Integer Mapping Architectures for the Polynomial Ring Engine

S. S. Bizzan, G. A. Jullien, N.M. Wigley and W.C. Miller

VLSI Research Group
University of Windsor
Ontario, Canada N9B 3P4

Abstract

A novel finite polynomial ring structure, for mapping
inner product computations to parallel independent ring
computations over 3-bit moduli, has been introduced
recently [10]. The main algorithmic computation
architecture can be implemented using well established
systolic array mapping principles [6], and a project to
construct a Polynomial Ring Engine (PRE) is underway to
exploit the VLSI implementation properties of such
computations. This paper introduces a semi-systolic
architecture for the input and output conversion mappings,
that are required in the engine.

We show that the entire mapping procedure can be
carried out with pipelined 6-input logic blocks and small,
fast, binary adders. In addition, the paper discusses CMOS
implementation techniques for the 6-input pipelined
blocks, and illustrates the design procedure with results
from a recently completed module generator.

1: Introduction:

Number theoretic architectures have traditionally been
based on the Residue Number System (RNS) [7], but the
disadvantages of RNS techniques (non-homogeneous data
conversion architectures) outweigh the advantages of carry
free computation. A recently introduced approach, based on
a polynomial ring mapping strategy, eliminates many of
the problems associated with conversion architectures from
rings with disparate moduli [10]. Unlike the recently
introduced algebraic integer [3] or PRNS approaches, the
new technique allows simple, error-free, mapping of
incoming integer streams, and homogeneous conversion
architectures at the output. The main body of the
computation is performed in identically replicated linear
bit-level pipelines; this has important ramifications in
terms of fault tolerance and testability when implemented
in dense technologies, such as WSI and ULSI.

This paper is directly concerned with the
implementation of conversion strategies associated with
the polynomial ring mappings. We first present an

1063-6889/93 $03.00 © 1993 IEEE

44

overview of the mapping technique, discuss architectural
details of a semi-systolic mapping architecture and finally
introduce a low-level dynamic pipelined CMOS
synthesizer (module generator) that builds the special bit-
level cells required for the small ring computations required
by the conversion procedure.

2: Polynomial Ring Mapping

The PRE mapping strategy allows computations on
Gaussian integers to be implemented in direct product
rings with simple mapping procedures between signed
digit binary representations and a direct product of identical
3-bit modulus rings. The theoretical mapping procedure
requires several intermediate rings to be defined, and these
are described in this section.

2.1: Encoding and Decoding of Integers
The integer mappings required by the PRE are shown in

Fig. 1. The figure shows the progression of ring mappings
required; the rings are denoted by boxes, and the mappings

by arrows.
u [4
)5S @50

ql T‘q*' > p ¢

T1{z.. 1X)/(e.(%0)} %’_

0]
D

Fig 1. The Rings and Homomorphisms

For simplicity in the diagram we have represented the
set of variables X,,X,,....X,, 2'<m<2™!, with the
symbol X. Encoding of the data begins in the upper right
at the complex numbers C (Gaussian integers) and
continues counter-clockwise around the diagram to the
lower right. The algorithmic computation is performed in

the direct product ring HZ,,,,; the answers are then
i
decoded in the reverse direction.

2.2 Representing integers as polynomials (the
map ¢)

o' is a homomorphism, it preserves sums and

products in the required algorithmic DSP computation. It
is sufficient to find the polynomial in Z[X] which
represents the final computation; this is the forward map,
¢ (this is not a homomorphism, and is shown hatched on

Fig. 1).
2.3 The maps u and @

The modulus M is selected in advance, and is assumed
in general to factor in the form M =Hm,~, where the
i

{m;} are relatively prime to one another. The data are then
mapped to the ring Z,,[X] by mapping the coefficients of
each polynomial in Z[X] to the corresponding elements of
Zy; . The encoding then continues from Z,,[X] to the

direct product ring HZ,,,'_[X]. The map @ reduces
i

coefficients with respect to the moduli {m;}. This is

equivalent to using a small RNS system to represent
integers (for computation) over the replicated rings, mod
M, and allows the use of very small moduli. For

example, 105=3x5x7, is an example of the smallest 3
modulus decomposition possible with this technique

2.4 The map ¢

The map g takes each individual ring Z, [X] to the
quotient ring Z, [X]/(g;(X)). This map reduces

polynomials by calculating remainders by means of the
Division Algorithm. It is clear that there is no actual
reduction to be performed as the input polynomials already
have degree low enough to require no reduction. Hence the
map q plays no role in the encoding; it is merely a device
to give the existence of the isomorphism ¥. We arrange
the mapping of bits to indeterminates such that the output
polynomial from a single product has degree 2. It therefore
suffices to have ideals generated from polynomials of
degree 3; such a polynomial is g,(T)= T(T2 - 1).

Since the complex unit, j, satisfies the equation

T? = -1, we can lower the degree of g,(T) from three to
two whenever it is possible to use the polynomial
&(T)=T? +1. This requires g(T) to have its roots in

45

the ring Z,, , and the roots must satisfy the root condition
of the theorems (i.e. the difference 7; —r; is invertible for
i#j [10]). We therefore have a way of mapping the

complex operator that is indistinguishable from mapping
of the redundant data sample digits.

2.5 The map ¥

The map W evaluates all polynomials at all possible
combinations of roots of the polynomials {g,.(X)}. Note

that the direct product ring, which we have indicated as
HZmi in the diagram, consists of d,d,...d, individual

copies of each of the rings Z,; by d; we mean the degree
of g;(X).

Since inputs and outputs have different polynomial
degrees, it is important to take care of the highest degree
possible. Inputs in our examples have degree one in each
variable, and outputs have degree two. This assumes that
our algorithm only allows one cascaded multiplication
between conversion mappings. Clearly inner products (e.g.
FIR filters) have this property, but so do a number of
other algorithms (e.g. [9]).

With the moduli set {3,5,7}, we can represent the
components of ¥ with a 9x9 matrix for the modulus
m=3, and as a 6x6 matrix for the modulus m=5.
With m=3, the polynomial M A, +A,X + A, X% +
T(Ay+ AsX + AX?)+ T2 (A; + AgX + AgX?) evaluates at
the roots T =-1,0,1 and X =-1,0,1 to yield the matrix
product:

(1 -1 1 -1 1 -1 1 -1 1T4,]
1 00-1 0 01 004,
111 -1 -1 =11 1 14
1-11.0 0 00 00|A,
1 00 0 0 00 0 0A
1 11 0 0 00 0 0fA
1 -1 1 1 -1 11 -1 1|4
1 00 1 0 01 00]A4,
11 11 111 1A

It is significant that this matrix is a tensor product
I'®T of matrices, and his fact is highly beneficial in the
VLSI layout problem, where we may sometimes deal with
four or more variables.

2.6 The DSP Algorithm Computation

Once the data have been converted to elements of this
last ring, the DSP algorithmic computation is performed

in each component of the direct product ring H Z, . The
i
results are then mapped back to C.

2.7 Reversing the maps ¥ and ¢

The map ¥ is an isomorphism, so ¥~ poses no

problem. The matrix components of ¥~ can be obtained
by inverting the matrices I' and I"; above and forming the

respective tensor products.

The map ¢ reduces polynomials of higher degree
(mod g;(X)); as was stated before and will be shown
below, we can choose the degrees of the polynomials
{g,-(X)} high enough to ensure that the output data have
degrees less than or equal to the degrees of the g;, so that
the map ¢ 'exists and requires no computation. This is
shown as a bold line on Fig. 1.

2.8 Reversing the maps @, 1 and ¢

The classical Chinese Remainder Theorem (CRT)
assures that the map ®~' exists and is an isomorphism
between HZ,,,’ [X]and Z,[X]. The next step, however,

i

must be treated carefully. The map u has in general no
inverse. Since u reduces coefficients by finding residues
(mod M), it is necessary that the coefficients of the
answer polynomial be their own residues (mod M). This
is the crucial restriction on the size of M and clearly

dictates the conditions on the existence of p~'. This

inverse mapping is indicated on Fig. 1 as a bold line; u!
and ¢~ are both reverse mappings of homomorphisms

under special constraints. Finally, the map ¢! is the
evaluation map, with each variable X; taking on the value
of some power of 2 or the complex unit j.

3: Conversion Architecture

It is clear, from section 2, that the main computation
for the forward map is the tensor product associated with
the ¥ mapping. The other mappings are either formalisms
or simple wiring interconnections. The inverse map also
invokes a tensor product with an inverse matrix, but also
requires the summation of result polynomial coefficients
with their appropriate bit shifts (or complex operator
separation) based on the indeterminate powers associated
with each coefficient.

3.1 General Architecture

The overall mapping and computation architecture is
shown in Fig. 2 for a complex input data stream. This
diagram makes it clear that the tensor product polynomial
mapping is implemented over 3-bit data streams, which
allows the use of small 6-input switching blocks as the
general computing unit. For this example, we have
assumed that the DSP algorithmic computation can be
implemented with linear pipelines; this is certainly the
case with inner product computations (e.g. [8]). A brief
description of the blocks, and their computational
requirements, is given in Table 1.

Table 1 Architectural requirements for forward and reverse mapping

Block Description

Computing Blocks

Binary — Polynomial

Map weight of redundant binary digits to
coefficients of polynomial indeterminates

Simple interconnection

Modulo Reduction Reduce coefficients by {ml}

No action since coefficients are chosen to be
less than {mz}

Polynomial Mapping {_ 1,0, +1}m
] i

Forward mapping tensor product on roots

Pipelined 3-bit weighted modulus addition
(6-bit input 3-bit output blocks)

Data Processing DSP algorithmic computation

Systolic array based on general function 3-bit
modulo computations (6-bit input 3-bit
output blocks)

Reverse Polynomial

Reverse mapping tensor product

Pipelined 3-bit weighted modulus addition

CRT

3-modulus CRT (simple mixed radix system)

Pipelined 6-bit input 3-bit output blocks.

Polynomial — Binary

complex operator (separation)

Mapping to weighted binary (shifts) and the

Pipelined shifted binary adders and
subtractors.

46

Complex Binary Number Stream

I Binary to Polynomial Representation]

-

Modulo M1 Reductio:

Other Moduli

(___Polynomial Mapping)
og-——10
I el I

tcli«i Data Processing ﬁtage r Small Finite Rings

everse Polynomial Mapping)

| —

<10

E

C

=~

L

Chinese Remainder Theorem I

I Polynomial to Binary Representation l

v

Complex Binary Number Stream

Fig. 2 PRE Computational Architecture
3.2 Architectural Details..An Example

Fig. 3 shows an example architecture that uses two
indeterminates; one corresponds to a binary weight of 2
and the other represents the complex operator j. The RNS

representation is based on the residue set {3,5,7} which,

as discussed above, keeps the data representation to 3 bits
throughout the architecture. The dotted line indicates the
placement of the DSP algorithmic computation (not
included in this simulation) and the boxes contain the two
modular structures for the forward and reverse mapping
portions.

Pipeline latches are shown as and general

computational blocks (weighted modulo adders) as .

Binary Sequence Supply
Input blocks shown as are used to

generate the real and imaginary binary input data for the
simulation. 3-bit 3-modulus CRT behavioural model

block is shown as Xar and can be implemented by

pipelined 6-bit input 3-bit output blocks using simple

47

mixed radix system. The output converters are represented
with a behavioural model within the block

utilizing fast binary adders. Note that after the CRT block
we use a stage of binary subtractors to separate the

coefficients of j* =1 from the real part polynomial

coefficients. It is at this stage where we introduce a sign
bit for the real part of the complex number output.

There are a total of 9 replications of each of the 3
residue rings (27 channels in total). Note that each of the
three moduli computational channels are completely
independent until the CRT stage is reached. The number of
stages in both the forward and reverse mapping is equal to
the number of indeterminates (in this example two). The
reverse mapping illustrates the need for a full 2nd order
polynomial inversion whereas the forward mapping is
simplified because the input polynomial has order one.
The forward basic tensor product structure for both the
forward and inverse maps are contained in the shaded areas
on Fig.3. The weighted modulo adder blocks will actually
take no more hardware than the binary adders since we
implement the blocks as minimized look-up tables (see
section 4). The simulator includes a weight option within
each modulo adder block (not shown in Fig. 3). The DSP
computation is carried over each of the 27 channels with
complete independence between the channels. This offers
unique opportunities for fault detection/tolerance and
simple testing [5] and clocking strategies.

This example architecture has an input dynamic range of
3 (for both real and imaginary parts of the Gaussian
number). The maximum output dynamic range is 468
(from -234 to +234) for the real part and 468 for the
imaginary part with one cascaded multiplication and 26
additions. We may increase the input dynamic range,
output dynamic range, or/and the block length of the inner
product (number of additions) by allowing the occasional
overflow of the output polynomial coefficients and/or
grouping the input data bits. In the next section we discuss
the optimization of such an architecture.

3.3 Statistical Analysis

A software package, MODULUS , has been developed
to relate the statistical distribution of the input data
streams to the output polynomial coefficients using both
the polynomial ring and RNS mapping techniques. The
software uses the following input and output variables;

Product of moduli

Input data distribution

Input bit representation
Dynamic range of the input data
Block length

Probability of overflow (POF)

e o o o o o

¥ Xquake Sups
| 24816326412

ATy XqUENE SUpp)
248163264128

8] E] fCe) €CB] fA4CE) Gl CB £} Lcy [cy) E

CCl

4 [CB 31 E] $C8] [CB] H 4

g) 4 8] | 3] E B {3 ¢C

Paralle) Shift Adder] | Pard W Shift Add o

Fig. 3 Complex integer mapping simulation

As an example of using the software, it is found that the
output dynamic range is increased to 490 by grouping 2
bits to the input polynomial coefficients X and XY
(where X =2 and Y = j). The input dynamic range also
increased to 7 for both real and imaginary parts. However
the block length decreases to 5 with the restriction of zero
probability of overflow (POF).

If we allow the occasional overflow, Fig. 4 shows the
block length versus the POF for the original problem (real
and imaginary input dynamic range of 3). It is important
to mention that for a block length of 26 the POF is zero
where for block length of 27 the POF is less than

4.4x107% for the output polynomial coefficient that
overflows (XY in this case). At a block length of 53 other
coefficients will start to overflow. This means that up to
block length of 52 the imaginary part will have a
maximum error of 44.4% of the maximum imaginary
value possible. If we scale the output , for instance, to half
the number of bits the overflow error will vanish. It is
clear that building a system with POF=0 is extremely

48

pessimistic, however, the application might restrict our
choices.

1.80E-04
1.60E-04
1.40E-04
1.20E-04
1.00E-04
8.00E-05
6.00E-05
4.00E-05
2.00E-05
0.00E+00 —ttt

70 80 90 100 110 120 130 140 150

Fig. 4 POF versus block length
4: Synthesizing The Pipelined Blocks

The mapping architecture relies on pipelined 6-input
blocks for the majority of the computational requirements.
Appropriate circuitry for such blocks has been discussed

elsewhere [4]. Our interest, here, is to introduce a simple
module generator for such blocks.

4.1 Embedded Single Phase Clocked Latch

The complete single phase clocked latch, with embedded
switching tree, is shown in Fig. 5.

Since we are only interested in implementing n-channel
logic blocks, we use a single inverter p-channel block at
the output of each n-channel block.

!

R
evaluation %
. Output
Switching
Tree .
F
o

Fig. 5 Embedding a Switching Tree in a True
Single Phase D-Latch

The tree is designed as an 7 -dimensional ROM (binary
tree) where n is the number of input variables. Our
minimization technique is based on the application of two
simple graph reduction rules. We find this approach useful
in that it allows a well established relationship between
reduced tree structure and silicon layout that is essential for
both hand custom layout and module generation
approaches for complex multiple output trees. Pipelining
each node is quite benign, because gate signals are
guaranteed to remain constant over both precharge and
evaluate cycles. Thus transistors that conduct when charge
sharing occurs during evaluate also conduct during
precharge, and this tends to precharge charge sharing nodes,
resulting in a smaller charge sharing effect; in fact, as we
slow down the throughput rate of the pipeline, the charge
sharing problem disappears.

We can use the standard technique of internal tree p-
channel pull-up transistors to reduce the charge sharing
effect. Often a single pull-up transistor is sufficient
because of the conducting transistors during precharge. We
can also trade a reduction in precharge time for an increase
in evaluate time, without reducing the throughput rate of
the pipeline. Because we are only using a single pFET
inverter for the p-logic block of the TSPC latch, we also
have the flexibility of adjusting the precharge/evaluate duty
cycle without being concerned about the effect on the
pFET slave latch; i.e. the timing limitations are governed
by the nFET latch circuitry.

49

A significant reduction in pull-down delay can be
obtained by sizing the transistors. This is a complex issue
when looking at the interaction between pull-down delay
and charge sharing. We use an approximate analytical
technique [1] that obtains very close to optimal results
while allowing both on-the-fly calculations and algebraic
manipulations for module generator applications.

4.2. Residue Module Generator

In this section we discuss a new approach to a module
generator suitable for on-the-fly cell generation for
arbitrary switching tree designs. This is essential for a
design automation procedure, since it is impractical to pre-
design a cell library based on the wide variety of truth table
requirements that may have to be met in the conversion
and DSP algorithmic computational blocks of the PRE.

Our approach is very similar to the gate matrix or PLA
concept, where a two dimensional array of transistors is
generated based on a transistor network mapped from a
minimized Boolean function. In our case the network is a
direct mapping from a minimized binary tree. In order to
illustrate the procedure we have developed, an example of
Mod 7 multiplication, z = A ®, B, will be used. The
minimized tree [4] along with the matrix mapping is
shown in Fig. 6.

The True and False edges on each row represent
transistors whose gates are driven by the input signal or its
complement. The mapping of primitives to the matrix is
performed by either filling, or leaving empty, the table
positions. The Wire and Transistor primitives are direct
mappings from the switching tree, the shorting primitives
are used to connect gate signals, propagated on metal 2
lines to polysilicon transistor gate lines. The metal 2 and
polysilicon lines run horizontally across each row in the
matrix with the metal 2 lines directly on top of the
polysilicon lines. By shorting the metal 2 to the
polysilicon at several places across the row (ideally near a
transistor gate) we can eliminate the time constants
associated with the large resistivity of polysilicon and
transistor gate capacitances. We use space in the table to
place the shorting primitives. Because these primitives are
offset from the centre of the metal 2/polysilicon lines,
they have two possible vertical directions; both directions
have been used in Fig. 6.

The algorithm used to map the tree edges to the matrix
primitives is given below:

1) Start at the top of the right hand tree; and map to
the right most column in the matrix.

2) Move towards the bottom of the tree, taking
either right hand edges or single merged edges, mapping
the edges (vertical wire links or transistors) to matrix
primitives in the column. Place horizontal wire matrix

primitives if a previously mapped edge (in the right hand
adjacent matrix column) is connected to the currently
mapped edge. The path will terminate when either a left
hand link is reached, or when the bottom of the tree is
reached.

\ Wire Edge \ True Edge \ False Edge

L AU TR

11)
Ilhlvl I lal t
Il Bzl

el L

Cimne

(REN iR

| |
]
|
][
A
p Ko

E Shorting Primitive I = Wire Primitives E Transistor Primitive

Fig. 6 Mod 7 multiplier tree and Table of
primitives

3) Move to the left until the first unplaced left hand
edge, at any vertical position, is reached. Terminate the
algorithm if all edges have been placed.

4) Repeat from 2), mapping to a new column to the
left of the previous column.

At the termination of the algorithm, the matrix is
examined for suitable placement of shorting primitives.
This is a somewhat heuristic procedure since there is a
trade-off between reducing the resistance of the signal path
to each transistor gate, and the extra capacitance load of the
shorting primitive. There is often limited space for the
shorting primitives, particularly near the dense central
rows. We can see, from Fig. 8., that shorting primitives
have been able to be placed within a short distance of every
two or three transistors on a row; this will change with the
particular function being implemented.

4.3 Floor Plan and Layout

Fig. 7 shows the floor plan and final layout of the Mod
7 multiplier, using a 3u DLM p-well CMOS process [2].

50

p-channei inverter
strip

EE

:...---‘-.-.- M .
Il Alfiar=2 “ ‘h’a‘?‘ﬁ
S O “'
Transistor Block D-Latch
D-Latch

n-channel inverter

strip Buffer

Fig. 7 Floor plan and layout for the Mod 7
multiplier

The transistor block contains the matrix of primitives
mapped from the switching tree, and also the
metal2/polysilicon signal wires. Note that the figures have
been rotated by 90°. The inverters are formed by p-channel
and n-channel strips, separated by the tree matrix. The
matrix also includes the ground switch transistors, and the
input clock signal to the switches is buffered by an
inverter at the end of the inverter strip. The latch
primitives are full custom layouts, and the clock signal to
the latches is also buffered at the bottom of the latch
column.

The transistor array governs the height of this particular
example cell, but often the latches control the size,
particularly for smaller numbers of inputs, or when there
is a greater decomposition of the switching function (e.g.
multi-bit binary adders). For such a cell, the area is now
controlled only by the number of input bits (width) and
number of output bits (height).

4.4 Comparison Study

Table 2 shows an area comparison study between the
same Mod 7 multiplier cell between the synthesizer a hand
layout and a hand layout of a TSPC pipelined PLA.

Synthesized | Hand-Layout
Design Switching Switching | PLA

Tree Tree

0.0514 0.0747 0.1659
Core Area__ || mm’ mm’ mm*
Relative % |t 100% 145% 323%

Table 2 Core Area Comparison

The PLA was not able to be folded because of the
natural density of the interconnects with the Mod 7
function.

A power consumption comparison was made between
the synthesized tree structure and the PLA. The study was
conducted using mask extracted SPICE files, with level 3
models based on tuning from many fabrication
experiments. The results are shown in Table 3.

Design Switching Tree | PLA
Max. Throughput 50MHz 70MHz
Peak Current(40MHz) | 2.85mA 8.36mA
Average Dissipation

at 40MHz 3.45mW 15.4mW

Table 3 Speed and Power Comparison

We note that the PLA is able to operate at almost 50%
higher throughput rates than the switching tree design; the
trade-off, however, is the almost 5 times increase in power
dissipation and 3 times increase in the peak current spike.
This latter result can be as important as the power
dissipation result, since the current spike is effectively
multiplied by the number of cells on the chip for perfectly
synchronized clocking (no skew between clocks arriving at
the cells). This also speaks for producing architectures that
allow clocks to be skewed, and the PRE architecture is
directly suitable for such skewed clocking, since the
computations are carried out in independent pipelines.

We have partially verified the throughput rate
predictions by fabricating 6-high test switching trees and
observing successful operation at the bandwidth of the
output drivers (40MHz). We have also verifies, via SPICE
simulations, that the concept can be extended to more
aggressive technologies, such as sub-micron CMOS
technologies, with the same area and power savings over
more conventional implementation techniques.

5: Conclusions

In this paper we have discussed architectures for
input/output conversion of integer data streams for the
Polynomial Ring Engine. We have reviewed the mapping
procedures for both input and output conversion and
demonstrate that the architecture can be constructed with 6-
input pipelined switching blocks and standard binary
adders. We have demonstrated the use of a new software
package, MODULLUS, to optimize mapping parameters for
a specific algorithm. Although we are able to design
systems with zero probability of overflow, this is a very
pessimistic design philosophy, and so we are able to more
efficiently use the architecture.

We have also given details of a module generator that
can be used for on-the-fly generation of the pipelined
switching blocks required both by the converter and the

51

DSP algorithmic computation architecture. The generator
produces very area efficient designs with much lower
power consumption compared to a pipelined PLA circuit
using similar dynamic pipelines and implementing the
same function at the same throughput rate.

6: References

1. S. Bizzan, G.A. Jullien, W.C. Miller, 1992,
"Analytical Approach to Sizing NFET Chains", IEE
Electronics Letters, Vol. 28, No. 14, July, pp. 1334-
1335..

2. "Guide to the Integrated Circuit Implementation
Services of the Canadian Microelectronics
Corporation." . 1986.

3. Games, R. A. "An Algorithm for Complex
Approximations in Z[e2ni/8]." IEEE Trans. Inform.
Th. IT-32 603-607, 1986.

4. Jullien, G. A., W. C. Miller, R. Grondin, Z. Wang,
D. Zhang, L. Del Pup and S. Bizzan. "WoodChuck: A
Low-Level Synthesizer for Dynamic Pipelined DSP
Arithmetic Logic Blocks." IEEE International
Symposium on Circuits and Systems. 1 pp. 176-179,
1992.

5. Jullien, G. A., M. Taheri, S. Bandyopadhyay and W.
C. Miller. "A Low-Overhead Scheme for Testing a Bit
Level Finite Ring Systolic Array." Journal of VLSI
Signal Processing. 2,3, pp. 131-138, 1990.

6. Kung, S. Y. "VLSI Array Processors." 1988 Prentice
Hall.

7. Soderstrand, M. A., W. K. Jenkins, G. A. Jullien and
F. J. Taylor. "Residue Number System Arithmetic:
Modern Applications in Digital Signal Processing." .
IEEE Press, 1986.

8. Taheri, M., G. A. Jullien and W. C. Miller. "High
Speed Signal Processing Using Systolic Arrays Over
Finite Rings." IEEE Trans. Selected Areas in Comm.
6 3 1988.

9. Wang, Z.,, G. A. Jullien and W. C. Miller.
"Algorithms for Length 15 and 30 Discrete Cosine
Transforms." 1991 Asilomar Conference on Circuits
Systems and Computers. November pp. 111-115,
1991.

. Wigley, N. M. and G. A. Jullien. "Large Dynamic
Range Computations Over Small Finite Rings."
IEEE Trans. Computers. In Print 1992.

Acknowledgments

The authors acknowledge the financial support of grants
from the Natural Sciences and Engineering Research
Council of Canada, the Micronet Network of Centres of
Excellence and the Canadian Microelectronics Corporation
for providing design and test equipment and fabrication
services. The authors are also indebted to Mr. D. Reaume
for generating the concepts and code for the MODULUS
package.

