Overflow/Underflow-Free Floating-Point Number Representations
with Self-Delimiting Variable-Length Exponent Field

Hidetoshi Yokoo

Department of Computer Science,
Gunma University
Kiryu, Gunma 376
Japan

Abstract

A class of new floating-point representations of real
numbers, based on representations of the integers is
described. In the class, every representation uses a
self-delimiting representation of the integers as a vari-
able length field of exponent, and neither overflow nor
underflow appears in practice. The adopted represen-
tations of the integers are defined systematically, so
that representations of numbers greater than one have
both exponent-significand and integer-fraction inter-
pretations. Since representation errors are character-
ized by the length function of an underlying represen-
tation of the integers, superior systems in precision can
be easily selected from the proposed class.

1 Introduction

For these ten years, in order to overcome the inher-
ent problem of overflow and underflow in conventional
floating-point number representation systems, several
representation systems with a variable-length expo-
nent have been developed in Japan.

An earlier work of those appears in [12], in which the
exponent may be extended to the entire data word
using a field that specifies the length of the expo-
nent. Subsequently, inspired by this work, Hamada
[7] found a method of realizing a variable-length expo-
nent without any additional field to specify the length.
Hamada’s URR (for universal representation of real
numbers) has several attractive features which include
the followings.

e Neither overflow nor underflow occurs in practice.
e Specifications do not depend on data length.

o The order of numbers coincides with the lexico-
graphic order of their representations.

e Arbitrary real values can be infinitely approxi-
mated simply by extending data length.

Despite these, the URR system has not been imple-
mented in any real system, partly because we have

CH3015-5/91/0000/0110$01.00 © 1991 IEEE

110

found no method of performing arithmetic directly
with URR data except for some trivial operations, and
partly (or maybe mainly) because we have already had
some commercially established number representation
systems [8], [15]. The significance of URR should
rather be evaluated from the following recognition that
it brought. That is, since the invention of URR, we
have been recognizing that there is no essential dif-
ference between the two main systems — fixed-point
and floating-point — for real numbers. To understand
this recognition alone, there is no need to know the
details of URR, instead the following simple example
will suffice.

Consider, for example, the fixed-point representation
of 0.15625 in radix 2. This can be represented as
0.00101,. This number is, in turn, represented as a
floating-point form: 1.01, X 2-3. If we consider num-
bers botween 0 and 1 only, and adopt unary encoding
to represent the exponent such as

-1 1
-2 01
-3 001
—-F 00---01,
———
E-1

then the number 1.01(2yX 2-3 can be represented as the
concatenation of 001 (exponent) and 01 (economized
signiﬁcandl?. The obtained floating-point representa-
tion “00101° coincides with the fractional part of the
fixed-point representation. Thus, the string “00101”
has both fixed-point and floating-point interpretations.
The crucial point is not to make a distinction between
the fixed-point and floating-point representations but
to separate the use of a predetermined boundary be-
tween the exponent and significand from the use of a
self-delimiting encoding of the exponent.

1For this purpose, more familiar terms fraction or mantissa
are usually used. In this paper, however, we adopt the term
significand for several reasons.

Self-delimiting encodings have been studied on the sev-
eral themes of (prefix-free) representations of the inte-
ers or encodings of commas between strings [1], [4],
F5], [9]. Matula and Kornerup [13] discuss an appli-
cation of a certain representation of the integers to
the representation of rational numbers in computers.
Researchers have been — and still are — seeking ef-
ficient methods for encoding of countably infinite ele-
ments. Unary encoding mentioned above, which is well
known also in Turing machine theory, is the simplest
example of representations of the integers; however,
it is less efficient. The efficiency naturally depends
on the definition of itself. In the problem of floating-
point representation of real numbers, the efficiency of a
self-delimiting representation specifying the exponent
is expected to influence the precision of the number
representation system.

This paper aims to discuss a unifying approach to the
use of representations of the integers as the field of ex-
ponent, and presents a class of overflow /underflow-free
representations of real numbers, which includes URR
as a special case. This class may serve as a good answer
to an exercise in [10, p.212, Exercise 17 of Sec.4.2.1],
which requires a representation whose precision de-
creases as the magnitude of the exponent increases.?
As far as the abolition of overflow and underflow is
concerned, the level-index system [2, 3, 11] may be
preferable. However, it matters little to the present
paper whether a system is fixed-point, floating-point,
or level-index. Instead, our main interest is the ef-
ficient and systematic method of mapping the system
to binary strings. In fact, we will define a system in our
class based not only on exponent-significand decompo-
sition of real numbers but also on integer-fraction rep-
resentation. The conversion between these two bases
corresponds to the generalization of the floating-point
and fixed-point interpretations of a representation. In
the class, representation errors can be characterized
by the length function of the adopted representation
of the integers. As a result, we can find improved vari-
ations of URR systematically.

2 Preliminaries

In most of conventional floating-point systems in radix
2, a real number X can be approximated by

X = (-1)*F x 2, (1)

where s is either 0 or 1, E is an integer, and F is a
number which is normalized as either

1/2<F<1 (2)

or

I<F<2 (3)

A number X can be also represented as

X=(—1)’(Zn:ai2‘+§:512_j), ai,b; € {0,1} (4)

i=0 i=1

2Knuth refers to [14] as an answer to the exercise.

m

which is reexpressed as the form
X:(_]-)"anan—l e ag.byby - (5)

in the fixed-point system. For X > 1, | X |, the largest
integer not greater than X, is said to be the integer
part of X. A binary string b;by - - - representing X —
X| is said to be the binary fraction of X. Define
«| to be the length of a binary string «. If we set
a, =1 and a = a,_1a,_2---ag for X > 1, then the
equality n = |a| = F —1 holds for (2) and the equality
n = |o| = E holds for (3).

Although URR can be considered as a variation of
floating-point representations with the normalization
condition &3), no fixed-length field is used to specify
the value of E. Instead, it adopts a prefix-free encoding
of the integers in order to implement a variable-length
exponent without any additional field to specify the
length of the part. A prefix-free encoding of the inte-
ers is a special case of representations of the integers
4], which are defined in the following way.

A binary encoding or a representation R of the positive
integers, Nt = {1,2,---}, is a bijection of N* onto a
set C of binary codewords, such that any concatena-
tion of any members of C is uniquely decipherable.
The following four conditions are important when we
consider an application of representations of the inte-
gers to floating-point representation of real numbers.

(C1) prefiz condition: A representation R is prefix-
free if no codeword R(i) € C is the beginning of
another codeword in C.

(C2) lezicographic order: A codeword ¢ = ¢;...¢,
¢; € {0,1}, is said to be lexicographically smaller
than a codeword d = did,...dm,d; € {0,1}, if
¢; < dj;orife; =d; fori < nande, < d,
for some n < I,m; orife¢ = d; for 1 < i <1
and | < m. The representation R is said to be
of lexicographic order if R(7) is lexicographically
smaller than R(j) for i < j.

(C3) completeness: Let {0,1}* denote the set of all fi-
nite strings of symbols, each symbol selected from
the set {0, 1}. A uniquely decipherable set C
is said to be complete iff adding any new strin
c€ {0,1}*, ¢ ¢ C, to C gives aset C' = CU{C%
that is not uniquely decipherable.

(C4) minimal property: Let L(i) denote the length of
R(i) in bits. The representation R is said to be
minimal if L(z) < L(i + 1) for any i € Nt.

The condition (C1) is a sufficient condition for unique
decipherability. It is well known [6] that any uniquely
decipherable representation must satisfy the Kraft in-

equality:
[ee)
Yoot <1
i=1

As was mentioned in the previous section, the simplest
representation of the integers is unary encoding. 1t is

Table 1: Examples of representation of the integers.

A0 Uoo (i) Uo11(3) Q%)

1 0 0 0 0

2 100 100 10000 100

3 101 101 10001 101

4 11000 110000 100100 110000

5 11001 110001 100101 110001

6 11010 110010 100110 110010

7 11011 110011 100111 110011

8 1110000 1101000 10100000 1101000

9 1110001 1101001 10100001 1101001

10 1110010 1101010 10100010 1101010

15 1110111 1101111 10100111 1101111

16 111100000 1110000000 101010000 11100000000
31 111101111 1110001111 10101111} 11100001111

convenient for later discussions to define it as
U(3) = 1°-10,

where 1'~! denotes a concatenation of i — 1 “1” bits,
although this definition contrasts with the one used in
Section 1. Both the unary encodings obviously satisfy
the conditions (C1)—(C4), and the difference between
them is not essential.

Now, consider the following transformations for a rep-
resentation R of the integers.

Type-0 transformation: When an integer i € N+
has an ordinary binary representation la, where
« is any string of 0’s and 1’s, the function R, is
defined by

. 0
Ro(i) = { 1R(|a])o

The function Ry is also a representation of the
integers.

fori=1,
for i > 2.

Type-1 transformation: When an integer i has an
ordinary binary representation la, the function
R, is defined by

Ri() = R(ja| + 1)a.

The function R; is also a representation of the
integers.

If we use U for R in the above transformations, then

] 0 fori=1,
Uo(i) = { 1U(Je|)a = 110 for i > 2,

and
U1(2) = U(Ja| 4+ Da = 11%10q,

which mean that Up(i) = U;(i) for any i € N*. In
general, results obtained from the type-0 and type-1

112

transformations are not the same. However, it can be
easily shown that if a representation R of the integers
satisfies one of the conditions (C1)—(C4), then both the
representations Ry and R; also satisfy the same con-
dition. Thus, starting from the unary encoding U, we
can get infinitely many representations of the integers
satisfying the conditions (C1)—(C4) after repeated ap-
plications of the type-0 and/or type-1 transformations.

If 7 is a binary string and ¢=70, then the represen-
tation U, is a representation which is obtained from
U, by the type-0 transformation. If o=71, U, is a
representation which is obtained from U, by the type-
1 transformation. In Table 1, the examples Uy, Uyo,
and Upy; are shown in the second, third, and fourth
columns, respectively.

3 New Floating-Point Representations
Based on Representation of the Inte-
gers

In this section, first we limit our definition to X > 1,
and then generalize it to X < 1. For X > 1, a floating-
point representation system based on a representa-
tion of the integers will be defined by two methods:
the exponent-significand pair method and the integer-
fraction pair method. The relation of these two meth-
ods is summarized in Theorem 1. Since the definitions
do not depend on data length, we will not note the
length in this section.

3.1 Exponent-Significand Pair Method

In this method, a floating-point system based on a rep-
resentation of the integers is defined as three fields.
Like conventional systems, a number X of the form
(1) is represented by its sign Sx, exponent, and sig-
nificand, as shown in Fig.1. The last two fields specify
the values of E and F in (1), respectively. The lead-
ing exponent bit is denoted by SE(x), which may be
called as the exponent sign bit but does not exactly
correspond to the sign of E. The sign bit Sx and the
exponent sign bit Sg(xy are defined in the following:

if X < -1, then Sx =1 and Sex) =0,
if -1< X <0, then Sx =1and SE(X)ZI, 6
f0<X <1, thenSx =0and Spx)=0 (6
if1<X, then Sx =0 and Sgx) = 1.

Even in the case where we restrict ourselves to X > 1,
the value of £ depends on the normalization condition

Movable I)oundary

Sx PEex)

<— Exponent — «——- Significand —

Figure 1: Format of a floating-point representation.

r (3). If we adopt the condition (2), then we have
> 1. Under the condition (3), we have
> 1. Thus the following two cases are

Condition (2): In this case, E is a positive integer
for X > 1 and we can use a representation of the
integers to specify the value of E. Specifically, we
put U, (E) from the 2nd bit on the exponent field.
Under the condition (2), F has the form looking

like
F=01f2fs-. (M)

Thus we can set the binary string fofs... as
the economized significand. Therefore, letting

ng)(X) denote the representation of X for the
condition (2), it is encoded as

ED(X) = 01U, (E) fafs -+ (8)

for X > 1, (1), and (7).

Condition (3): In order to specify the value of E,
which is greater than or equal to zero, we use

0 for £

1U,(F) for E

)

u3(E) = {

2

for a representation U, of the integers. Under the
condition (3), F has the form

F=1fifr, (10)

which is combined with UJ(E) to yield the repre-

sentation. That is, if &(,a)(X) denotes the system
on the condition (3), then it has the bit pattern

EP(X) = 01U (E)fifa- - (11)

for X > 1, (1), and (10).

3.2 Integer-Fraction Pair Method

If X has the form (5) with s = 0, this method defines a
system in our class as the concatenation of the integer
and binary fractional parts:

Fo(X) = 01Uu ([X])brba - (12)

for X > 1. Then we have the following theorem.

Theorem 1 For any represeniation U, of the inte-
gers, we have

Foo(X)
Fo1(X)

EP(X),
ED(X)

(13)
(14)

for X > 1.

113

Proof: Since X > 1, X can be represented for £ > 0
as

X = 1fify--x2F
1fifa- - fe-fE41- .

Then, we have from (9) and (11)

(15)

3) [010f1f2--- for £ =0,
& (X)—{ 01U, (E)fifs--- for E> 1.
From the definition of Uy and (15)
0 for £ =0,
UaO(I_XJ):{ IUU(E)fle"‘fE f()rEZl

It follows from this and (12) that

Foo(X) = EP(X)

for X > 1.
Similarly, for X > 1 and E > 1, we have
X = 01fofs---x2F
= 1fafs- fE-fB41---. (16)
Therefore,
Un(|X]) = Uo(E)f2f3-- fE-
This and
EPNX) = 014 (E)fafs -+
prove
For(X) = EP(X)
for X > 1. Q.E.D.

We usually interpret any system in the class as a
floating-point representation consisting of sign, ex-
ponent, and significand. However, it is sometimes
more convenient to interpret it as F, because we can
uniquely identify a system only by ¢ without referring
to the normalization condition. The above simple the-
orem, which not only gives the generalization of the
floating-point and fixed-point interpretations but also
provides a basis for the conversion of a system from/to
the integer data type, is important also in this respect.

3.3 Extension

We must proceed to the case of X < 1. Among possible
extensions, we have adopted the following one in order
for the class to include URR as a special case. Since
the integer-fraction pair method is not effective in 0 <
X < 1, we can extend only the exponent-significand
pair method here. In the following, S denotes the 1’s
complement of a binary string S, i.e., if S has the form
5182+ SNn,8i € {0,1}, then

S =3%152---3N,

where 37 = 1 — s;. Further, for a finite N, (S) denotes
the 2’s complement of S of length N. For an infinite

N, if there exists an integer j such that s; = 1 and
Sj41 = Sj42--- = 0, then (S) is the concatenation of
(s182---s;) and infinite zeros; otherwise, (S)y=S5.

For 0 < X < 1, the sign bit Sx and the exponent
sign bit Sg(x) are both fixed to 0 according to (6).

Under the condition (2), noting that the inequalities
0 < X < 1 correspond to E < 0, define

ED(X) = 00, (~E+ Dfafs--- (17)
for 0 < X < 1 and (7). For the condition (3), define

ER(X) = 00U;(E - Dfafz--- (18)

for 0 < X < 1 and (10), since £ < —1.

To conclude the definitions, we must deal with the case
X < 0. For either the condition (2) or (3), the exten-
sion is quite straightforward, that is, for X <0

E(X) =
EQ(X)

which are consistent with (6).

< ED(=X) >,
< ED(=X) >,

(19)
(20)

In all the definitions mentioned above, every system
is defined as a semi-infinite binary string. However,
we can eliminate trailing zeros to yield a finite length
representation, and conversely any finite length repre-
sentation is interpreted as that extended to the right
with infinite extra zeros.

4 URR System

Although the URR system [7] has several desirable
properties as was mentioned in Section 1, its preci-
sion decreases rapidly as a number to be represented
increases. Since the original definition of URR uses
a bisection method, it is not easy to consider the im-
provements along the line with the definition. In the
proposed class, 583)(X) is identical with URR. In this
section, we will first cite the original definition of URR
as it is in order to emphasize the distinction between
both the ways of definition. Then, we will give a brief
remark on the identity of 8(()3)(X) with URR.

In the original definition of URR, a binary string S
corresponds to a semi-closed interval, say |[a, b), which
is represented as I(S). This interval is then divided
into two intervals [a,c) and [c,b) by a third value c,
which is determined by the following four steps.

(a) Rough cut
I(1) = [-0,0) and I(0) = [0, +00).

1(10) = [—o0,-1),I(11) = [-1,0),
1(00) = [0, 1), and I(01) = [1,400).

1(100) = [~00,2), 1(101) = [-2,—1)

1(110) = [~1,-0.5), I(111) = [-0.5,0),
Igooog = [0,0.5), 1(001) = [0.5,1),
10010) = [1.2), and I(011) = {2, +00).

114

After the last eight subdivisions, the procedure
proceeds to the step (b) for those in which the 2nd
bit is equal to the 3rd bit. Otherwise, it proceeds
directly to the equal-difference cut (step(d)).
(b) Double-exponential cut
Let pt(m) and p~(m) denote 22" and 2777, re-
spectively. If m > 0, the interval is partitioned
recursively as:

H(10742) = [o0, ~p* (m)) at — p*(m+ 1)
1(11m+2) = [-p~(m),0) at —p~(m+1),
1(00™+2) = [0,p™ (m)) at p~(m + 1),
1(01™+2) = [p*(m), +00) at p*(m+1)

with incrementing m by one until one of the fol-
lowing intervals is obtained:

1(10m+21) = [-p*(m + 1), =p*(m)),
1(11m%20) = [-p~ (m), —p~(m + 1),
1(00™+21) = [p~(m + 1),p~(m)),
I(Ol”‘”()) = [pt(m),pt(m+1)),

where neither 0 nor +oo are included at the
bounds of the interval.

(¢) Equal-ratio cut
The interval I(S) = [a, b) is divided at Vab as
1(S50) = [a,V/ab) and I(S1) = [Vab,b).

This is performed m times for the final value of m
in step (b). After the completion of this cut, the
ratio of the upper bound to the lower bound is 2.

(d)

Equal-difference cut
Each interval is divided at (a 4+ b)/2 as

1(S0) = [a,(a +b)/2) and I(51) = [(a + b)/2,b).
This is performed an arbitrary number of times

until the desired binary representation is ob-
tained.

It is obvious that I(S0F) at k — oo converges to the
lower bound of the interval. This is denoted by V(S).
That is, for I(S) = [a,b),
V(S) = lim I(S0*) = a.
k—o0
For example, the representation of 7.5 in the system is
as follows.
— rough cut
I(011) = [2, +00),
— double-exponential cut
I(0111) = [4, 400},
1(01110) = {4, 16),

— equal-ratio cut

1(011100) = [4,8),
— equal-difference cut

1(0111001) = [6,8),

1(01110011) = [7,8),
1(011100111) = [7.5,8).

Consequently, V(011100111) = 7.5.

Here, we note how 7.5 is represented in our class. Since
75 = 22 x (15/8) = 7+ 0.5, and 15/8 and 0.5 are
represented by 1.111 and 0.1 respectively in the fixed-
point binary system, we have

£8(7.5) = 01-1100- 111 = 011100111
and
Foo(7.5) = 01-110011 - 1 = 011100111

because Ug(2) = 1100 and Ugo(7) = 110011, In these

three systems, i.e., URR, 883), and Foo, 7.5 Is repre-
sented by 011100111.

It is not so difficult to show that the URR system

falls on Sés)(X) in the proposed class. As an example,
we give a remark only on the case with X > 2. Let
la denote the ordinary binary representation of the
exponent E of X € [p*(m),p*(m + 1)). Under the
condition (3), the length of a is m bits. Since U (E) =
1Wo(E) = 11U (ja])a = 1™+ 10a, we have

EP(X) = 01 +20af, fo - (21)
for X > 2 and (10). In (21), it is quite obvious that
the string fif--- corresponds to the equal-difference
cut. Noting that the exponent E of X > 2 can be
represented as 2™ + n with n = 0,1,...,2™ — 1, we
see that URR encodes m by the unary encoding in
the double-exponential cut and n as an m-bit binary
number in the equal-ratio cut. Thus, it follows that
the string « in (21) corresponds to the equal-ratio cut

of URR.
The identity of URR and 8(()3)(X) can be proved also

in an information theoretical manner. It is known
that if a representation of the integers with a given
length function satisfies the conditions (C1)-(C3) then
the representation is unique. Based on this fact, the

present author [16] has shown that URR and S(()s)(X)

are the same.

5 Representation Errors

When we use fixed length words to implement a sys-
tem in our class, it is impossible to represent all the
real numbers, and therefore representation errors may
occur. Let A(X) denote the difference between a value

115

X intended for the representation and the value corre-
sponding to the bit pattern with a fixed length. We will
evaluate the error characteristics by the maximum rel-
ative error Er(X) = A(X)/X, where X corresponds
to the mid-point between two discrete points.

In evaluating the error characteristics, we will use the

formats F, instead of 852) or 8,(,3), because F,s are
independent of the normalization condition. If 64-bit
words are used to represent F,(X), we have from (12)

log |Er(X)] = [Us(|X))| - 63— log X, (22)
where log(-) means logy(-). We must find an efficient
representation U, for all over the natural numbers so
as to gain higher precision. Of course, however, no
representation of the integers is optimal in the sense
that it attains the minimum length of representation
for any integer.

Let L, (i) denote the length of U, (i) in bits. If we set
I = |log?], then we have, for example,

Lo(i) = 20+1, (23)
Loo(i) = { Lt 2log] + 2 gg:;;% (24)
Lon(i) = I+ [log(I+1)]

+2[loglog 2(1 +1)] + 1. (25)

Define

logi = logi,
log®i = loglog* Vi for k>2
and .
log™ i = mz_: log™® i + 21og(™) 4. (26)
k=1

From the definitions of the type-0 and type-1 transfor-
mations, the difference between L,(:) and log™ i for
m = |o| is upperbounded by a constant which is in-
dependent of i. This is denoted by L, (i) = log™i.
Naturally, this is true of (23), (24), and (25).

In order to evaluate the efficiency of Uy, let us consider
the representations ® and 2 of the integers which are
defined by

o(0) 0,
®(i) = 1¥(lalja fori>1 (27)
and
Q) = ®(la))a fori>1, (28)

where an integer i € N* has a binary representation
la [9). Some examples of the representation {2 are
shown in the rightmost column in Table 1. The repre-
sentation § satisfies the conditions (C1)-(C4) and we
can define new number representation systems:

ER(X) = 018(E) fifs - ..

for X > 1, (1), and (10), and
Fa(X) = 01Q([X)bsbs . ..

for X > 1 and (5). Following the proof of Theorem

1, it can be easily shown that Sés)(X) = Fa(X) for
X > 1. Since |a| ~ logi for an integer i whose binary
representation is la, and

[®(7)| ~ |®(log 7)| + log i

from (27), the length of Q is represented by
[Q(i)] ~ log"i
s

logi+ log(z) i+ log(s) i+,

where only the positive terms are included in the sum.
Comparing this with (26), we can conclude that, for
any representation F,, there exists a positive number
Xm such that higher precision than Fq(X) is never
realized by TU(X% for X > X,,.

This observation, however, is quite unsatisfactory to
compare exact relative error characteristics for a prac-
tical range of X. To make an exact comparison, we
have derived the lengths of representations of the in-
tegers and plotted the relative errors as the functions
of log X for X > 1. Figure 2 shows two examples of
|Us([X])|— 63— [log X | and |Q(| X)] — 63— [log X .
In order to avoid dense and hard-to-read results, these
staircase functions are plotted instead of (22) and other
examples are eliminated. Figure 2 shows that the rep-

log | Er(X)]
-32F
-36r
—40r
—44r
—48 F
-~
—52r
=561 £ ——— Foo(X) (URR)
--------- Fa(X
—60F ﬂ()
p— .7:()11()()
—64 L L L L 1 L L J
01 16 256 4096 65536
log X

Figure 2: Comparison of representation errors.

116

resentation Fpy1(X) = Séf)(X) has relatively high pre-
cision for medium values of X. In comparison with
other systems in the proposed class, Fg;1(X) has still
higher precision for a wide range of X. In fact, if we
imagine a representation of the integers which attains
the minimum length of the three representations in
Fig.2, i.e.,

L(3) = min{Loo(%), Lo11(2), |27)|},

then the corresponding Kraft sum exceeds unity even
for the small values of 7, that is,

2!6

ZQ-L(” > 1.
i=1

This suggests that it is not easy to improve the preci-
sion of the representation Fo;,(X).

6 Conclusion

This paper has presented a class of floating-point
number representation systems with self-delimiting
variable-length exponent field. Our systems are all
available even for those numbers whose exponent are
greater than 2'2, which we must give up representing
in most of conventional systems.

It should be noted that, for a fixed length word, the
total number of representable numbers is the same,
whether the system is fixed-point, floating-pont, or any
other. Thus, in addition to the development of new
systems, it is important to consider the efficient and
systematic use of the word. To do this and to evaluate
the performance, we have incorporated the informa-
tion theoretical notions such as the Kraft inequality.
Consequently, we have succeeded in finding a superior
system in precision, because, in the proposed class,
the representation errors can be characterized by the
length function of an underlying representation of the
integers.

In any system of the proposed class, once determined
the boundary between the exponent and significand,
the arithmetic operations can be performed just as
if the operands were conventional floating-point num-
bers. However, the determination of the boundary is
slightly complicated in comparison with the conven-
tional systems. Thus, there still remains much work
for future exploration in finding more direct methods
of arithmetic operations or in implementing arithmetic
by hardware.

Acknowledgment

The author would like to thank Prof. M. Iri of the
University of Tokyo for his continued interest and en-
couragement.

References

[1] Apostolico, A. and Fraenkel, A. S.: “Robust
transmission of unbounded strings using Fi-
bonacci representations,” IEEE Trans. Inform.
Theory, Vol.IT-33, No.2, pp.238-245, 1987.

(2

3]

&)

Clenshaw, C. W. and Olver, F. W. J.: “Beyond
floating point,” J. ACM, Vol.31, No.2, pp-319-
328, 1984.

Clenshaw, C. W. and Olver, F. W. J.: “Level-
index arithmetic operations,” SIAM J. Numer.
Anal., Vol.24, No.2, pp.470-485, 1987.

Elias, P.: “Universal codeword sets and repre-
sentations of the integers,” IEEE Trans. Inform.
Theory, Vol IT-21, No.2, pp.194-203, 1975.

Even, S and Rodeh, M.: “Economical encod-
ing of commas between strings,” Commun. ACM,
Vol.21, No.4, pp.315-317, 1978.

Gallager, R. G.: Information theory and reliable
communication, Wiley, New York, 1986.

Hamada, H.: “Data length independent real num-
ber representation based on double exponential
cut,” J. Inform. Process., Vol.10, No.l, pp.1-6,
1986.

IBM: IBM System/870 Principles of Operation,
GA22-7000-8, 1981.

Knuth, D. E.: “Supernatural Numbers,” The
Mathematical Gardner (D. A. Klarner, ed),
Prindle Weber and Schmidt, Boston, pp.310-325,
1980.

117

(10]

(1]

(12]

(13]

(14]

(15

-

(16]

Knuth, D. E.: The Art of Computer Program-
ming, 2: Seminumerical Algorithms, 2nd. ed.
Addison-Wesley, Reading, Mass, 1981.

Lozier, D. W. and Olver, F. W. J.: “Closure and
precision in level-index arithmetic,” SIAM J. Nu-
mer. Anal., Vol.27, No.5, pp.1295-1304, 1990.

Matsui, S. and Iri, M.: “An overflow/underflow-
free floating-point representation of numbers,” J.
Inform. Process., Vol.4, No.3, pp-123-133, 1981.

Matula, D. W. and Kornerup, F.: “An order pre-
serving finite binary encoding of the rationals,”
Proc. 6th IEEE Symposium on Computer Arith-
metic, pp.201-209, 1983.

Morris, R.: “Tapered floating point: a new
floating-point representation,” IEEE Trans. Com-
put., Vol.C-20, No.6, pp.1578-1579, 1971.

Stevenson, D. et al.: “A proposed standard for bi-
nary floating-point arithmetic,” IEEE Computer,
Vol.14, No.3, pp.51-62, 1981.

Yokoo, H.: “A class of number representation
systems based on multiple exponential cut (in
Japanese),” Trans. of the Institute of Electron-
ics, Information and Commaunication Engineers,
Vol.J72-A, No.12, pp.1998-2004, 1989.

