Arithmetic for Digital Neural Networks

D. Zhang, G. A. Jullien, and W. C. Miller
VLSI Research Group
Department of Electrical Engineering
University of Windsor
Windsor, Ontario, CANADA N9B 3P4

Abstract

This paper describes the implementation of large input
digital neurons using designs based on parallel counters.
The implementation of the design uses a two-cell library,
in which each cell is implemented using "Switching
Trees” which are pipelined binary trees of n-channel
transistors. Results obtained from initial switching trees
realized with a 3-um CMOS process indicate that the
design is capable of being pipelined at 40 MH:z sample
rates with better performance expected for more advanced
technologies. It appears feasible to develop a wafer scale
implementation with 2000 neurons (each with 1000
inputs) that would perform over 3 x 102 additions/second.

1 Introduction

Over the past several years, neural networks have become
a subject of great interest due to their massive parallelism,
modularity, and robustness. Current research in the area
of neural networks embraces modeling, algorithms,
architectures, and implementations [11, [2].

There have been a variety of implementation approaches
for neural networks, including software and hardware 31,
electronic and optical implementations [4], VLSI [5], and
discrete component realizations. The real promise for
applications of neural networks currently lies in
specialized hardware, in particular VLSI or WSI
implementations that achieve high levels of
computational performance with modest development
effort [6].

The high interconnectivity and relatively low signal
precision requirements of neural networks appear well
tailored to analog realizations. With the increasing size of
neural networks, however, it is becoming increasingly
difficult to achieve acceptable matching of gains and
thresholds on the analog integrated circuits. On the other
hand digital realizations, which superficially appear to be
inferior in terms of computational density, have

CH3015-5/91/0000/0058$01.00 © 1991 IEEE

58

Earl Swartzlander, Jr.
Dept. of Electrical and Computer Engineering
University of Texas
Austin, TX 78712
USA

advantages of flexibility in terms of programming for a
variety of architectures and learning strategies, as well as
simplifying the memory function. Currently, there is a
strong development effort, to implement neural networks
in VLSI using digital technology [7]-[9].

In digital implementations the requirements for parallcl
digital arithmetic computation are severe. As an example,
for a fully connected layered network with two layers and
n neurons per layer, each neuron is required to form an
inner product of n elements using 1-bit binary input lines
and m-bit weights (e.g., m=16). Thus, a key problem for
neuron design is to build an efficient multi-input gated
adder structure suitable for m-bit inputs. An interesting
approach is to use a parallel counter [10]-[12], and this
paper presents such an implementation, using a new
pipelined dynamic CMOS logic family based on
Switching Trees.

2 Neural Networks Implemented with
Parallel Counters

A three input neural network is shown in Figure 1. The
k-th digital neuron on the i-th layer of the n neuron/layer
neural network evaluates the following inner product:

n-1
Yit1,k = Fu(Wink + _ZOYi,j Wiik)
J:

Where: Y;; (for j=0,1,...,n-1) is the input vector and
Wi jk is the weight vector, and F,;is a non-linear
function. When the input vector consists of one bit
binary components, the sum of products reduces to a
multioperand addition. A quasi serial [11], [12] realization
of a 1000 input neuron is shown on Figure 2. The
weights, Wj ; , are stored in recirculating shift registers
that are accessed beginning with the LSB. A 1010 input
parallel counter sums the 1000 data inputs, Wik (for
J=0, 1,...,999), the weight that sets the neuron's threshold
W 1000,k, and the nine carry bits that arise in the
counting process. A process was given in [10] for the
implementation of 2n + 1 input parallel counters with

Figure 1. Example of a Two Layer Fully
Connected Neural Network.

PARALLEL
COUNTER

Yirt k

Figure 2.

Artificial Neuron Implementation.

two n input parallel counters. This process can be applied
recursively resulting in an implementation that uses only
full adders (which are in fact three input parallel counters).
A 1010 input parallel counter constructed with the
recursive procedure uses 1000 full adders and requires nine
adder delays to generate the LSB of the count and 17 adder
delays to generate the MSB of the count. In succeeding
sections of this paper, switching trees are used to
construct a significantly faster counter that is comparable
in complexity.

59

3 Switching Tree Implementation

Implementation of the parallel counter is based on the
application of switching trees [13]. An unminimized
switching tree is a binary decision tree, directly
implemented as an n-channel MOSFET logic block in a
complex CMOS pipelined dynamic gate circuit. We
denote the tree as a graph, G={X, V, L}, where X is the
edge set (NMOS transistors), V is the vertex set
(interconnecting nodes), and L is the link set (shorting
links) of G. Let {xj, x'; |i=0, 1, ..., n-1} € X, where x;
and x; are defined as two different directions,\ (n-channel
transistor driven by the logical complement) and /(-
channel transistor driven by the logical true), respectively.
Let {vi |i=0, 1, ..., n} € V, where vg is a root and vy, is
a leaf. Let {vj vj | i,j =0, 1, ..., n} € L, where a
link, vj = Vs is denoted as a dotted line from vj to v;.

A path, P, is a connection from the root, v, to a leaf, vy,
constructed by the edges and the links. A 1-path
corresponds to programmed bits in the truth table of the
logic function. In a switching tree, all true paths are 1-
path and complement paths do not terminate at the bottom
edge. A height of the tree is the number of edges of the
longest path (only including the maximum edges). A
link, wvj = vj, is an connection between vj and vj if
these vertices are equivalent. Note that all leaves can be
linked.

Given the truth table of a binary function, a switching tree
can be constructed, and by applying simple graph theory
rules, a minimized tree can be obtained. It is interesting
that the same concept was introduced by Shannon [14] for
implementing relay logic over 50 years ago. The current
minimization procedures and optimization constraints are,
however, somewhat different. The switching tree can be
directly implemented by a form of pipelined dynamic
logic. By using such a direct mapping procedure, the
design is optimized for specific silicon cost functions such
as area and time. A direct constraint is the height of the
switching tree. This height is optimized by balancing the
conflicting requirements of area minimization, charge
sharing, noise immunity, pipeline cycle time and pipeline
latency against the efficiencies inherent in the
decomposition of the problem at hand. The designs
presented in this paper are based on a switching tree height
of seven transistors; this number yields immediate
efficiencies in the parallel counter decomposition, with a
respectable 25 ns pipeline period for a 3-um CMOS
process.

The pipeline structure used here is based on work by Yuen
and Svennson [15], in true single phase (TSP) clocking
strategies. The implementation shown here only uses n-

channel transistor logic networks (the switching tree).
The p-channel output stage is simply an inverter function
instead of a p-channel tree. Although the TSP clock
strategy was originally employed to obtain clocking
periods of only a few ns, the present implementation
trades such high clock rates for increased complexity of
switching logic at each evaluation node, and hence a much
smaller number of series nodes to complete a given logic
function. The latency of these systems will typically be
lower than that of applying the TSP clocking to
minimum complexity evaluating nodes (e.g., 2-input
gates), even though the clock rate is slower. From
simulation experiments, it also has been determined that
the pipelining of complex single evaluation nodes can be
performed at higher throughput rates than by using
Domino logic evaluation stages between pipeline latches.
These design decisions are based on simulation and a large
amount of silicon verification performed over the past
several years with the 3-um CMOS process. The
simulations are based on mask extracted data with semi-
empirical (Ievel-3) SPICE models tuned from fabrication
tests of individual transistors. A more aggressive (i.e.,
sub-micron CMOS) technology may be expected to
improve the performance significantly.

4 Counter Cell Design

A single stage dynamic logic cell is defined as a building
element for switching tree implementations. Each node of
the logic is pipelined; a switching tree structure is used as
the complex path to ground for that node. Given the 7-
transistor height for the switching tree, two cells serve as
the basis for the large parallel counter design.

4.1 Seven Input Parallel Counter Cell

A seven input parallel counter with three outputs is the
primary building block for large counter implementation.
Its switching tree structure and the corresponding domino
logic cell are shown in Figure 3. The inputs are xg, X,
X3, X3, X4, Xs, and X¢, and the outputs are s, (MSB), s;,
and so (LSB). This cell is used to perform most of the
reduction in the large parallel counter. It is attractive
because each use of it reduces the number of bits in the
bit matrix by four (there are seven inputs and three
outputs) whereas each use of a full adder in [10] only
reduces the number of bits by one.

4.2 Four Bit Word Adder Cell

The switching tree for a two word by four bit adder and its
domino logic cell are shown in Figure 4. This cell is
used to perform horizontal reduction in the counter. The

cell receives two four bit words X (= X3, X2, X;, Xg) and Y
(= ¥3, ¥2, Y1, Yo) and a carry ¢ as inputs and produces a
five bit output word, c4, (MSB) s, s, 51, So (LSB).

5 Parallel Counter Structure

Based on the seven input counter and the four bit word
adder cells, a large parallel counter design using switching
trees is developed in this section. A two stage reduction
process is employed: first the seven input parallel counter
cells are used to reduce the initial 1010 row matrix to a
matrix with no more than three elements in each column
(i.e., no more than three rows where the second and third
rows may be sparse). Then the four bit word adder cells
are used to complete the reduction to a single row.

5.1 Initial Reduction

The design process for the large parallel counter is similar
to that used by Dadda to develop high speed parallel
multipliers {16], [17]. Specifically since the seven input
counter has three outputs, the following sequence is used
to set the maximum height of the columns in the bit
matrices: 3, 7, 15, 35, 79, 183, 427, etc. Each entry is
determined by multiplying seven times the integer
quotient of the previous entry divided by three and adding
any remainder from the division. Thus the third entry
was determined as 7 L7/3] + 1 = 15. Instead of strictly
following Dadda’s method which involves reducing the
height of each column to no more than the appropriate
value from the sequence, greater levels of reduction were
performed in the early stages of the reduction. This
minimizes the number of latches required to pipeline the
counter.

The initial reduction is illustrated by the spread sheet of
Figure 5. Each Bold entry indicates the number of one
bit data located in that column of the matrix. For
example, the input matrix (MATRIX 0) has 1010 rows in
column 1. Immediately below that entry is the indication
that 144 seven input parallel counter cells (indicated as 7:3
counters on Figure 5) are used producing 146 outputs in
column 1, and 144 outputs each in columns 2 and 3.

The three sets of outputs from each group of parallel
counters are connected with a diagonal line on the
diagram. Thus MATRIX 1 has 144 rows in columns 2
and 3 and 146 rows in column 1, etc. Strict application
of Dadda’s method would have left column 1 with 182
entries and columns 2 and three with 138 entries each.
MATRIX 1 for this approach has 434 data whereas
Dadda’s approach produces a MATRIX 1 with 458 points.
Six stages of reduction employing 252 seven input

ity
NEatats

x2] "] x3 4
—1}—' 2 J}J 2

(b) Domino Logic.

Figure 3. Seven Input Parallel Counter.

parallel counter cells produce MATRIX 6 which is ten
columns wide and no more than three rows deep. This
output is sufficient to express a count of 2003 which
indicates that not all bits can be one simultaneously.
This error results from the use of seven input counters in
places where there are fewer than seven inputs.

5.2 Final Reduction

The final reduction shown in Figure 6 uses four four bit
word adders in three steps to reduce MATRIX 6 from
Figure 5 to a single eleven bit word (MATRIX 10). At
the present time, the design process for this final
reduction is a cut and try exercise in geometric reduction.

61

(b) Domino Logic.

Figure 4. Four Bit Word Adder.

5.3 Counter Performance

This counter is implemented with 252 seven input
parallel counters and four four bit word adders. Since each
of these cells is three to four times the complexity of a
full adder, the swiiching tree implementation and the full
adder implementation (which requires 1000 full adders) are
comparable in total complexity. The switching tree cells
are comparable in delay to a full adder, so that a non-
pipelined implementation of the switching tree counter
(which requires ten cell delays) should be nearly twice as
fast as the full adder implementation (which requires 17
full adder delays). Pipelined implementations should be
able to operate at comparable rates

COLUMN 9 8 7 6 5 4 3 2 1
MATRIX 0 1010
144-7:3 Counters 144-7:3
146
/
144
MATRIX 1 144 144 146
61-7:3 Counters 20-7:3 20-7:3 21-73
24 24 21
st ot
20 20 21
MATRIX 2 20 40 65 45 21
25-7:3 Counters 273 573 973 673 373
8 10 11 9 3
e
MATRIX 3 2 7 22 25 20 12 3
12-7:3 Counters 1-73 373 373 373 273
et e el
1 — 3 — 3/ 3/ 2 —
MATRIX 4 1 6 7 10 12 5 2 3
5-7:3 Counters 173 173 173 173 173
‘1| — : /: /:/ ? /1 2 3
R el Pl el Dol
MATRIX 5 1 3 3 3 6 7 1 2 3
5-7:3 Counters 173 173 173 173 1733 ’
}/:/:/ : - }/1 1 2 3
1= 1=
MATRIX 6 2 2 3 3 2 1 1 2 3
Figure 5. First Stage in the Bit Matrix Reduction Process.
MATRIX 7 5.4 Neural Network Performance
Each cycle of the neural network requires 25 cycles of the
parallel counter (16 for the 16 bit weights and nine to
. assimilate the carries). At a 25 ns clock rate, the time for
MATRIX 8 a neuron cycle is 625 ns. If a wafer scale integration
neural network is constructed with 2000 neurons (1000
on each of two layers) as appears feasible [14], the wafer
should be able to attain 3 x 10° neuron cycles/second.
T 1« o o o o o o Since each neuron cycle involves summing 1000
MATRIX 9 weighted data, the total computation rate is in excess of

MATRIX 10 S I I

Figure 6. Second Stage in the Bit Matrix

Reduction Process.

62

3 x 102 additions/second.

Conclusions

In this paper, a novel switching tree structure for parallel
counter arithmetic of digital neural networks is introduced.
Only two types of cells are used in the counters, with a
total of 256 cells required (252 seven input parallel

counters and four four bit word adders). Simulation
results suggest that the structure can achieve a total
computation rate in excess of 3 x 10'2 additions/second.

Acknowledgements

The first three authors acknowledge support from the
Natural Sciences and Engineering Research Council of
Canada for funding their portion of this work.

References

]

2]

3]

“1

[5]

(6]

(71

R. Eckmiller and C. V. D. Malsburg, Neural
Computers, Springer Verlag, 1988.

C. Lau and B. Widrow, eds., “Special Issues on
Neural Networks, I and I1,” Proceedings of the IEEE
Vol. 78, September and October, 1988.

J. Ghosh and K. Hwang, “Mapping Neural Networks
onto Message-Passing Multicomputers,” Journal of
Parallel and Distributed Computing, Vol. 5, 1988.

R. H. Nielsen, “Performance Limits of Optical,
Electro-Optical, and Electronic Neurocomputers,”
Proceedings of the SPIE, Vol. 634, pp. 277-306,
1986.

H. P. Graf and P. deVegvar, “A CMOS
Implementation of a Neural Network Model,”
Proceedings of the Stanford Conference on Advanced
Research on VLSI, MIT Press, pp. 351-367, 1987.

M. A. Sivilotti, M. R. Emerling and C. Mead,
“VLSI Architectures for Implementation of Neural
Networks,” Proceedings of the AIP Conference,
Vol. 151, P. 408, 1986.

H. P. Graf, L. D. Jackel and W. E. Hubbard, “VLSI
Implementation of a Neural Network Model,”

63

(8]

o]

[10]

[11]

(12]

(13}

[14]

(15]

[16]

(17

Computer, pp. 41-49, March, 1988.

D. Zhang, G. A. Jullien and W. C. Miller,
“Mapping Neural Networks onto Systolic Arrays,”
IEEE Transactions on Circuit and Systems, (in
print), 1990.

M. Griffin, et al., “An 11-Million Transistor Neural
Network Execution Engine,” IEEE International
Solid-State Circuits Conference Digest of Technical
Papers, pp. 180, 181, 313, 1991.

E. E. Swartzlander, Jr., “Parallel Counters,” IEEE
Transactions on Computers, Vol. C-22, pp. 1021-
1024, 1973.

E. E. Swartzlander, Jr., “The Quasi-Serial
Multiplier,” IEEE Transactions on Computers, Vol.
C-22, pp. 317-321, 1973.

E. E. Swartzlander, Jr., B. K. Gilbert, and I. S. Reed
“Inner Product Computers,” IEEE Transactions on
Computers, Vol. C-27, pp. 21-31, 1978.

D. Zhang, G. A. Jullien and W. C. Miller,
“Switching Tree Structures for VLSI
Implementations,” submitted to IEEE Transactions
on Computers, 1990.

C. E. Shannon, “A Symbolic Analysis of Relay and
Switching Circuits,” AIEE Transactions, Vol. 57,
pp. 713-723, 1938.

J. Yuan and C. Svennson, “High-Speed CMOS
Circuit Technique,” IEEE Journal of Solid-State
Circuits, Vol. 24, pp. 62-71, 1989.

L. Dadda, “Some Schemes for Parallel Multipliers,”
Alta Frequenza, Vol. 34, pp. 349-356, 1965.

L. Dadda, “On Parallel Digital Multipliers,” Alta
Frequenza, Vol. 45, pp. 574-580, 1976.

