BKM: A New Hardware Algorithm for
Complex Elementary Functions

Jean-Claude BAJARD, Sylvanus KLA and Jean-Michel MULLER

CNRS, Laboratoire LIP-IMAG, Ecole Normale Supérieure de Lyon
46 Allée d'Ttalie, 69364 Lyon Cedex 07 FRANCE

Abstract

A new algorithm for computing complex logarithms and
exponentials is proposed. This algorithm is based on shift-
and-add clementary steps, and it generalizes the CORDIC al-
gorithm. It can compute the usual real elementary func-
tions. This algorithm is more suitable for computations in
a redundant number system than CORDIC, since there is no
scaling factor for computation of trigonometric functions.

Index terms
Elementary functions, CORDIC.
1. Introduction

The point at stake here is the search for algorithms that ra-
pidly compute elemientary functions. Many methods have
been used, e.g. approximation by polynomials, Newton's
method, E-Method [4], and shift-and-add methods. The shi-
ft-and-add methods use simple elementary steps: additions,
and multiplications by a power of the radix of the number
system. They go back to the 17% century: Briggs used such

an algorithm for building the first tables of logarithms [9].
For instance, in radix 2, to compute Inx with approximate-
ly n significant bits, numerous methods [2], [7] consist of
finding a sequence dg=+1,0, such that x[]7_ (1 +dx 27k
= 1. Then In(x) =~ -Y%_ In(1+d;2%). Another important
shift-and-add method 1§ the CORDIC algorithm, introduced
by Volder [11] for computing trigonometric functions, and
generalized by Walther [12]. CORDIC has been implemen-
ted in many machines (e.g. Hewlett Packard's HP 35, Intel
8087). It consists of the following iteration:

Xp41 = Xp — mdn)’n 2‘0(")
Vne1 =Yn +dpX, 27t

Zn41 = Zp dnec'(n)

(n

m equals 0, 1 or -1, and dj, is equal to 1 or -1, so this itera-
tion is reduced to a few additions and shifts. The results and
the appropriate values of dj,, m and o(n) are given in Table
1. For a recent survey of CORDIC, see [S].

rotation mode vectoring mode o(n) ey scale
(dp = sign z,) (dp = - sign y,) factor K
m = X, — K (X €S 24 - Yo $in 7o) 2 2 |n tan'12°" * N14272
(circular) ¥n = K (yg €08 zg + x4 sin) K \/xo fl Yo Mo
Zn—> 2o + tan 'yo/Xg = 1.64676
m = X, =Xo X, =X n 2n no scale
(linear) Ya = Yo+ XoZo 23 = 20 + Yo/Xo factor
m = -1 X, = K (x cosh zg + yg sinh z,) N o(n)=n-k, |tanh!27?| 1= V1-2720
: " . K~Nx0-yo n=1
(hyperbolic) || y, - K (yo cosh zo + x, sinh zp) | " B (k = largest ~0.82816
" Zn=> 20 + ANDYY/X0| jnieoer such that 0.8
3%+ 142k 1<2n)

Table 1. Different functions computable using CORDIC.

The major drawback of CORDIC arises when performing
the iterations using a redundant number system. Such num-
ber systems are advantageous for quickly-performed arith-
metic, since they make it possible to perform carry-free ad-
ditions [1]. With these systems, dj, is difficult to evaluate.
For instance, assume that we are in the rotation and circular

1063-6889/93 $03.00 © 1993 IEEE

146

modes of CORDIC (see Table 1), and that numbers are re-
presented in radix 2 with digits in {-1,0, 1}. d,, equals the
sign of the most significant non zero digitof z,: to find its
value, we may have to examine all the digits of z,, and the
advantage of the redundant representation (constant time
elementary step) is lost. An alternative is to accept d, =0,

but with such a method the scale factor X is no longer con-
stant. K = [I;oy1+4227" is a constant if the dj's are
all equal to £1, but not if they can be 0. Many solutions
have been suggested to solve this problem. They lead to a
repetition of iterations in time [10], or in space [3]. To a-
void this, we need to work out a new algorithm. Through-
out this paper, we assume that we use a radix-2 usual or si-
gned-digit number system. The main advantage of our algo-
rithm (constant-time elementary step without scale factor)
appears if the signed-digit system is used. Extension to bi-
nary carry-save representation is simple.

Consider the basic step of CORDIC in circular mode (i.e.
(1) with m=1 and o(n)=n), and define the complex number
L, =x, +iy,. We get: L1 =L, (1+id,2"). This brings
us to a generalization of this algorithm: we could perform
multiplications by terms of the form (1+d,2™"), where the
dy's are complex numbers, chosen such that a multiplica-
tion by d,, can be reduced to a few additions. In this paper,
we study the following iteration, called BKM:

® Ly = Ln(1+dn2—")
Epiy=Eq—In(1+d,27")
withd, =-1,0, 1, -i, i, 1-i, 1+, -1-i, -1+i

In z is the number 7 = a+ib such that e! = e%(cos b +i sin b)
=z, with b lying in [-%,®).

If we find a sequence d, such that L, goes to 1, then we
obtain E, > E| +1n (L1): we call this iteration the L-
mode of the BKM algorithm. If we find a sequence dj, such
that E, goes to 0, then we obtain L, — L1eE1: we call
this iteration the E-mode of BKM. Therefore, in the next
sections, we focus on the problem of finding sequences dp
such that L, goes to 1 or such that E, goes to 0.

2. Computation of the complex expo-
nential function (E-mode)

For computing ef1 using BKM, one needs to find a seque-
nce dp € D = {-1,0,1,-i,i,i-1, i+1,-i-1,-i+1} such that the
sequence E;, of Eq. (2) goes to 0 as n goes to +oo. At the

outset, let us examine the numbers whose exponential can [J we assume that Ex belongs to [- s

Fig.1. The set A, and the convergence area of the E-mode.

In this section, we give an algorithm which computes the
sequence dp, for any E belonging to a rectangular set R;.
The algorithm uses a sequence Ry = [-5) ./}l +i [-r).r] of
rectangles, whose length goes to O as n goes 10 +eo, and
such that for any E, belonging to Rp, dp, is such that Ej .|
belongs to Rp41. dx is chosen by examining a few digits
of Ex and dy is chosen by examining a few digits of Ey

this allows a smple implementation of the choice of d),.

2.a. Choice of d,

Fig 2 shows the parameters involved in determining d;
This figure is close to the Robertson Diagrams that appear
in many division algorithms [6], [8]. In the following, we
call such a diagram a Robertson diagram.

E+l
Thil
/K/ .
% ln' = "n B
S 7 = —
4 A 1 A Q 1 \
de, ps 1 £ 4 (] & K
Y A A
(SO /4%
1

Fig. 2. The Robertson Diagram for E:

The diagram is constructed as follows:

] which is the

be computed. The set A = {3~ In(1+d,27") d, € D} of real part of Rp,. 5, and rxwﬂl be determmed later.
n=1

the numbers E1 such that there exists a sequence dp € D
satisfying E, — 0 is shown in Fig. 1.

EI and E, as Lhe real and imaginary parts of E,. We find:

2 .2
EX, =EZX “Lin 1+dX 27" 4| gX 4 gY” |2 72n
(3) n+l1 2 n n
-n
y Y_a¥tan-l| —2
En+l_En d"tan 1+d:2_"

QE :+1-Ex-%ln[l+d" 2~nH ((d" (dy)) —zn]

Define d_ and a‘y as the real and imaginary parts of dy and o he value of Ex

1 VS E is given by various straight

lines paramclnzed by a: and dy

{J An adequate value of dx is such that for any value of dy
(-1,00r +1), Ex +1 remams in the diagram” (i.e. E:+1 €
[-s: R) Themfore r , Iust be the largest value of

147

E': +1 corresponding to the straight line d, = 1 of Fig. 2.
That is, r: must satisfy: r 1 -r - In(142°"). Since the
length of R, goes to 0 as n goes to +o0, we deduce:

@ Z=3r m1+27¥)
Similarly, the lowest possible value for E: must cofres-
pond to the value obtained with dj, = -1+i. This gives:

6 = _%Z;;" In(1- 27441 4 372k41)

The terms A, Ay, B, and By, appearing in Fig. 2 are:
Ap=r, +In (127), Bp=-s;, +2-1(142°2),

An=- 5y, #2710 In 14277142-2041) and B,=r) |

In the appendix, we have proven that B, is less than A,

and that A, is less than B,. From this, for any E €

r’,‘J the following choices give Ex L€ b -5 el n +1]

if E} <B,thend} =-1

if B, S Ej < Apthen) =—1or0
if A, SEj <A, thend} =0

if A, < EJ < B, then d;; =0orl
if B, <Ej, then d =+1

2.b. Choice of d)

Fig 3 shows the diagram assigned to the choice of d,): .

E)rlnl
1
N
o/ ¢
.\\\) Y x e
7 47 v 2, AL Sx
D,
- DY ! 2, 124
|]] El);
[) 4]
D
I n
1
L
Y

n+1

Fig. 3. The Robertson Diagram for EZ

As previously, we want our choice to be independent
of the choice of d: From this, we deduce:

Zk- (1+2k]

The terms C,, and Dy, appearing in Fig. 3 are:

®

-n
-y -2 - -
® C=-r), +tan [1—2_"] and D, =r)

148

In the appendix, we prove that C, is less than D,. Thus,
for any E‘Z in ["'3’. , r}"] the following choices will hold:

if E} <-Dythen d} =-1

if -Dp <E) <-C,thend) =-lor0

if —C, SE) <Cythen d) =0

if C, SE) < Dy then d} =0orl

|if Dy < E)) then d} =+1

a0

Fig. 1 shows the rectangular domain R; where this
algorithm gives a correct sequence d, inscribed in the
domain A where such a sequence exists. The domain R is:

[-0.829802...,0.868876...1 +1.[-0.749780...,0.749780...]

2.c. The algorithm

Let us simplify the choice of dj,. Relations (7) and (10) in-
volve comparisons that may require the examination of all
the digits of the variables: we want to replace them by the
examination of a small number of digits. We are going to
find 3 constants A , A and C whose fractional parts have a
few digits only, say p; digits for A and A, and p; digits
for C, such that for every n:

2"B,<A-2"PL<A<2"A,
2"A, <ASA+27P1<2"B,
2"c,<CcsCc+27P2 <27,

an

Denote Ex the number obtamed by truncating 2”Elr after
its pptb fractional digit, and E the number obtained by
truncating 2"Ey after its poth fracuonal digit. We obtain,
from (7), (10), (11)

oif £ <A - 271 then E, <Ay : we can choose d, = -1
eif A sEisA then B, < E:SB,,: we can choose d;=0
eif 4 +27P1 sEi then AnSE:: wecanchoosed:= 1
(N.B. Since A , A, and E), have at most p; fractional di-
gits, it Ex > A -2PL men £, 24).

oifiﬁ <-C-2P2 then E,):S-C,, : we can choose &, = -1
eif -C SEi; <C then -D, SE: <Dy, we can choose a‘: =0
eifC + 2'p2s1§3: then C, <E) : we can choose) = 1.

In the appendix, we have shown that A = -1/2, A = 1/4, C
= 3/4, p1 = 3 and p; = 4 are convenient choices. This gives
the E-mode of the BKM algorithm:

BKM Algorithm - E-mode

0 Start with E; € Ry = {-0.829802...,+0.868876...] +
i -[-0.749780...,+0.749780...]

Lns=In(1+4,27")

Enyy =By - o(1+4,27")

2,
define £, as the number obtained by truncating the real
part of 2"E,, after its 34 fractional digit, and £, as the
number obtained by truncating the imaginary part of 2"E,
after its 4'h fractional digit.

Q Iterate:

with dp, = a':i + (d:, d’yl =-1, 0, 1), chosen as follows:

if EX <-% then d¥ =-1 if E) <-13/ then d) =-1
if - Y <EX<+}thend} =0 {if -34<E) <3 thend) =0
if EX 23/ then d} = +1 if EY 213/ then d) = +1

E
Q Result: L, — Lie !

In practice, instead of computing E, and examining the
first digits of o, =2"E,, one could directly compute the
sequence 041 =205 -2"1n (1+d,27").

2.d.

Let us estimate the number of iterations required to obtain
a given accuracy. We want to compute LleE 1 The sequen-
ce dj satisfies: et = 1 Tz, (1+4;277). After n iterations,

Number of iterations

we have computed Lll']:.'=1(1+d,-2"")‘ The relative error
made by approximating LleE ! by this value is:
lLleEl —14]];'=1(1+d,-2‘i)|_ | 1 |
E e ~i
LBt | | MZa(tea2™)]
One can show that this value is bounded by a term equiva-
lent to 2-". Thus, after n iterations of the E-mode of BKM,

we obtain a relative error approximately equal to 2°". So
the error behaviour of BKM is the same as that of CORDIC.

2.e.

12)

Number of constants stored

This algorithm requires the pre computation and storage of:

, 2 R
° 1n(1+df2"+1+(df2+d‘.’)2'2‘),(1',35,0';v =-1,0,1
-i
] tﬂn_l _2—.
1+d%27

so, we need to store 8 terms for each value of i. From sec-
tion 2.d, we deduce that, in order to obtain approximately n
accuracy binary digits, we need to store 8a constants.

),df=-1, 0,1

149

3. Computation of the complex loga-
rithm function (L-mode)

Computing In (L1) using BKM requires the calculation of a
sequence dy€ D = {-1,0,1,-i,i,i-1,i+1,-i-1,-i+1}, such that:

(13) Lps1=Lp(1+dp2") —1
Fig. 4 shows the set B={H:=1(l+ P

d, € D} of

the numbers L1 such that such a sequence dp, exists.

Domain where the
\ Convergence is
Setp Proven

Fig. 4 The set B, and the domain T where the
convergence of the algorithm is proven.

3.a
In the following, we use the norm lla+ibll = max {lal, Ib1}.
Define a sequence &, as: &, = 2" (L, - 1). We obtain:

(14) ns1 = 2(en + dp) + dnen2"+1

If we find a sequence dj, such that the terms &, are bounded,

then (13) will be satisfied. An intuitive solution is to cho-
ose dp, roughly equal to —&,. So, in this section, we consi-
der the following strategy which gives lle, || < 3/2:

A Straightforward strategy

e at step i, we examine the value €; obtained by trun-
cating the real and imaginary parts of ¢; after their ptb frac-
tional digits, where p is a small integer.

® d; is obtained by rounding the real and imaginary part
of -€; to the nearest integer. Since p is small, this is ea-
sily performed. If ligjll < 3/2, this choice will give d; € D.

If this algorithm actually gives lleyll < 3/2 for any n, then
the sequence dp, will fulfill (13). From Il €; - £ Il < 2P
andlld; + €; 1< 1/2, using (14), we deduce: lleps1 1l
<1+21-P+2-7*1id, e, 1. The norm II. 1 satisfies
llzz' 1< 2l z N z' M, therefore:

(15) fenst 11+ 21P 427421, I

If n >4, p >4, and if lie4ll <372, then, using (15), one can
prove that for any n >3, lle,ll <3/2. Thus, if we start the
iteration (14) at step 4, from &4 satisfying lle4ll <372, then
the strategy presented above will hold. This strategy allows
computation of logarithms in a very tiny domain only: we
can use it to compute In (Lg) if Hegll= 1116(Lg— DI
<3/2,i.e. if Ly € [1-3/32,143/32] +i.[-3/32,+3/32].

3.b Computation in a larger domain

We still study the sequence g = 2% (L — 1). Our purpose
is to start its evaluation with €; belonging to a domain
that will be given later, and to obtain, after n steps (n>3), a
value €41 such that Il £,,1 1< 3/2. After this, the strategy
of section 3.a can be used. The following algorithm was
found through simulations, before being proved.

BKM Algorithm - L-mode

U Start with L1 belonging to the trapezoid T delimited by
the straight lines x = 1/2, x = 1.3, y = x/2, y = -x/2.

Lnsy = Ly (1+d, 27")

Ep=E, —1n(1 +d,27")

Q Iterate:

with dp, = d: + ia‘:. (d:, d’); =-1,0, 1), chosen as follows:
® define t»:: and 6’: as the real and imaginary parts
of €, = 2" (L,-1), and £y and £ as the values obtained

by truncating these numbers after their 4 fractional digits.
® At step 1:

if & <=7 and % <& thend) =1-i
if & <74 and & -6/ thend) =1+i
if —%6SZ'1X and 816S€‘ly then dj = —i
if -6 <Ef and &) <9 thendy =i
if & <=7 and =3 <& < thend, =1
if —%6SE‘1X and —%Sélys%)_ thend) =0
e Atstepn,n>2:
if€) <-1/ thend} =1 if &) <1/ thend) =1
if - 4<Ey <) thendy =0 {if -1Yf <& <1 thend? =0
if Y/ <& thend* =-1 if /<& thend) =1

QO Result: E;, - E;+1In (L)

In practice, instead of computing L, one could directly
compute &, = 2" (L, - 1) using (14).

Proof of the algorithm: our goal is to show that if
L1€T, then there exists n >4 such that lig,ll <3/2. In order
to do this, we build a sequence S of bounding sets, such
that for any L1e T, g € S;. Our problem is reduced to
show that there exists n > 4 such that f, is included in the
square lizll < 3/2. At the outset, let us explain how the se-
quence ff is computed. Figures 5, and 6 show how Brs1 is
deduced from f. The example described in these figures is
imaginary: the "true” bounding sets are shown in Fig. 7.

U 31 is equal to 2(7-1), and By is defined as an aggregate
of convex polygons, represented by their vertices.

A step of the algorithm can be represented by a splitting of
the complex plane into 9 convex d-areas. The d-area asso-
ciated with 6 € D is the domain DA(6) such that if £, be-

longs to DA(6), then the algorithm gives dj = 8. For ins-
tance, if k22, then DA(-1-/) is the set of the complex
whose real and imaginary parts are greater than 1/2. In
DAC(9), the transformation &g, =2(e +6) + Sx2 %+l is a
similarity, i.e. the combination of a rotation and a multi-
plication by a real factor.

U Each convex polygon of B is splitted into sub-convex
polygons, obtained by intersecting it with the d-areas. Fig.
5 shows the bounding set at step &, and the various d-areas
(k 22), and the splitting of the polygons of .

Y <
y.

1
AT

Fig. § Left: The bounding set at step k
and the different d-areas (for k > 2)
right: The bounding set is split into convex

polygons following the d-areas

Broadly speaking, ;1 is obtained by computing the trans-
formation of each sub-convex polygon generated by the
splitting (the image of a polygon is obtained by computing
the image of its vertices). We must take into account that
d is deduced from &, and &}, which are obtained by trun-
cating the real and imaginary parts of & after their 4th frac-
tional digits. For instance, if &; = 'éia-i E% belongs to
DA(-1), this does not prove that & belongs to DA(-1).
Thus, to each sub-convex polygon, a "ribbon" of length
2-4 is added, so that if € belongs to the "old" sub-poly-
gon, then g belongs to the "new"” one. Then, for each new
sub-polygon, we compute the image of its vertices by the
similarity defined by the value of dj, assigned to the poly-
gon (Fig. 6). This gives the new bounding set By, 1.

Fig. 6 The iteration is applied to each of the vertices
of the sub-polygons, to obtain the new bounding set
The proof that g, € B for any Lie T is obvious. Thus, if
we find n >4 such that all the vertices of the sub-convex
polygons of 3, are in the square lizll < 3/2, then the algori-
thm is proven. The adequate value of n is 6: this leads to a
number of vertices much too large to be verified manually.
We used a program written in ML for computing all the
vertices of B¢, using exact rational arithmetic. Fig. 7
shows the bounding sets f3;, B4 and B¢. Using this pro-

gram, we have verified that all the vertices of S¢ are inclu-
ded in the square llzIl < 3/2. Fig. 4 shows the domain T
where the convergence of the algorithm is proven.

Step 1 Step 4

Fig. 7 The bounding sets B1. Ba and Bs.
3.c Number of iterations

As we did in section 2.d for the E-mode, let us estimate the

number of iterations required to obtain a given accuracy.
The sequence d; defined by the algorithm satisfies:

In(L;)=-Xy In(1+d,27)
after n iterations of the L-mode of BKM, we have computed
E —2:-11"(1+dk2_k)' The absolute error made by ap-
proximating E; + In (L1) by this value is:

(16) error (n) = |Z;°=n " ln(l +dy 2~k)I

Using the Taylor expansion of the logarithm, one can
show that this expression is bounded by a term equivalent
t0 2" 2. Therefore, in order to obtain an absolute error
less than 27, one needs to perform n+1 iterations.

4. Application: computation of ele-
mentary functions

As shown in the previous sections, the BKM algorithm
makes it possible to compute the following functions:

©® in E-mode, LleEl, where E1 belongs to the domain
[-0.829802,+0.868876] + i -[-0.749780,+0.749780].

® in L-mode, E; + In (L), where L) belongs to the tra-
pezoid T delimited by the straight lines x = 1/2, x = 1.3,
y =+x/2 (the actual convergence domain looks larger, but
the algorithm is proven only for Ly € 7).

Therefore, using BKM, one can compute the following
functions of real variables:

4.a Functions computable using one mode of
BKM.

Q real sine and cosine functions. In the E-mode of
BKM, one can compute the exponential of Eq = i (where
@ is a real number), and obtain L, = cosf + i sinf + 2",
Q real exponential function. If Eq is a real number
belonging to [-0.829802...,+0.868876...], the E-mode of
BKM will give a value L, equal to LleElﬁ'".

O real logarithm. If L) is a real number belonging to
T, the E-mode of BKM will give E, = E1 + In (L1)12".
Furthermore, in this case, the iteration is reduced to Brigg's
algorithm, and the algorithm works for L €
[;‘;,(Hz‘")"l, o a(1-27) '] =[0.419, 1.731).

U 2-D rotations. As pointed out in many papers dea-
ling with CORDIC (e.g. [5]), performing rotations is uscful
for Fast Fourier Transformation, Digital Filtering, and
Matrix Computations. The vector (¢ d)! obtained by rota-
ting the 2-D vector (@ b)! of an angle 8 is computed using
the E-mode of BKM, with L1 =a +ib and E; = i6.

Q real tan~! function. From the relation:

-l-ln(xz +y2)+itan_l% mod(2ix) if x>0

1 =
Io(x+5) lln(24 y2)+ i(n +tan™! l) mod(2im) ifx<0

2 x

one can deduce that, if x + iy belongs to the convergence
domain of the L-mode of BKM, then tan-ly/x is the imagi-
nary part of the limit value of E,, while 0.5 In (x2 +y2) is
its real part, assuming that the L.-mode is used with E; =0
and Li=x+iy.

4.b Functions computable using two consecu-
tive modes of BKM.

U Complex multiplication: The product zf is evalua-
ted as z.e108 1, see fig. 8.

o, El < B O
oY B E g"g’ EX- o

a—L’,‘E L3 o 7 La-u=achd
b—LY ~ LA~ d—? Li—v=adsbe

u+iv = (a+ib)(c+id)
Fig. 8 Complex multiplication
In fact, one can compute zte¥, where z, ¢ and u are complex
numbers, using the same operator, by choosing E’lt equal to
the real part of u, and Ef equal to its imaginary part.
Q Computation of xVa and yVa in parallel (x, y
and a are real numbers): we use the relation Va = el/2 In 4

1-digit
right shift

F g B —Bg B0

—E T E- T e o

a—L’{i L LT Li— xva

0—y = y1¥ Lf-ya

Fig. 9 Computation of xVa and yVa in parallel

1 Computation of lengths and normalization of
2D-vectors: The L-mode of BKM allows the computation
of F = 122In (a2+b2) = InV a2 + b2, where a and b are real
numbers. Using the E-mode of BKM, we can compute ef,
oreF. See Fig. 10. The normalization of 2D vectors (i.e.

the computation of x/ Va2 + b2 and y / Va2 + b2, where
X, y, a and b are real numbers) is a basic step of Givens'
QR factorization algorithm.

B o o ©
o_e’{'é (34 . O_E’{é El— o
a—.L’:’_.] i X—L’,(ul-] L= xd b
b—{} W= vy LY vy 5
change of sign
o, e-o—e o o o
0oe B e} o B g} o
a_q".i U= x=di) E ey -
q m a +
L [R (A O

Fig. 10 Lengths and normalization of 2D-vectors

5. Comparison with CORDIC

To obtain p significant bits, CORDIC and BKM roughly
need p iterations. BKM requires the storage of 8p constants,
while CORDIC requires the storage of p constants. Since
these constants are represented by p-digits, both algorithms
need a O(p?) area for storage of them. Both algorithms need
a shifter able to perform an n-position shift at step n. A
barrel shifter makes it possible to perform a n-position
shift (for any n < p) in constant time, and lies in an area
O(n2). Since the area complexity of most adders is better
than O(n2), we deduce that the area complexity of CORDIC
and BKM is O(n2). The computations performed during a
BKM iteration are:

® For the variable E,:

x 1 —n+1 2 2\,
En+1—E:—Eln|:l+d:2 nr +[d; +d) Jz "
y Y — g ran—1 -

E =E; —d- tan” | ———

n+1 n n 1+d:2""

- A
a:+1=2a;—2"1n[1+d,{2 "+‘+[d: +d))2 2"]
Y ey _antl gy, 1| 27"
a =2a; ~2 d’ tan s

n+l1 n n {1+d:2—"

if instead of computing E,, and examining the first digits of
oy = 2"E,, we directly compute ay,.

152

® For the variable L,:

x _gx X 7 X Yy n

L= L +(dn Ln ‘dnl‘n)z

Yy _p Yyx g%y \hn
Ln+1-L"+(dnLn+dnLn)2

X _ x X X X Y Y \h—n+l
eMl-2(£n+dn)+(dnen—dne")2

or
£ = 2(8'); + d,"')+ (d:ez + d,’;e;)f”'”

if instead of computing L, and examining the first digits of
&y, =2" (L, - 1), we directly compute &p.

So the BKM iterations look more complicated than the
CORDIC iterations. As a matter of fact, in order to compare
CORDIC and BKM, we have to assume that we use a redun-
dant number system. Using such a system, the time comp-
lexities of both algorithms are O(p). As pointed out in ma-
ny papers dealing with CORDIC, efficient use of CORDIC
with such a number system requires a doubling of the itera-
tions in space [3] or in time {10]. For instance, doubling
the CORDIC iterations in time gives:

- 2 -2n-2

27" —dix,2 "
“2n—

_d,%)’nz n-2

—n-1

Xn4l = Xp —dnyy
Yn+1 = Yn + dnXy 27"
Zntl =2 — 24y tan”'2

which is at least as complex as the BKM iteration (because
at step n one needs to perform an n position shift and a 2n-
2 position shift: this requires a larger shifter). Doubling the
iterations in space requires more control: in the branching
CORDIC method proposed by Duprat and Muller [3], one
needs to compare at each step the values given by two
CORDIC modules. Furthermore, doubling the iterations
makes it possible to obtain a constant scaling factor, but
this factor remains different from 1, therefore, for compu-
ting many functions, one needs to perform a multiplication
after the CORDIC iterations. So, although both methods
have the same time and space complexities, BKM looks
more interesting when using a redundant number system.

6.

We have proposed a new algorithm for the computation of
many elementary functions (complex exponential and loga-
rithms, complex multiplication, real functions sin, cos,
tan-ly/x, In 62+ y2), xVa, x Va2 + b2, x [Va2 + b2,
2D rotations). This algorithm matches the CORDIC algori-
thm, since it allows the use of a redundant number system
without any scaling factor problem. Moreover, several
functions (complex exponentials and logarithms, complex
multiplications), are directly computable using one or two
BKM operations, while this is not true using CORDIC.

Conclusion

References

[1]1 A. Avizienis, Signed-digit number representations
for fast parallel arithmetic, IRE Transactions on electronic
computers, 10, pp. 389-400, 1961.

[21 T.C. Chen, Automatic Computation of
Exponentials, Logarithms, Ratios and Square Roots, IBM
J. Res. Develop, 16, pp 380-388, 1972.

[31 J. Duprat and J.M. Muller, The CORDIC
Algorithm: new results for fast VLSI implementation, to
appear in IEEE Trans. Computers.

[4] M.D. Ercegovac, A general hardware-oriented me-
thod for evaluation of functions and computations in a digi-
tal computer, IEEE Transactions on Computers, Vol. C-
26 No 7, July 1977, pp 667-680.

{51 Y.H. Hu, CORDIC-based VLSI Architectures for
Digital Signal Processing, IEEE Signal Processing
Magazine, pp 16-35, July 1992.

(6] K.Hwang, Computer Arithmetic principles, archi-
tecture and design, J. Wiley&Sons Inc., New-York, 1979.

[71 B. De Lugish, A class of algorithms for automatic
evaluation of functions and computations in a digital com-
puter, PhD dissertation, Department of Computer Science,
Univ. of Illinois, Urbana, June 1970.

[8] J.E. Robertson, A new class of digital division
methods, IRE Transactions on Electronic Computers, Vol.
EC-17, Sept. 1958.

(91 H.E. Salzer, radix tables for finding the logarithm
of any number of 25 decimal places, in Tables of functions
and of zeros of functions, National Bureau of Standards
Applied Mathematics Series No 37, 1954, pp 143-144.

[10] N. Takagi, T. Asada and S. Yajima, Redundant
CORDIC methods with a constant scale factor, IEEE Trans.
on Computers, Vol. 40 No 9, pp 989-995, Sept. 1991.

[11] J. Volder, The CORDIC Computing technique,
IRE Transactions on Computers, Sept. 1959,

[12] J. Walther, A unified algorithm for elementary
Sunctions, Joint Computer Conf. proc., Vol. 38, 1971.

Appendix

Computation of the parameters occurring in the
E-mode.

We want to prove that B, < Ap , Ap < By, Cn < Dj , and
to find two numbers A and A whose binary representations
have only p; fractional digits, and a py fractional digit
number C, such that for any n
B, <A -2P1< X <2n 3,
MA, <A<A +2pls 2n B,
amc, <c<c+2P2<2np,

with:

=In(1-27")+ 5 tn1+27%)

k=n+1

A,,=% (1+2"‘”+2‘2"+1)+1 iln(l—Z_k+l+2'2k+l)
k=n+1
B, = % (1+2'2")+— Zm(l 27kt 4 g 2k
k=n+1
21n(1+2 k)
k=n+1

i 27" -
C, =tan [1—2_"]_ 2 t;
k=g+1
—k
tan
Z [1+2"‘j

k=n+1
For n = 1, we easily obtain:

2By <-2-1-23<.2-1 <24,

241<22<2'1<28

2c1 <271 +22<2-1 4 22 4 24 <2ny,

Using Taylor expansions, we get the following bounds:

- 2 2 1

n _L9h-n_492n>_ =

MAp2- 321522 g
= 1, 4 . 1

2B, <-1 + —2ﬂ+ﬁz 2n <. 2

MBy>1-,2"

1
2
2"An <57

2" Dp>1 -

ul'—‘ N O\I'-‘

N

21 Cp < 52-n+—2-

These relations and the relations obtained for n = 1 give:

From this, we deduce Lba(ﬁ,, <Z,, ,Ap<B,,Cp<Dp,
and that the following parameters fulfill the requirements
presented above:

A=
p1=

C =

PN

+

[SN Leay

1
4
=4

w N =

A=
p

153

