between 0 and 1. The actual hardware operations
work on binary numbers which could represent either
integers or fixed-point numbers.

We describe the algorithm for positive numbers; han-
dling negative numbers is straightforward using a sign-
magnitude representation. All numbers are assumed to

have the same width g¢; the algorithm can easily be
modified for numbers with different width. The most
significant bits are then denoted by X(q-1) and Y(4_1y.
(Note: later it will be explained that some of the reg-
isters must be extended with low-order bits to make
registers of width greater than q. These extended bits
have negative indices.)

2.2 Division by Approximating Q and Sub-
tracting

Ordinary pencil-and-paper division can be generalized
into the following method:

1. Initialize the initial quotient @ = 0 and a shift index
j=0.

2. Find an approximation @, to X/Y such that Q, <
X/Y.

3. Q' =Q+Qax(1/20).

4. X' =X -QuxY.

5. Shift X’ left by & bits until the leading bit is 1. Set
J=Jj+k

6. X=X,Q=Q".

7. Repeat 2 through 6 until j > g.

8. The final X is the remainder.

If the approximation @, is quite accurate, then the num-
ber of bits k that are reduced in an iteration is large.
The number of iterations is then small.

Unlike most division algorithms that calculate several
bits of the quotient per iteration, this algorithm calcu-
lates an additive adjustment to the previous quotient
estimate. The adjustments get exponentially smaller
with each iteration. However, no bits of the quotient
are guaranteed until the algorithm terminates; even the
MSB of the quotient @ could change during the last it-
eration if a carry propagation occurs. For instance, if
the intermediate result is for instance 10011111111..111,
the actual result could be 1010000000..000001.

We now describe two versions of this method based on
calculating @, using an approximate reciprocal multi-
plied by the leading bits of X. The second version also
uses a novel approach to approximate the reciprocal.

2.3 A Basic Method

Suppose X and Y are left-shifted until their leading
bits are both 1 (denote this operation as pre-shifting or
normalization). The amount of shifting is remembered,
so that the proper significance of the leading quotient
bit is known. Given the first p bits of X, the value of
X s known within an error of 1/(2?). The minimal
value of X would be X(g-1)--X(g-p)000..0 and the max-
imal value would be X(g-1)--X(g-p)111..1. The range
of uncertainty is slightly smaller than the significance
of X(4-p), which is 1/(2?). Similarly, given the first m
bits of Y, we know Y to within 1/(2™).

Define X}, as the leading p bits of X extended with 0’s
to get a g-bit number:

Xn = X(g_1)--X(4-)00000..0 (1)

Define Y), as the leading m bits of Y extended with 1’s
to get a g-bit number:

Ya = Y41y Y(g-m)11111..1 (2)
Let AX = X — Xj and AY =Y —Y},. The deltas AX
and AY are the adjustments needed to get the true X
and Y from X} and Y. Due to the definitions of X

and Y5, AX is always non-negative, and AY is always
non-positive.

Suppose that we know the answer to 1/Y,. This is
clearly less than or equal to the true reciprocal 1/Y.
Similarly, X1 /Y} is always less than or equal to X/Y.

A division algorithm that uses a reduced number of iter-
ations can then be conceptually summarized as follows:

1. Set the estimated quotient @ to 0 initially.
2. Let j and k denote the number of bits that X and Y

have been left-shifted. Initially, both are set to the
amounts of pre-shifting required to normalize X and

3. Get an approximation of 1/Y}, from a look-up table

called G;. The index to the look-up table is the lead-
ing m bits of Y. Each table word is b, bits wide where
by = m as discussed later in this paper.

4. Compute the new dividend as

X' =X - Xn*(1/Y,) Y (footnote 2).

Although this step appears to require two sequential
multiplications to compute X, * (1/Y;) * Y, this is
not really true. By doing the multiplication of X *Y
while the look-up of (1/Y}) is being performed, only
one subsequent multiplication is needed in the first
iteration. In the second and later iterations, (1/Y}) *
Y should ideally be pre-computed as it is invariant
across the iterations. For full speed, this requires 2
multipliers during the 1st iteration, one to compute
(1/Y3) * (X *Y) and one to compute (1/Y3) * Y.

5. Compute the new quotient

Q' = Q+(Xn/Yn)*(1/20-5))
=Q+ Xn* (1/Yn) * (1/20-%)),
In the above formulas for Q' and X/, Xj can be com-

posed of p = m + 1 leading digits of X followed by
0’s.

6. Left shift X’ by m — 2 bits to get rid of guaranteed

leading 0’s that occur (as discussed in the next sub-
section). Shift zeroes into the LSB of X’ during this
process.

Calculate a revised 7' = j +m — 2.

7.8tj=j,Q=@Q", and X = X'.
8. Repeat steps 4 through 7 until j > q.

2 Note: Although it might appear possible to simplify this to
X'=X - Xp«(Ya+AY)/Ya =X+ AX = Xp» (1 + AY/Y)
=AX — X, x AY/Y},
this does not actually work because the calculation of X ’ and Q'
would be uncoordinated. Different round-off errors would occur
to X' and @’ in each iteration.

9. The final Q is the quotient. Note that there are more
bits of the quotient register than ¢g. Let Qn = Q,..Qo
and let Q@ = Q_;..Q_. where ¢ is the number of
excess bits. The Qp bits are correct to within one
unit of the least significant bit. Some of the Q; bits
are not necessarily correct since another iteration of
the algorithm would add into those bits.

The residual dividend X should be right-shifted by
j — q bits to get the remainder assuming the entire
Q is the quotient. If Q is truncated to g bits, then

the true remainder can be computed by then adding
Q’ xY to X.

10.

Since the algorithm reduces X’ by m — 2 bits per itera-
tion, the algorithm terminates after [g/(m — 2)] itera-
tions.

Next, we analyze this method to show why m — 2 bits
per iteration are guaranteed in the worst-case.

2.4 How Many Bits per Iteration are Guar-
anteed Using the Basic Method?

In this section, an analysis is performed to show the
following Theorem:

Theorem 1: Number of Bits Per Iteration
Using the Basic Method

X' isreduced by at least m—2 biis periteration if m > 5,
the number p of significant bits in X, is equal to m+1,
and the word width by of Table Gy s m.

Analysis

How do we compute the minimum number of bits that
are reduced from X in each iteration?

The initial value of X is between 1/2 and 1 since the
leading bit is 1. By determining the largest possible
value of X', we can determine the worst-case number of
bits eliminated per iteration. If we can guarantee that
X' < 1/27, then the most significant bit that could be
non-zero has significance 1/2("t1)_ In this case, there
are r guaranteed leading zeroes that can be eliminated
per iteration.

Let us examine the formula for X’:

X' =X =Xpx(1/Y3)xY 3)

In this case, two sources of inaccuracy affect the approx-
imation (1/Y3) & 1/Y. Let the error sources be defined

by:
(1/Y4)=1/Y — Ry — R. (4)

where R; represents an error term due to using 1/Y;
instead of 1/Y, and R, represents the error in storing
1/Y} to only a finite number of bits in the table G;. The
error Ry is always non-negative since Y, > Y meaning
1/Y, £1/Y. The error R, is always non-negative since
1/Y} 1s stored into G; by always rounding down to the
finite width ;. Then
X' X—X}. *(I/Yh)*y

Xh+AX—Xh*(1/Y—Rb—RC)*Y
AX + Xp*(Ry+ R)xY

(%)

193

If R, and R, can be accurately bounded, then this will
give the maximal value of X'.

To compute the worst-case R;, we can examine a Taylor
series expansion of 1/Y about the point Y = Yj:

B = 1/Y
= 1/Ys — AY/Yi2 4+ (AY)?/V3®
—(AYP/+ (AY) YRS+ (6)

The (w + 1)-th term is denoted by Buyi:

(~AY)" /Y, (@D All terms of B are non-negative

since AY is non-positive. The worst-case occurs when

Y, ~ 1/2 and —AY = 1/2™ — 1/29. In this case, the
following bound holds:

Bw+1 < 1/2(m*w—w—l) (7)

In this case, the approximation 1/Y; = 1/Y is equiva-

lent to truncating the Taylor series after the first term.

A bound on the sum of the remaining terms can serve
as a bound on R;:

el 0 1/2(m—2))
= (m=g—g-1) — L___

(8)

For m > 1, this is just slightly greater than 1/2(m=2),
For m > 5, a non-stringent bound on Rj is:
Ry < 1.1%(1/20m=2) 9)

R, comes from not using the exact value of 1/Y} but

instead using a finite-precision table G;. Denote the
output of the table by (1/Y4),.

Let the error between the table lookup and the true
value be €;:

(1/Yn), =ea+1/Y (10)

R.=¢ (11)

Suppose table G, is b; bits wide. Since 1/2 < Y, < 1,
the maximal value of 1/Y}, is slightly less than 2. If
words in the table G; can represent values up to but
not including 2, the unit of the most significant binary
digit in the table G; should have value 1. The unit of
the least significant binary digit for table Gy is then
1/2(:1=1) The error ¢ is less than the unit of the least
significant digit:

R.=¢ < 1/20:-D (12)
Using this, we can determine the proper word width b;.
Suppose that b, is set to:

by=m (13)
The error R, is then bounded by:
R, < 1/2(m-1 (14)

Now we can substitute the bounds for R, and R. into
equation 5 for X’. Since we set Y, ~ 1/2 previously,
Y should also equal 1/2. Since X; < 1 and AX <
1/2P — 1/29, the worst-case X' is bounded by:

X/

AX +Xp*RyxY + Xp xR *Y
< 1/2P —1/29 4 1.1% (1/20m" D)« 1/2

+(1/20m=D) % 1/2 (15)

If p=m+ 1, then this can be converted to:

X' < 1/2(m+1) —1/29+16% (1/2(m—1)) (16)

(17)
(18)

This gives an insight into a good value of p, the number
of significant bits in X;. If p > m + 1, then the worst-
case value of X’ < 1/2(m-2)_ In this case, the highest-
order bit of X’ that could possibly be 1 is the (m —1)-
st bit, XEq—mH)' Since p determines the size of the
multipliers needed to evaluate X’ and Q' and there is

very little advantage to having p > m+1, the best value
isp=m+1.

X' < 0.25/2(m=1 _1/29 4 1.6/2(m-D
X' < 1/2m=2

Thus, at least m — 2 bits are skipped per iteration if
p=m+1and b =m.

The average number of bits per iteration is a couple
of bits more than this worst-case value. However, to
take advantage of this requires a leading 0’s detect and
variable-sized shift in step 6 of the above algorithm.
This slows down the iteration time sufficiently that it is
generally not worthwhile for m > 10 or so. In this case,
vbve have omitted the analysis for the average number of
its.

2.5 An Advanced Method

Let us examine the Taylor series approximation equa-
tion for 1/Y about Y = Yj:

1Y

1/Y, — AY/Yi2 + (AY)? /Y33

— (APt + (AP + .. (19)

All these terms are non-negative since AY < 0.

Our current method is to consider the terms beyond
1/Y} to be an unavoidable error. Actually, however, it
is possible to rapidly calculate one or more adjustment
terms to attain additional accuracy in estimating 1/Y.

The revised method would be as follows:

1. Set the estimated quotient @ to 0 initially.

2. Let j and k denote the number of bits that X and ¥
have been left-shifted. Initially, both are set to the

amounts of pre-shifting required to normalize X and
Y.

194

3. Get an approximation of 1/Y} from look-up table G1.
The index to the look-up table is the leading m bits
of Y. Each table word is b; bits long. (Note: later in
the paper, the table size is optimized.)

Simultaneously get approximations of 1 / Yn2, 1/ Vi3,
etc. using look-up tables Ga, G3, etc. with word
widths by, b3, etc. respectively. All tables are indexed
using the first m bits of Y.

In the next subsection, it will be shown that reason-
able table widths b; are given by:

b = (m*t —t) + [logat] —(mxi—m—1i) (20)

This equation states that the tables of more signifi-
cance require more bits of precision.

. Compute an approximation B to 1/Y using the first
t terms from the following series:

1/Yn — AY/Y32 + (AY)?/Y3®
—(AY)} /it + (AY)Y/YR 4. (21)

The number of terms ¢ is at least 2; all terms after
the second are optional. This can be done with a
generation of partial products followed by a carry-
save adder tree. (To accelerate the calculation of B,
the least significant partial products in calculating
powers of AY can be truncated for the higher-order
terms since the higher-order terms are less significant
(details in next subsection).)

. Compute the new dividend as X' = X — X * B*Y

Although this step appears to require two sequential
multiplications to compute X * B*Y, in fact this is
not true (see step 4 of basic algorithm).

B

. Compute the new quotient

Q' =Q+ Xn*Bx(1/20-9).
It will be shown later in this paper that X in the
formulas for Q' and X’ can be composed of the lead-
ing p = m+t —t+ 2 bits of X followed by 0’s, where
t is the number of terms used to calculate B. Also,
B can be limited to m *t —t + 4 bits. This limits the
size of the multiplies.

. Left shift X’ by m*t —t — 1 bits to get rid of guaran-
teed leading 0’s that occur (as discussed in the next
subsection). Shift zeroes into the LSB of X’ during
this process.

Calculate arevised j' = j+ m*t —t — 1.
.Setj=37,Q=Q,and X = X'
. Repeat steps 5 through 8 until j > ¢.

. The final Q is the quotient. Note that there are more
bits of the quotient register than ¢. Let Qn = @4..Qo
and let Q; Q_1..Q_. where e is the number of
excess bits. The Qs bits are correct to within one
unit of the least significant bit. Some of the Q; bits
are not necessarily correct since another iteration of
the algorithm would add into those bits.

The residual dividend X should be right-shifted by
j — ¢ bits to get the remainder assuming the entire
Q is the quotient. If @ is truncated to g bits, then
the true remainder can be computed by then adding
Qi*xY to X.

©

11.

Since the advanced version reduces X’ by m*t—t—1 bits
per iteration, the algorithm terminates after [¢/(m*t—
t — 1)] iterations.

2.6 How Many Bits per Iteration are Guar-
anteed using the Advanced Method?

Theorem 2: Number of Bits Per Iteration
Using the Advanced Method

X' is reduced by at least m +t —t — 1 bits per iteration
if
o The term Yy, includes m > 5 leading bits of Y.

o The number of Taylor-series terms from equation 21
used to construct B is t.

e The number p of significant bits in X is equal to
m*t—t+2.

o The word width b; of Table G; s
(mxt—1t)+ [logst] — (m*i—m—i) fori=1,2,.1.

e B is represented in by = m +t — t + 4 bits or more.

o The total arithmetic error in calculating B s less
than 1/20m*1=143) (see below for ezplanation).

Analysis

As in the basic method, m is the most important pa-
rameter, since an increase of 1 requires a doubling of
the number of table words. Once m is chosen, the other
parameters are set so that the total error from truncat-
ing other calculations is less than or equal to the error
from including just the leading m bits of Y in Y. In
this analysis, we show that this is true given the above
parameter settings.

As before, we compute the worst-case number of bits
that are reduced from X in each iteration. The initial
value of X is between 1/2 and 1 since the leading bit is
1. By determining the largest possible value of X', we
can determine the worst-case number of bits eliminated
per iteration.

Let us examine the formula for X':

X' =X-Xn+BxY (22)

where B is the first ¢ terms from B = 1/Y; —AY/Y 4+
(AY)2 /Y33 = (AY)’ Vit + (AY)* /Y35 + ...

In this case, three sources of inaccuracy affect the ap-
proximation B = 1/Y. Let the sources be defined by

B=1/Y - Ry~ R.— Ry (23)

where

e Ry represents an error term due to truncating the
Taylor series after t terms. The error R, is always
non-negative since the truncated terms in the series
are all non-negative.

e R, represents the error in calculating B using lookup
tables with finite width words. The error R, is always
non-negative since B is calculated using tables that
are rounded down.

195

e R, represents the error in truncating the arithmetic
used to calculate B. The error Ry is non-negative
since all the arithmetic is truncated, thus under-
estimating B.

Then
X' = X—X),*B*Y
= Xh-i-AX——Xh*(I/Y—Rb—Rc_Rd)*Y
(24)
X'=AX+Xp+(Ro+ Re+Ra)xY (25)

If Ry, Re, and R4 can be accurately bounded, then this
will give the maximal value of X".

The (w + 1)-th term of the Taylor-series for B is de-
noted by By41 = (—AY)"'/Y;,(“’+1). All terms of B are
non-negative since AY is non-positive. The worst-case
occurs when Y, ~ 1/2 and —~AY = 1/2™—1/29. In this
case, the following bound holds:

Bw+1 < 1/2(mxw—w-l) (26)

If the first ¢t terms are used to construct B, then the
remainder Rp is bounded by:

i 1/2(m*g—g—-l) — (1/2(m‘t_t_1))
g=t

(1 -1/20m=-1)
(27)
For m > 1, this is just slightly greater than

1/2(’"““‘1). For m > 5, a non-stringent bound on
Ry 1s:

o0
Ry = ZB(HI) <

g=t

Ry < 1.1%(1/20mt=1-1)) (28)
R. comes from using finite-width lookup tables in cal-
culating the value of the first ¢ terms. R4 comes from
truncating the arithmetic used to calculate B and trun-
cating the value of B.

A cumulative error can be computed where the error in
each table lookup is represented by ¢; and the trunca-
tion error in computing each multiplicative term is 6;:

B = [6 + (& +1/Y') * (-AY)E7Y)] (29)
t _ (;_) t) t
B= YA i) s (AU 3o
i=1 i=1 i=1
(30)

Then R, is equal to the sum of the terms involving ¢;:

t
R. = ZC,’ * (—AY)('._I)

=1

(31)

Let 6y be an additional term that represents truncat-
ing B to a certain number of bits after the summation.

Then
t
Ra=)_5§ (32)
1=0

Let us focus first on R.. Suppose table G; is b; bits
wide. Since 1/2 < Yj < 1, the maximal value of 1/Y3}
is slightly less than 2. If words in the table G; can
represent values up to but not including 2¢, the unit of
the most significant binary digit in the table G; should
have value 26-1). The unit of the least significant bi-

nary digit for table G; is then 1/2(1"'—"). Each ¢; is less
than the unit of the least significant digit:

6 < 1720579 (33)

The worst-case value of —AY is —AY = 1/2™ —1/2¢.
Substituting into equation 31 yields:

t
Re < 3717209« (1/2(m=m)

i=1

(34)

i
R. < Z 1/2(bg+mn'—-m—i) (35)

i=1

This equation helps to determine the proper word
widths b;. Suppose that the b; are set to:
bi = (m+t—t)+ [logst] — (m*i—m—1i) (36)

As expected since the first tables have more significance,
each table T} is m — 1 bits wider than the table T(; 1)

The total error R, is then bounded by:

t
Rc < E 1/2((m*t—t)+[logzt])

i=1

Rc < I/Q(mvt—t)

(37)

(38)

Now consider R4. The 6; represent maximal permis-
sible truncation errors. This concept accelerates the
calculation of B by allowing the arithmetic for calcu-
lating B to be reduced in size. For instance, sup-
pose t = 4, m = 16, and ¢ = 53. Then the last
term of B is By = (—AY)? % (1/Y4*). Since AY has
¢ —m = 53 — 16 = 37 bits, the full computation of
(—AY)3 would use large multipliers and result in a
37%3—2 = 109 bit result. This is clearly much more than
necessary because the unit of the most significant bit of
By will be 1/2(3*m=4) = 1/2%4 The allowable trunca-
tion errors & ; can be used both to prune multiplier trees
by discarding least significant partial products and to
truncate results to smaller widths. The details are not
presented here.

Since 1 < B < 2, the MSB of B has unit 1. If B is
truncated to b, bits, then & < unit of LSB so & <
1/2(=1),

In this case, we wish to restrict Ry as follows:

Ry < 1/2(m=t=t+2) (39)

For the purposes of this paper, this can be achieved by
both restricting ép to

8o < 1/20m*t=1+3) (40)

meaning that B can be truncated to by = m*t -t +4
bits, and restricting the remaining 6; to

t
265 < 1/2(mtt—t+3)

i=1

(41)

Now we can substitute the bounds for Rs, R, and Ra
into constraint 25 to determine the maximum value of
X'. Since we set Y, =~ 1/2 previously, Y should also
equal 1/2. Since X < 1 and AX < 1/27 — 1/29, the
worst-case X’ is bounded by:

X' = AX+Xp*RpxY + Xp*Rc*Y + Xpx Rg*Y (42)

X' < 1/2 —1/20+ L1#(1/20m=1"D) 5 1/2
+ (1/2(m*t—t)) * 1/2 + (1/2(m*t—t+2)) % 1/2
(43)

If p=m=xt—1+2, then this can be converted to:

X' < 1/2(m~t—t+2)_1/2q+1.6*(1/2(7"“—t))+1/2(m*t—t+3)
(44)

X' < 0_25/2(711*1—1) —~1/29 +1.6% (1/2(mtt—t))
+0.125 % (1/2(m*t-9) (45)

X' < 1/2(m*t—t—l) (46)

If p > mx*t—t+ 2, then the worst-case value of X’
is bounded by the above inequality. In this case, the
highest-order bit of X’ that could possibly be 1 is the
(m xt —t)-th bit, X(’q_m,‘H_,). In fact, using p > m*t —
t + 2 only improves the convergence by a fraction of a
bit, so it 1s best touse p=m+t—t+2to minimize the
size of the multiplies.

In summary, at least m xt —t — 1 bits are skipped per
iteration if p = m*t—t+2, ¢ is the number of terms used
to construct B, and the other conditions in Theorem 2
hold. (Note that this works for the basic method where
t=1,p= m+ 1, and the predicted minimum number
of bits is m — 2.)

3 Comparison to Other High-Radix
Methods Using Reciprocals

In this section, our method is compared to the Cyrix
short-reciprocal method, the Newton-Raphson tech-
nique, the MacLaurin series technique, and an imple-
mentation of a modified Newton-Raphson technique in
the IBM RISC System/6000.

We refer to approximations of the reciprocal in all meth-
ods using B. In some cases, such as our basic method,
B is the direct result of a table look-up. In other cases,
B requires some calculations.

3.1

The recently designed Cyrix arithmetic coprocessor
briefly described in [4] and [11] employs a “short re-
ciprocal” algorithm similar to the basic technique de-
scribed in this paper to get 17 bits/iteration. We only
discriminate between the two methods here. Unlike our
method, the Cyrix method derives its reciprocal ap-
proximation using a combination of table lookup and
Newton-Raphson. The iterative portion of the Cyrix
method uses an intentional overestimate of the recipro-
cal rather than an underestimate. In addition, the Cyrix
method is implemented using a redundant number sys-
tem while ours is non-redundant. The Cyrix coprocessor
can also do square root using a similar iterative scheme.
A fuller description of their work may be forthcoming.

Cyrix Short-Reciprocal Algorithm

3.2 Comparison to Newton-Raphson

In the standard Newton-Raphson technique [13], an ac-
curate reciprocal B is computed first by an iterative
method. This reciprocal is accurate enough so that
the quotient can be calculated directly by a final mul-
tiplication @ = X x B. The calculation of the recip-
rocal approximation in Newton-Raphson is necessarily
iterative: the improved reciprocal is calculated using
Biny1) = Bn % (2-Y * B,) [13] [10]. Each iteration re-
quires two multiplications in B, *Y * B, that cannot be
performed simultaneously. Each iteration doubles the
number of bits of accuracy in B; to get 56-bit accuracy
requires 2 iterations starting with a 14-bit accurate re.
ciprocal. A separate calculation is required to produce
a remainder, which has been shown to be non-negative
in [13].

In contrast, our method calculates the reciprocal B us-
ing one or more terms from a Taylor-series that can be
implemented in a non-iterative manner. Our method
iterates by calculating a reduced dividend X =X -
(X *B) xY where X * B is the approximate quotient
based on the approximate reciprocal B. Each iteration
reduces the dividend X’ by a constant number of bits
which depends on the accuracy of B. Since estimates
of the quotient are calculated simultaneously in each
iteration, no final multiplication is needed to get the
quotient Q. A form of remainder is available directly in
the register X assuming that the entire Q is the quo-
tient. If the quotient is truncated, then the truncated
bits multiplied by Y should be added to X. The method
is designed so that the remainder is never negative.
IBM RISC

3.3 Comparison to

System/6000

The IBM RISC System/6000 implements floating-point
division using an iterative algorithm employing its mul-
tiply and add hardware [12? [10]. The algorithm is a
modified version of the Newton-Raphson method. One
enhancement is used: after a reciprocal is calculated,
the method performs one pass of a reduction similar
to our method’s iteration. Using our notation, it is as
follows:

1.Q=X=«B
2. X'=X-QxY

3.Q'=Q+X'*B

Reference [10] describes the algorithm and detailed ana)-
yses for guaranteed correct rounding.

In addition to the general differences between Newton-
Raphson and our method, the above reduction is done
using a full Precision quotient, ie. X' = X — QY
instead of X’ = X — X, * Bx Y used in our method.

3.4 Comparison to MacLaurin Series
The MacLaurin series method [13] uses an approxima-
tion to the reciprocal:
B 1/Y =1/(Z +1)
= (1-2)x(1+ 2%+ (1+ 2%
*(1+ 28 % (142 + ...

~

(47)

The number of bits of accuracy doubles with each ad-
ditional factor. In the normal iterative implementation,
the first few terms are approximated using a lookup ta-
ble. Each iteration calculates an additional factor from
the previous using one multiplication and an add (or a
2’s complement in [13]). An additional multiplication is
required to multiply the factor with the current approx-
imation B. This multiplication can overlap the calcu-
lation of the next factor, so that each iteration adding
one factor takes just 1 multiplication plus a 2’s comple-
ment. As discussed in [13], the convergence per itera-
tion is mathematically equivalent to the convergence of
the Newton-Raphson method where By, = 1. The quo-
tient and remainder must each be calculated following
the generation of B. Unlike our method or Newton.
Raphson, the implementation sizes are somewhat fixed.
If one implementation includes the first k multiplicative
terms in a lookup table of 2¢ words, the next larger im-
plementation includes the first k + 1 terms with table
size about 22*v,

Like the Newton-Raphson method, the convergence of
the MacLaurin series differs from our method. Also,
our method automatically provides a quotient without
extra calculations.

4 Brief Notes on Implementation

1. The look-up table(s) are indexed using the leading m
bits of Y. Since the leading bit of Y is known to be
1 after normalization, it is not actually useful to use
that bit as part of the index. Therefore, the actual

table can be of size 20™-1) words instead of 2.

2. The look-up table words are always rounded down

to fit into the number of bits in the word so that
the estimated reciprocal is never more than the exact
answer to 1/Y.

3. In each iteration, the critical loops are the calcula-

197

tion of Q' and X’. These can be implemented us-
ing carry-save adder (Wallace) trees that perform a
multiply-and-add or multiply-and-subtract function.
The latter can be accomplished by using 2’s com-
plement numbers. The hardware should make a 1’s
complement of each row to be subtracted and add a
fixed 1 to that row’s LSB in the carry-save adder tree.

4. As shown in Appendix 1, the basic method requires
three multipliers of size (m+1) x m, (m+1) x ¢, and
(m+1) x (¢ +m). Also required are one subtraction
of size (¢ + 2m — 1) and one addition of size |g/(m —
2?{| *(m —2)+2m which can actually be merged with
the carry-save adder trees for the multiplications.

5. For the advanced method, the minimum size of the
additions and multiplications except those to calcu-
late B are as follows:

o Note that Y has ¢ bits, X, hasp = m*t —t + 2
bits (rest are 0’s), and B has by = m*t — ¢ +4 bits.

o Three multipliers are needed of size px b;, by X ¢, and
by x (g+ by — 1). Also required are one subtraction
of size (¢ + p+ by — 2) and one addition of size
lg/(mxt—t—1)]*(m*t—t—1)+p+b —1
which can actually be merged with the carry-save
adder trees for the multiplications.

5 Comparative Speed Analysis

In this section, three schemes are analyzed for practi-
cal high-speed implementation to demonstrate why the
above technique is fast. The other two techniques are
ordinary 1 bit or 2 bit/iteration division and Newton-
Raphson division.

The charter of our research project is to focus on very
fast implementations of arithmetic functions using max-
imum parallelism and dense, state-of-the-art technolo-
gies [7]. For this analysis, we assume a fast hypothetical
technology whose characteristics are similar to a 1991
VLSI ECL technology:

1. Simple gate delays are 250 ps.

2. In the worst-case, complex AND/OR gate structures
take almost twice as long as simple gates in ECL and
are assumed to be 500 ps.

3. The assumed delay for the registers required for iter-
ation is 500 ps.

4. One-way communication time between a logic chip
and a RAM chip is .75 ns.

5. Static RAM access takes 3 ns for the RAM and 1.5
ns for a round-trip communication with the division
logic chip for RAMs up to 64K x n bits. A RAM
access time of 3 ns was demonstrated in a 1988 paper
on an experimental 64-Kbit RAM [15].

6. An addition of 64 bits takes 2 ns. This is based
on another 1988 paper on a 32-bit ECL adder [2].
Smaller additions take slightly less time, and larger
ones take slightly more time.

7. A 53x53 multiplication takes about 6 ns in ECL [3].
Smaller multiplications take less time; for instance, a
32x32 bit multiplication takes 5 ns.

8. A 53x53 multiply plus an add takes 6 ns. A multiply
and add takes no more time than a multiply if the
add function is incorporated into the carry-save adder
tree.

9. Clock skew effects as discussed for example in [8] and
[14] are not included in this analysis.

198

We analyze for critical path delay assuming a fully-
parallel implementation, 1.e. all operations that can be
made independent are performed in parallel.

In this case, we calculate the extra delay to compute
the remainder as a separate number. The remainder
will be relative to the quotient truncated to ¢ bits. In
our method, the previously-discussed correction to the
remainder is required to adjust for this truncation (see
last step of the algorithm). In Newton-Raphson, the re-
mainder must be computed after the quotient. Since
@ = X * B provides about 2 * ¢ bits, a simultane-
ous computation of the remainder and quotient is not
possible. The simultaneous equation for the remainder
X' = B#(X +Y) is relative to an untruncated quotient.
A remainder for a truncated quotient requires either a
correction like the one in our method or a sequential cal-
culation of quotient and remainder. The time consumed
is about the same.

The details of the speed analysis are presented in Ap-
pendix 2 for some example implementations.

Table 1 summarizes the division schemes and their pro-
Jjected speeds for §3-bit division using the given technol-
ogy assumptions. Extra delays are cited separately for
computing a true remainder needed for round-to-nearest
calculations. The amount of table storage required is
also given in kilobits. A coarse comparison of logic size
can be made using the total number of partial product
bits needed for the major multipliers.

Some observations are as follows. The Newton-Raphson
technique with a 7-bit accurate lookup table uses fewer
storage bits than our basic method with m = 11 but
still requires large multipliers. The speeds of the two
are about equal. The fastest implementations are our
advanced method using m = 11 and m = 15 with 2
Taylor-series terms. Using more than 2 terms to ap-
proximate B is slightly faster but uses much larger ta-
bles than just using 2 terms. However, the number of
product bits remains moderate since the iteration mul-
tipliers are not needed; only truncated multipliers to
calculate B and plus one 53x53 multiplier for the quo-
tient plus remainder are needed.

For comparison, the Cray-2, first delivered in 1986, per-
forms a floating-point division in 152 ns using MSI ECL
circuits [6].

6 Summary and Conclusions

By using large, accurate lookup tables for the recip-
rocal, division can be accomplished in just a few iter-
ations using the basic method. The keys are to de-
sign the method to underestimate the quotient and to
adjust the quotient by adding rather than appending
low-order bits. Using adding, the design is freed from
having to produce disjoint sets of quotient bits in each
iteration. In addition, a more accurate reciprocal can be
quickly calculated using a Taylor-series approximation.
Theoretically, the Taylor-series can be calculated di-
rectly rather than iteratively, unlike Newton-Raphson.
In practice, the higher powers of AY may be calculated
with staged multiplications, although lookup tables for
powers of AY remains an unexplored possibility. By
using more accurate reciprocals, the advanced version
can divide in 2 or even 1 iteration.

Method Est. Delay Remainder Table Size Product Bits
Canonical 1-bit 159 ns 0 ns 0 53
Radix-4 SRT with 4 levels cascaded/iter 76 ns 0 ns 0 212
Newton-Raphson using 7-bit Initial 35.5 ns 6 ns 896 bits ~ 4614
Newton-Raphson using 14-bit Initial 30 ns 6 ns 224K bits ~ 4536
Basic Method using m = 11 36.0 ns 3.5 ns 12K bits 1536
Basic Method using m = 13 32.0 ns 3.75 ns 96K bits 1848
Basic Method using m = 16 27.5 ns 4 ns 544K bits 2346
Advanced Method using m = 11 and ¢t = 2 26.5 ns 4.5 ns 34K bits 3888
Advanced Method using m = 15 and ¢ = 2 22 ns 5 ns 736K bits 5952
Advanced Method using m = 15 and ¢ = 4 20.5 ns 6 ns 2432K bits =~ 4056

Table 1: Table of Relative Speeds and Required Storage and Multiplier Sizes

Implementations of our method can be faster than
Newton-Raphson in modern ECL technology. The ad-
vanced method using m = 11 and 2 Taylor-series terms
is both faster and smaller than a fast Newton-Raphson
implementation. The advanced version using 2 Taylor-
series terms and m = 15 is another 15% faster than
using m = 11 at the cost of larger tables and multi-
pliers. In a hypothetical implementation in ECL, the
advanced method can divide 53-bit numbers in an esti.
mated 22 ns vs. 6 ns for a multiply, thus achieving a
ratio between divide and multiply times of less than 4:1.
The algorithm can produce an exact remainder, which
makes the implementation of exact rounding specifica-
tions (e.g. IEEE floating-point) straightforward. Both
Newton-Raphson and this technique are substantially
faster than 1-bit or 2-bit/iteration schemes. The logic
depth of each iteration is more than in 1-bit or 2-bit
schemes, so the speedup is less than proportional to the
ratio of bits per iteration.

7 Acknowledgements

Thanks to the reviewers, David Matula, and Tien-Chi
Chen for providing many helpful comments and addi-
tional references.

Thanks to the entire Nano-Second Arithmetic Research
Group at Stanford for many enlightening discussions
and seminars. Nhon Quach and Eric Schwarz carefully
reviewed drafts of this paper and made many helpful
comments.

References

(1] D. Atkins. “Higher-Radix Division Using Estimates
of the Divisor and Partial Remainders.” Oct. 1968,
IEEE Transactions on Computers, pp. 925-934.

G. Bewick, P. Song, G. De Micheli, and M. Flynn.
“Approaching a Nanosecond: A 32 bit Adder.” 1988
International Conference on Computer Design, pp.
221-226.

G. Bewick. Private communication in October 1990
about work in progress. Computer Systems Labora-
tory, Stanford University, Stanford, CA.

T. Brightman. Slides from presentation on Cyrix co-
processor. 1989, future Trends panel session of 9th
Symposium on Computer Arithmetic,

(2]

(3]

4

e’

(5] J. Fandrianto. “Algorithm for High Speed Shared
Radix 8 Division and Radix 8 Square Root.” Sept.
1989, 9th Symposium on Computer Arithmetic, pp.
68-75.

M. Flynn. “Sub-nanosecond Arithmetic Proposal.”
1989, unpublished report, Computer Systems Labo-
ratory, Stanford University, Stanford, CA.

M. Flynn et al. “Sub-nanosecond Arithmetic”. May
1990, Technical Report CSL-TR-90-428, Computer
Systems Laboratory, Stanford University, Stanford,
CA.

(6]

(7

L. Glasser and D. Dobberpuhl. The Design and
Analysis of VLSI Circuits, Chapter 6. 1985,
Addison-Wesley, Reading, Massachusetts.

[9] E. Krishnamurthy. “On Range-Transformation
Techniques for Division.” February 1970, IEEE
Transactions on Computers, pp. 157-160.

[10] P. Markstein. “Computation of Elementary Func-
tions on the IBM RISC System/6000 Processor.”
January 1990, IBM Journal of Research and Devel-
opment, vol. 34, no. 1, pp. 111-119.

(11] D. Matula. “Highly Parallel Divide and Square
Root Algorithms for a New Generation Floating
Point Processor.” Oct. 1989, extended abstract from
SCAN-89 Symposium on Computer Arithmetic and
Self-Validating Numerical Methods.

(12] R. Montoye, E. Hokenek, and S. Runyon. “Design
of the IBM RISC System/6000 floating-point execu-
tion unit.” January 1990, IBM Journal of Research
and Development, vol. 34, no. 1, pp. 59-70.

[13] S. Waser and M. Flynn. Introduction to Arith-
metic for Digital Systems Designers, Chapter 5.
1982; Holt, Rinehart, and Winston; New York, New
York.

(14] D. Wong, G. De Micheli, and M. Flynn. “Design-
ing High-Performance Digital Circuits Using Wave
Pipelining.” Aug. 1989, VLSI ’89 Conference, pp.
241-252.

(15] K. Yamaguchi, H. Nanbu, K. Kanetani, et al. “An
Experimental Soft-error Immune 64-Kb 3ns ECL
Bipolar RAM.” 1988 Bipolar Circuits and Technol-
ogy Meeting, pp. 26-27.

(8

8 Appendix 1: The Size of Needed Mul-
tipliers and Dividers

For the basic method, the minimum size of the additions
and multiplications are as follows:

e Note that Y has g bits, X3 has p = m + 1 bits (rest
are 0’s), and 1/Y}, has b; = m bits.

eInX'=X—-Xp+x(1/Y)*Y:
In the first iteration, X} *Y is calculated first using a
(m+1) x ¢ bit multiply giving a ¢+m bit result. This
is then multiplied by I/YS using an m X (¢ + m)
bit multiply to get a (¢ + 2m — 1) bit result. The
subtraction from X is done using a (¢ + 2m — 1) bit
subtract yielding a (¢ + m + 1) bit result after the
shift of m — 2 bits.

The quantity (1/Y3) *Y is also calculated during the
first iteration using a m x ¢ bit multiply yielding a
Eq + m — 1) bit result. In subsequent iterations, Xj *

(1/Yn)*Y) is computed using a (m+1) x (¢+m—1)
bit multiply yielding a (¢ + 2m — 1) bit result. The
subtraction is the same size (g + 2m — 1) bits yielding
a (g+ m+ 1) bit result.

With some input MUX’ing, it is possible to use two
multipliers total of sizes (m + 1) x ¢ and (m + 1) x
(g+m).

o In Q' = Q+ X +(1/Y3) *(1/20-%)), the actual mul-
tiplication is Xp, * (1/Y) which is (m + 1) x m bits
yielding a 2m bit result. The add increases in size
with each iteration. In the last iteration, it is about
lg/(m — 2)] * (m — 2) + 2m bits long.

o In summary, three multipliers are needed of size (m+
1) x m, (m+1) x ¢, and (m + 1) x (¢ + m). Some
MUX’es are needed to select the inputs to the latter
two. Also required are one subtraction of size (¢ +
2m—1) and one addition of size |g/(m—2)]*(m—2)+
2m which can actually be merged with the carry-save
adder trees for the multiplications.

The calculation of sizes for the advanced method is sim-
ilar. The minimum size of the additions and multipli-
cations except those to calculate B are as follows:

e Note that Y has ¢ bits, X} has p = m xt — ¢ + 2 bits
(rest are 0’s), and B has b, = m *t —t + 4 bits.

eInX'=X_-X,+«B+Y:

In the first iteration, Xj * Y is calculated first using
a p x ¢ bit multiply giving a ¢+ p— 1 bit result. This
is then multiplied by B using an b x (¢ + p — 1) bit
multiply to tget a (¢ + p+ by —2) bit result. The
subtraction from X is done using a (¢ + p + by — 2)
bit subtract yielding a (¢ + p+ 3) bit result after the
shift of m ¢t — ¢ — 1 bits.

The quantity B Y is also calculated during the first
iteration using a by x ¢ bit multiply yielding a (¢+bp—
1) bit result. In subsequent iterations, X *(B*Y) is
computed using a p x (g +bp — 1) bit multiply yielding
a (g + p+ by — 2) bit result. The subtraction is the
same size (¢ + p + by — 2) bits yielding a (¢ + p + 3)
bit result.

200

With some input MUX’ing, it is possible to use two
multipliers total of size b, x ¢ and by x (g + by — 1).

eIn Q = Q+ Xp * B (1/20-F), the actual mul-
tiplication is X * B which is p x b bits yielding
a p+ by — 1 bit result. The add increases in_ size
with each iteration. In the last iteration, it is about
[(g/(m*t—t—1))] x(m*t—t—1)+p+b—1bits
long.

o In summary, three multipliers are needed of size px by,
by x ¢, and by x (¢+bp — 1). Some MUX’es are needed
to select the inputs to the latter two. Also required
are one subtraction of size (¢ + p + b — 2) and one
addition of size [(¢/(m *t —t —1))] x (m xt — 1 —
1)+ p+by — 1 which can actually be merged with the
carry-save adder trees for the multiplications.

9 Appendix 2: Speed and Size Calcula-
tions

9.1 Speed of the Basic Technique
9.1.1 11 bits/iteration

Set m = 13.

The look-up table has size 212 = 4K words. The table
width is p = m + 1 = 14 bits, so the table size is 56K
bits.

The number of iterations required is [53/(m — 2)] =
[53/11] = 5.
The initial RAM lookup takes 4.5 ns.

The time per iteration is limited by the loop to compute
the remaining dividend X’. For X’, the critical path can
be implemented using a MUX, a (m+ 1) x (¢ +m) =
14x66 multiply tree, and a (¢ + 2m — 1) = 78-bit final
add. The MUX takes 0.5 ns. The multiply tree takes
about 2.25 ns to do the partial products generation and
reduction. The addition takes 2.25 ns. Finally, iteration
registers are assumed to take 0.5 ns.

The loop time is then 0.5+ 2.25+2.25+ .5 = 5.5 ns.
The total time is then 4.5+ 5.5%5 = 32.0 ns.

The final shift of X’ can be done with wiring and takes
no extra time. The remainder for the truncated quotient
can be computed using a multiply of about 14x53 and
an add which takes about an extra 3.75 ns.

The calculations for 14 bits/iteration using m = 16 and
9 bits/iteration using m = 11 are similar.

9.2 Speed of the Advanced Technique
9.2.1 27 bits/iteration using 2 Terms

Set m = 15.

Use 2 terms of the approximation to get B.

The look-up tables have size 21* = 16K words. Table
G; has width mst—t+[log, t]—(m*i—m—:) = 44—14%i
bits. Table G; has width 30 bits for a size of 480K bits.
Table G3 has width 16 bits for a size of 256K bits.

The number of iterations required is [53/(m*t—t—1)] =
[53/27] = 2.

The initial RAM lookup takes 4.5 ns.
The computation of B takes 4.5 ns using some multiply

and add hardware. The multiplication of AY #(1/(Y3)?)
is 16x38 bits. The addition is about 50 bits wide.

The time per iteration is limited by the loop to compute
the remaining dividend X’. For X', the critical path can
be implemented using a MUX, a by x (¢+bs —1) = 32x84
multiply tree, and a %q+p+ by —2) = 113-bit final add.
The MUX takes 0.5 ns. The multiply tree takes about 3
ns to do the partial products generation and reduction.
The addition takes 2.5 ns. Finally, iteration registers
are assumed to take 0.5 ns.

The loop time is then 0.5+ 3 4+ 2.5+ 0.5 = 6.5 ns.
The total time is then 4.5 + 4.5 + 2% 6.5 = 22 ns.

The final shift of X’ can be done with fixed wiring and
takes no extra time. The remainder for the truncated
quotient can be computed in about an extra 5 ns using
about a 32x53 multiply and add.

The calculation for 19 bits/iteration using m = 11 and
t = 2 is similar.

9.2.2 55 bits/iteration using 4 Terms

Set m = 15.

Use 4 terms of the approximation to get B. The accu-
racy of B is about 55 bits.

The look-up tables have size 2! = 16 K words. Tables
G1, G2, G3, and G4 have widths 59, 45, 31, and 17
bits respectively. This means that tables G1 through
G4 have sizes of 944K, 720K, 496K, and 272K bits, re-
spectively.

The number of iterations required is [53/(m*t—t—1)] =
[63/55] = 1.

The initial RAM lookup takes 4.5 ns but is not on the
critical path, as explained below.

The computation of B takes 14 ns using some multi-
ply and add hardware. The slowest term is (AY)® «
(1/(Y»)*) which takes 3 multiplications, 2 to get (AY)?
and 1 more to get the term. This takes 8 ns for the
first two multiplications. Since 8 ns exceeds the lookup
time for the corresponding multiplicative factor 1 /Y4,
the RAM lookup is not part of the critical path. The
final multiplication is combined with the addition of all
the terms and is estimated to take 6 ns.

The computation of Q' requires a full 53x53 multipli-
cation which takes 6 ns. Finally, storage registers are
assumed to take 0.5 ns. The time for this is then
6 +0.5= 6.5 ns.

The total time is then 14 + 6.5 = 20.5 ns.

In this case, the true remainder is most easily calculated
using X’ = X — Q, * B where Q@ is the truncated
quotient. This requires a 53x53 multiply and an add
which takes about 6 ns. (The correction method is no
faster.)

Due to the increase in complexity for calculating B and
the larger multiplication/additions needed in calculat-

ing @ and X’, this method is not much faster than

201

using only 2 terms to approximate B even though the
number of iterations is cut in half.

9.3 Speed of ordinary 1-bit iteration divi-
sion

In each iteration of ordinary division, the divisor is sub-

tracted from the dividend, the result is checked for neg-

ativity, the new dividend is selected, and the results are

stored in the iteration registers.

The subtraction takes 2 ns. The negativity check is triv-
ial since the high-order bit of the result can be directly
used as the control to the MUX selecting the new divi-
dend. The MUX requires 2 gate levels for a delay of .5
ns. The registers take .5 ns.

The total delay per iteration is 2.5+ .5 = 3 ns. The
number of iterations is 53 for a total delay of 53%3 = 159
ns.

In this method, the remainder is available in the divi-
dend register following the computation.

9.4 Speed of Newton-Raphson division us-
ing 14-bit Table Lookup

The initial table lookup of Newton-Raphson takes 4.5
ns. The table is about 16K words of 14 bits = 224K
bits.

Each iteration of Newton-Raphson requires 1 multiply
followed by a second multiply and add. The first iter-
ation requires a 14x14 and a truncated 14x28 multiply;
the second requires a 28x28 and a truncated 28x56 mul-
tiply.

In the 1st and 2nd iterations, multiplies take 4 and 5 ns
respectively. Storage into the iteration registers takes
0.5 ns.

The first iteration takes 44+4+40.5 = 8.5 ns. The second
takes 5+ 5+ 0.5 = 10.5 ns.

Following two iterations, a 56-bit accurate reciprocal is
available in a register that we denote by B.

The iterations are followed by a 53x56 bit multiplication
to get the quotient which takes 6 ns. A final register
storage takes 0.5 ns.

The total delay is then about 4.5+ 8.5+ 10.5+ 6.5 = 30

ns.

The remainder for the truncated quotient Qs can be
computed using X’ = X — Q, * Y. This requires a
53x53 bit multiply and subtract which takes 6 ns.

Table 1 cites multiplier sizes assuming that a dedicated
multiplier is used for each iteration. Alternatively, one
53x56 multiplier would be sufficient but all multiplies
would take 6 ns thus adding a total of 6 ns to the prop-
agation delay.

