A 17 x 69 Bit Multiply and Add Unit with
Redundant Binary Feedback and Single Cycle Latency

W.S. Briggs

Cyrix Corporation
Richardson, TX 75080

Abstract

We describe a numeric processor whose kernel is a
tree of redundant binary adders effecting either a 17 x
69 bit multiply-and-add or a 19 x69 bit multiply with
exact redundant binary output and single cycle
latency. Feedback paths selectively allow a high-
order or low-order part of the adder tree output to be
fed back in redundant binary form to the multiplicand
and/or addend inputs to the adder tree. We describe
algorithms iteratively employing this adder tree kernel
Sfor: IEEE double extended multiplication, division,
and square root; conversions between 18 digit BCD
integers and 64 bit binary integers; and
transcendental function evaluation. The multiplier
design described was implemented in the Cyrix 83D87
numeric coprocessor (typically 33 MHz). Comparative
results of this coprocessor with competitive x87 units
are included.

L Introduction and summary

Two important and related questions in the design of
a floating-point numeric processor are:
i) How much hardware should be devoted to the
multiply/add unit?,
i) What algorithms can be employed to realize
auxiliary arithmetic functions (e.g. divide, square root,
transcendentals) sharing the multiply/add hardware?

If the emphasis is minimal hardware, then a single
adder employing traditional shift and add/subtract
steps for multiply, divide, square root and CORDIC
transcendentals is sufficient at a heavy cost in
execution time. For IEEE standard double extended
floating-point operations, such a single adder solution
will likely lead to most auxiliary arithmetic functions
having execution times measured in the 100's of
machine cycles. If the emphasis is on fastest multiply
time, then n x n multipliers formed by a tree of
redundant binary adders have been known [Wa 64, Da

1063-6889/93 $03.00 © 1993 IEEE

163

D. W. Matula

Southern Methodist University
Dallas, TX 75275

65] for some time. They also support division and
square root by Newton Raphson or convergence
iterative methods and transcendental approximations
by polynomial evaluation. Such functions are likely
to be realized in the 10's of machine cycles, but
generally will not utilize the full hardware multiplier
capability very efficiently. The heavy cost in
hardware for this full n x n fast multiplier must then be
largely justified by the enhanced multiply
performance.

If the emphasis in our original questions is in
obtaining improved performance of the multiply and
auxiliary functions all in rough proportion to the
increased hardware cost of the multiply/add unit, then
we claim a good solution is provided by an enhanced
kx n multiplier. k xn multipliers effecting reasonably
efficient n xn multiplication at reduced hardware cost
have been investigated in the literature [BT 87, SH
89]. We note that k xn multipliers may be formed
employing a proportionally smaller number of adders
than n x n multipliers, and organized as a shallow
adder tree. Typically k is a fraction of n, say n/8 <k
< n/2. Employing ripple-free redundant binary adders
[Av 61] allows us to set the long dimension n to the
target precision support of double extended without
additional time penalty. Importantly, the smaller
dimension is then effectively scalable to the hardware
chip area available, with the desirable additional
provision that the adder tree height be shallow enough
to allow single cycle latency for the k x n
multiplication.

Our initial purpose in this paper is to describe such a
17 x69 bit multiply and add unit allowing redundant
feedback with single cycle latency. Our principal
results are then the description of auxillary function
algorithms, some of which are new and interesting in
their own right, and their implementations in this
multiply and add unit. The algorithms and their
implementations support the IEEE 754 floating point

standard, and further match or exceed previous x86
IBM compatible norms for efficiency and/or accuracy
of the auxiliary functions. The design we describe has
been implemented in the Cyrix 83D87 shown in
Figure 1, released in October 1989.

The multiplier unit comprises about one-third of the
chip area of the 83D87. This unit handles the
"number crunching” fixed point component of
multiply/divide/square root with sufficient additional
information bits to allow a separate unit to complete
the normalization and infinitely precise roundings
required by IEEE754. The multiplier also performs
BCD-to-binary and binary-to-BCD integer
conversions, and transcendental function evaluation.
Our focus is on the multiplier with particular regard to
the performance enhancement provided by the adder
tree kernel and its feedback options to a variety of
distinct arithmetic operations. We do not discuss
exponent handling, addition/subtraction, roundings or
normalization, which are handled in two other units of
the 83D87.

In Section II we describe the adder tree kernel of our
multiplier unit. We note how the unit is employed as
either a 17 x 69 multiply and add unit or a 19 x 69
multiplier providing enhanced capability to the short
side of the multiplier. In Section III we describe how
the exact product-sum can be partitioned so that a
high or low order 69 signed bit portion may be fed
back to either the multiplicand or adder input to the
adder tree kernel with single cycle latency.

I_L—L 020020020 g

sl

Gom?

S

N

]

o

TR

[2n 3]

i xala o] e n

Figure 1: Cyrix 83D87 math coprocessor.
Implementation in 1p CMOS has about 200K
transistors with die size 380 by 480 mils. Typical
power at 33 MHz is 0.5 watts.

Finally, in Section IV, we outline the algorithms and
highlights of their implementation for multiply,
divide, square root, binary-to-BCD integer conversion,
BCD-to-binary integer conversion and transcendental
function evaluation. To measure and compare the
"end user visible" overall efficiency of these
instructions and accuracy of the transcendentals, we
then cite from Juffa [Ju 91}, cycle times and
transcendental accuracy evaluations for the Cyrix
83D87 in comparison with three commercially
available competitive 387 coprocessors.

II. Adder tree kernel

The largest arithmetic unit of the Cyrix 83D87
numeric coprocessor is a multiply and add component
whose kemnel is a tree of signed binary adders. This
adder tree illustrated in Figure 2 has five inputs A, B,
C, L, S and a single output P, some of which may
transmit data in redundant format. Input and internal
data paths shown as single lines designate that values
transmitted are in binary, by which we mean the
tradition non-redundant binary format with digit
values {0, 1}. Data paths shown as double lines
designate that values transmitted are in signed binary
format, i.e. employing for digits the signed bit values
{-1, 0, 1}. Each signed bit is then composed of a pair
of bits, one for the sign and one for the magnitude of
the signed bit.

The multiplier input S accepts a "short" 18 bit
binary operand, the multiplicand input L accepts a
"long"” 70 bit signed binary operand, and the adder
input B accepts a 70 bit signed binary operand which
may be left or right adjusted within an 88 bit field
width. The exact product-sum is provided as an 88 bit
signed binary result at output P. Also, input C accepts
a 1 bit binary carry signal and input A accepts a 4 bit
binary input for accumulation into the product-sum.
These inputs are utilized respectively, for example,
when the adder tree is employed iteratively to
generate and simultaneously accumulate 18 x 69 bit
partial products of a 71 x 69 bit multiplication and
when BCD digits are input for BCD-to-binary
conversion.

Single pass 17 x 69 bit multiply and add

The functioning of the adder tree is conveniently
described by considering the execution of a concurrent
17 x 69 bit multiply and 70 bit add operation. This
product-sum operation yields an exact 88 signed bit
result in one pass through the adder tree. The short
operand (17 bit multiplier) is input through S and

B A L S C

NULTIPLIER -

FEEDBACK CARRY N

ADDER HULTIPLICAND MULTIPUER
WPl INPUT WPy WU

707

o |

n{n

0
18
S P P E
DoOTT] [B00N I | (0001 |{ BOdHIT | {"DoaTH
eeondt conet
PP PPG ﬂ PPG [

]
—

720472 R[N N1 {12 72 :::::::
| [T nfn nffn ulln nf R
ADDER ADDER i __ADI_)[LIS_ _
1
{ =
e iy
' Lo
b
L | g
® 2 m 1 LEVEL 3
ADDER | _mpils
ue-]' {-ue __________ i
[.1 .. S
PRODUCT
ouTPuT

Figure 2: Tree of signed binary adders

converted by the Booth recoders shown to six octal
digits in the minimally redundant digit set {-4, -3, -2,
-1, 0, 1, 2, 3, 4}. The partial product generators of
Figure 2 each generate a digit multiple of the long
operand (69 signed bit multiplicand) input through L
by either a selective shift and/or sign complement to
effect the digit multiplies for digits {-4, -2, -1, 1, 2,
4}, or a selective complement of the 3-times adder
output to obtain the digit multiplies for {-3, 3}. The
six digit multiplies thus selected along with the third
operand (70 signed bit addend) input through B are
accumulated in the three levels of signed binary
adders shown in Figure 2. Signed digit addition has
been extensively discussed in the literature [Av6l,
Ma76, TY85]. Successively larger data path widths
are shown in the figure to accommodate computation
of the exact product-sum in the resulting signed binary
format at output P. The regularity of the three levels
of adders in Figure 2 provides more convenience for
VLSI design than the adder arrangement of a
traditional Wallace tree [Wa64] of 3-2 adders.

Single pass 19 x 69 bit multiply

The adder tree of Figure 2 may alternatively be
utilized to provide a 19 x 69 bit multiply with exact
output in a single pass. To achieve this result first
consider that any 19 bit integer bjg b 17 ... by may
be written as a 7 digit octal integer dg dy ... dg, where
0<4d;<7for0<ic<5, and specifically the leading
digit dg is either 0 or 1. The Booth recoding we
employ converts any digit in the range 4 < d; < 7 to
the value d; - 8 with propagation of a plus one carry
that is absorbed in the next higher position. It follows

1 I .
[N [———
RE RECODER| | MOKKTIED
pdoonl
| _ RECODERS
| _ feconers
i
i

165

after conversion to dg' ds' ... dy' that - 4 < dgy' < 3, -4
<dj'<4for 1 <i<5, and specifically that the leading
digit dg’ is now either 0, 1, or 2.

The 69 signed bit multiplicand is input as before
through the long multiplicand input L. From the 19
bit multiplier byg by7 ...by the low order 18 bits by7
b1g --- bg are input through the short multiplier input
S. The leading multiplier bit byg and implicit Booth
recoding leading carry bit byy are inspected outside
the adder tree kemel to determine if the leading
recoded octal digit would be 0, 1, or 2. This is
determined simply by adding the bit values by7 and
byg. If the leading digit is 1 or 2, the 69 bit
multiplicand is first left-shifted one or two places and
then also input through the signed binary feedback
input B.

The importance of this simple facility to extend the
range of the short side input to the multiply operation
will become apparent in subsequent discussion of the
iterative algorithms for the more complicated
operations such as divide and square root. Suffice it
here to say that when the short side input must
necessarily accept an approximation of the “desired
variable, the facility to effectively extend the short
side multiplier by 2 "guard" bits provides valuable
options in combination with the same multiplier being
employed for exact product-sum 17 x 69 bit
operations. In summary:

Observation 1: With single cycle latentcy the adder
tree of Figure 2 is capable of outputting either:
i) an 88 signed bit product-sum being a
concurrent 17 x69 bit multiply and 70 signed bit add,
or
ii) an 88 signed bit product being a 19 x 69 bit
multiply.

III. Multiplier feedback options

The adder tree of Figure 2 provides a single cycle
product-sum capability that can be employed
iteratively to provide efficient hardware
implementation of a wide range of arithmetic
functions. Figure 3 illustrates the multiplier unit
embodied in the Cyrix 83D87 numeric coprocessor.
The adder tree kernel of Figure 2 is supplemented in
Figure 3 by various feedback paths, shifters, and other
components. This unit allows efficient microcoded
iterative "algorithms on silicon" for many functions
required by the x87 instruction set including:

Figure 3: Multiplier unit illustrating feedback paths

i) Multiply/Divide/Square Root: This unit supports
the normalized fraction (fixed-point) computations for
IEEE 754 standard floating point multiply, divide, and
square root for precision levels up to double extended
(the exponent arithmetic and final rounding are
handled elsewhere);

ii) Transcendental Functions: This unit supports
argument reduction and function evaluation over
standard ranges for various transcendental functions
with error over the standard ranges of less than one
unit in the last place (ulp) at the double extended
precision format length with preservation of
monotonicity of the evaluated function [FB91];

iii) Binary-Decimal Integer Conversion: This unit
supports exact binary-to-BCD and BCD-to-binary
integer conversion for integers up to 18 decimal digits
efficiently with minimal additional hardware
components beyond those otherwise required for the
other arithmetic capabilities.

Fundamental to achieving these arithmetic
capabilities with maximum efficiency is the ability to
feed back a selected portion of the exact product-sum
of value p from output P of the adder tree to an

166

appropriate input (or inputs) of the adder tree for
operation on the immediately next cycle. This design
avoids the delay inherent in a more traditional
multiple cycle latency pipelined multiply-add unit
implementation of our iterative algorithms.

Two options for partitioning (without conversion
to non-redundant form) the product-sum p output by
the adder tree for the purpose of feedback of an
appropriate portion are;

Long-high-back: p = hy +[g

This designates that high order part hy of "long"
length 69 or 70 signed bits is determined by simple
truncation, where hy is then available in signed bit
format to be fed back as input to either L, B, or both,
for use on the next cycle. The low order part lg is
available for concurrent inspection by other
components of the multiplier unit.

Long-low-back: p=hg+ 1

This designates that a low order part l1, of "long"
length 69 signed bits is determined by truncation
supplemented to 70 signed bits by inclusion of an
overflow bit responsive to appropriate conversion of
the high order part hg, where here the "short" length
quantity hg is available in non-redundant form for
output as required. The low order part /| is available
in signed bit form for feedback to either L or B. Its
use on the next cycle, or delay to a subsequent cycle,
is dependent on the particular conversion operation
applied to the high order part.

Important features of the components illustrated in
Figure 3 useful in realizing the arithmetic capabilities
required and feedback options cited should be noted.
Data paths and latches wider by several guard bits
than the target 64 bit results are carefully chosen to
support the IEEE754 requirements to provide 64 bit
precision infinitely precisely rounded multiply, divide
and square root results, and our requirements of one
ulp accuracy at 64 bits for transcendental results.

The 2-bit data path from the multiplexor below the
C-latch to the shifter between the feedback latch and
the feedback input B is provided to effect the leading
digit multiple selection for the 19 x 69 bit multiply
capability of the adder tree previously discussed. The
multiplicand for this operation is provided from the
feedback latch in 70 signed bit format (including an
overflow signed bit) and is sent to both the L and B
inputs of the adder tree.

A variety of redundant binary feedback options are
employed in the algorithms for the arithmetic
operations supported by this arithmetic unit. The
implementation of these algorithms will be described
in some detail in the next section. We here preview a
few of the individual steps to illustrate the alternative
feedback options employed. All but one of these
provide that the fed back signed bit value is available
for immediate use on the next machine cycle.

i) In a step of full precision multiplication, an output
partial product p is split to hy and [, with by fed back
to the feedback input B for accumulation into the next
partial product, and with [sent to the indicator unit
for updating the determination of the positive,
negative, or zero status of the truncated portion.

ii) In a step of Newton Raphson iteration for refining
an approximate reciprocal y” of y, a product-sum p =
2-y’y is split to hy, and I, with hy fed back to the
multiplicand input L for computing the next product
Y (2-y’y), with [discarded.

(iii) In a step of BCD-to-binary integer conversion
evaluating a radix polynomial in the Hormner method
order, (...((d17 X 10) + d1g) X 10 + dy5) x10 + ... +
dq) x 10 + dy, the product-sum p = (previous product
sum) x 10 + (next digit), is split to hy and lg. Here [g
is assured to be zero by the scaling employed, with the
exact result value then fed back as hy to the
multiplicand input L. for immediate use on the next
product-sum operation.

iv) In a step of remainder updating for division, the
product-sum p is the new remainder determined by
subtracting a 17-bit-digit divisor multiple from the
previous remainder. This new remainder is then split
into hg and {1 , with hg implicitly converted to binary
zero and discarded, whereby an appropriate leading
overflow signed bit is appended (without any
conversion time delay) to Iy which is then fed back to
the feedback latch.

V) In a step of exact binary-to-BCD integer
conversion, the product p is split to hg and I} with hg
a converted high order part that is known to be a BCD
digit, and I} converted to be a positive value by
appending the appropriate overflow signed bit. This
converted value for /[is fed back to the multiplicand
input L over the signed binary feedback path, with a
one cycle time delay imposed in this case to
accommodate the conversion of /{ to a positive value.

167

IV. Arithmetic operation
implementation

The hardware organization of the iterative multiplier
of Figure 3 was designed interactively with the design
of algorithms for multiplication, division, square root,
BCD-to-binary and binary-to-BCD integer conversion,
and transcendental function evaluation by rational
polynomial approximation. Some of these algorithms
are new and described in more detail elsewhere
[FB91, Ma 92]. Here we shall present an outline of
these procedures and their implementation. We
indicate the data flow through the components in each
case to illustrate the extent of hardware sharing. This
process also allows us to provide a measure of the
number of hardware cycles of each of these operations
attributable to the multiplier.

For the multiplication, division, and square root
operations, the multiplier operates in a fixed point
manner on the fraction portions of the operands, with
the exponent arithmetic and rounding handled
elsewhere. We do not include the initial loadings of
the latches from the bus in our cycle counts here.

Multiply operation

A full precision multiplication herein denotes a 71 x
69 bit multiply. This is accomplished by four passes
through the adder tree kernel followed by a
conversion cycle. In the first pass the low order 18
bits of the multiplier are multiplied by the 69 bit
multiplicand. With reference to Figure 3, the high
order 69 bits of this 87 bit partial product are sent to
the feedback latch and the low order 18 bits are sent to
the indicator for positive, zero, or negative status
determination. Then 18 more bits on the second and
third passes and 17 more bits on the fourth pass of the
multiplier along with the carry in from the Booth
recoding of the lower order bits are input to S and C to
form the next multiplier which is multiplied by the 69
bit multiplicand input from the D-latch. The resulting
next 18 x 69 bit partial product is accumulated with
the previous sum of partial products input from the
feedback latch in each single pass. Each pass the new
accumulated sum of partial products is split to hy and
I with low order 18 bits sent to the indicator. The
high order 69 signed bits hy are sent back to the
feedback latch after each of the first three passes.
After the fourth pass the 69 signed bits hy are sent to
the converter along with information from the
indicator and status units to yield the desired output in
the E-latch after the fourth pass. Since a pass through
the adder tree kernel takes only one cycle, the 71 x69

bit multiply described here with conversion to non-
redundant form and status information on the
truncated portion consumes only five machine cycles.

Divide and square root operations

The divide and square root operations are
implemented by new algorithms finely tuned to the
multiplier termed "short reciprocal” divide and square
root. The short reciprocal divide algorithm is
described in detail elsewhere [Ma 93]. Its principal
features are outlined here.

The short reciprocal division process involves
determining four successive digits in the maximally
redundant digit set for the large radix 217 Given a
next such digit, a new remainder can be determined
and placed in the feedback latch replacing the
previous remainder in one cycle as follows. The
absolute value of the digit is input through the C-latch
to S and multiplied by the divisor which is input to L
from the D-latch and this product added or subtracted,
depending on the sign of the digit, to the previous
rernainder input to B from the feedback latch. The
result p is split to hg and [j where hg is coerced to
zero by a special conversion process. Note that the
quotient digit is always chosen so that hg must be
either zero, or have an initial signed one somewhere
in the field followed by one's of opposite sign.
Examining the second lowest bit of hg, and if a one,
complementing the lowest bit of hg and appending
this signed bit as an overflow bit of lj, effectively
converts the truncated leading portion of hg to zero
without any timing delay. The resulting value of I is
sent to the feedback latch as the new remainder.

The 17-bit signed quotient digit is obtained by
multiplying the remainder (initially the dividend) by a
specially chosen 19 bit short reciprocal of the
dividend using the 19 x 69 bit capability of the
multiplier. The product is split after conversion so hg
and /[have the same sign with hg then the next 17-bit
digit. The correctness of this process is shown [Ma
93] to result from the short reciprocal being chosen
larger than the true reciprocal and by an amount no
greater than one part in 218 The quotient digit
determination takes two cycles per quotient digit
resulting from the multiply and subsequent
conversion. We note here the importance of the 19 x
69 bit alternative multiply capability to provide
sufficient accuracy for this process.

The short reciprocal is itself initially determined by
table look-up followed by two Newton Raphson

168

iterative refinements. A final adjustment and
conversion to 19 bits is possible with assurance that
the reciprocal approximation then falls in the required
range. The iterative refinement formula y”"=y" (2 -y’
y) is conveniently computed in two multiplicative
cycles and a conversion cycle to place the new refined
valued in the C-latch, contributing a count of six
cycles for the process of determining the short
reciprocal. The full division process then requires 18
cycles from the iterative multiplier operations.

Square root is completed by a similar process with
the only timing difference being two additional cycles
beyond that of divide attributable to the extra cost in
the Newton Raphson root reciprocal formula. The
details may be found in [BM 91].

Binary-to-BCD conversion

For binary to BCD conversion the input is taken to
be a non-negative integer k in binary format that has
been verified to be less than 1018, This value is
multiplied by a 71 bit approximation to 1018 in a
four pass 71 x69 bit multiply operation. The implicit
normalization of the final output at p provides that if
the result is split p=hg + [j, thenhg =0 and /| isa
69 bit approximation to k10°18 with radix point to the
left of the leading bit. Importantly, the 71 bit constant
approximation of 10-18 s carefully chosen to assure
that the resulting value of /|_falls in the range k10-18
< < k107! a1 + 10'18), so that subsequent
infinitely precise multiplication of /] by 1018 rounded
down to an integer will return the value k.

To perform the conversion to BCD, the value Jf_is
multiplied by 10 and the new output value p is split to
anew hg and /. This splitting process here consumes
an extra machine cycle as the new value I is coerced
to be non-negative by appending an overflow signed
bit and decrementing hg as appropriate. This provides
that hg is the leading BCD digit which is stripped off
and output, and /[is returned to the feedback latch.
This iterative step is repeated 18 times to determine
the 18-digit BCD result. As all intermediate products
are exact, the eighteen multiplications by 10 are
equivalent to multiplication of the original
approximation by 1018, so the process yields an exact
binary-to-BCD conversion. The ori§inal 4 pass
multiply by the approximation to 10-18, along with
the 18 multiplications by 10 with intermediate
computations to coerce /[to be non-negative require
a total of 40 multiplier unit cycles for this operation.

Note the same procedure and apparatus may be
utilized for binary-to-base B conversion for any
integer base 3 < B < 217 In fact, if more hardware to
speed up binary-to-BCD conversion were %ustiﬁable,
the conversion first from binary-to base 10~ could be
performed followed on-the-fly by table look-up to
convert the 10 bit base 1000 digit to 3 BCD digits.

BCD-to-binary-conversion

BCD-to-binary conversion is performed by
evaluating the BCD radix polynomial in the Homer
method order. (... ((dy7 x10) + d1g) x 10+ dy5) x10
+ ... +dy) x10 + dy. During each cycle a new
product-sum, p = (previous product-sum) x10 + (next
digit), is computed with the previous product-sum sent
to the multiplicand input L from the feedback latch
(see Figure 3), the multiplier 10 sent to input S from
the C-latch, and the next digit input to the second
adder input A. The new product-sum p is split to hy,
and g each cycle. [is assured to be zero by the
scaling, and hy is sent to the feedback latch every
cycle until the last, when instead it is converted and
output employing one extra cycle. Thus 18 iterative
multiplier unit cycles are used for this operation.

Transcendental functions

The procedures for evaluating the special functions
sin, cos, tan, arctan, exp and log have been described
in [FB 91]. The procedures involve argument
reduction, function approximation, and output value
construction, all of which can extensively utilize the
multiplier unit. Argument reduction can involve
division. Division may also be employed when the
approximation is by a rational polynomial, that is, the
ratio of two polynomials. Furthermore, the output
value construction for selected intervals of input
values can involve a square root. This occurs in the
algorithm design employed when the sin is obtained
by computing Vv 1-cos“ (x), with the intent of such a
computation being to assure the monotocity of the
resulting function. Thus the transcendental
computations benefit greatly from the efficiency and
accuracy of the divide and square root results which
are internally available in 67 signed bit form with one
ulp accuracy.

A principle component of each transcendental
function computation is evaluation of a polynomial in
the reduced argument x determined in Homer
polynomial order, e.g. (((ag X + a3) X + a) x +ap) x
+ a. This exemplary fourth order polynomial can be
evaluated by computing four linear polynomials of the

169

form p x + a, where x is the reduced argument, p is
initially the highest order constant a4 and
subsequently the ongoing product-sum of prior
iterations, and a is the next constant. Referring to
Figure 3, x is a 69 bit value sent to the multiplicand
input from the D-latch, the ongoing product-sum p is a
value up to 71 bits as converted and sent over the
system bus to the C-latch, and the up to 69 bit next
constant a is obtained from the feedback latch. Note
that a is loaded to the feedback latch while the
previous product-sum is being converted for
transmission to the C-latch via the system bus.

Care is taken [FB91] in the scaling and selection of
the constants for accumulating the intermediate
product-sums so that some of the required full
product-sums px may be computed to sufficient
accuracy in fewer than four cycles. The total iterative
multiply cycles employed for the transcendental
functions vary considerably with both the particular
function and argument region, all being largely in the
range of 50-125 cycles. In comparison, the bitwise
CORDIC evaluation of transcendental functions to
this same accuracy can take several hundred cycles.

An important aspect of the multiplier design
highlighted here by the transcendental functions is
that the internal data path widths and latches are all
larger by appropriate numbers of guard bits than the
target support level (here 64 bits) of the final output to
the external system. This provides for one ulp
accuracy of the resulting transcendentals without
extensive increase in hardware size or total iteration
cycles.

The Cyrix 83D87 has been compared with the ULSI
83C87, IIT 3C87, and Intel 387DX, in an extensive
study of x87 class math coprocessors by Juffa [Ju 91].
A selection of these results [Ju 91] regarding the
accuracy of transcendental function evaluation is
given in Table 1. For the seven functions, 100,000
arguments uniformly distributed over the intervals
cited in Table 1 were evaluated by each of the four
coprocessors. For each coprocessor, the percent of
results differing from the infinitely precise round-to-
nearest value for that function is given, along with the
maximum difference in ULPs between the
coprocessor computed value and the infinitely precise
round-to-nearest value for that function.

The implementations of multiply, divide, and square
root operations, conversions between BCD and binary
integers, and transcendental function evaluations
described in this section have been so far measured

solely by citing the number of cycles attributable to
the execution steps in the multiplier unit. A
meaningful test of how much end value efficiency this
design provides to the user of a 386 class personal
computer is available in the test data developed by
Juffa. In Table 2 we have extracted from Juffa's
results the measured cycle times determined for the
same four coprocessors for the eight instructions cited.
Clearly included in these observed totals are all
cycles attributable to communication with the host
microprocessor, transmission and loading of
arguments and results, exponent handling, and final
normalization and rounding. These additional
processing steps significantly dominate on all but the
transcendental functions the multiplier unit steps we
have previously cited.

Note, in Table 2 that the multiply time of the Cyrix
83D87 is roughly comparable to the multiply time on
the other three processors. Then observe that the wide
variety of floating point numeric functions realized by
our algorithm designs, which designs are closely
bound to the signed binary feedback capabilities of
this short by long multiplier, show a significant
advantage in performance.

REFERENCES

[Av 611 A. Avizienis: "Signed-digit Number
Representations for Fast Parallel Arithmetic,” IRE Trans.
Electron. Comput., Vol. EC-10, pp. 389-400, 1961.

[BM 91] W. S. Briggs, T. B. Brightman, and D. W.
Matula, "Method and Apparatus for Performing the Square

[BT 87] B.K. Bose, L. Pei, G.S. Taylor, and D.A.
Patterson, "Fast Multiply and Divide for a VLSI Floating-
Point Unit," Proc. 8th Sym. on Comp. Arith., pp. 87-94,
1987.

[Da 65] L. Dadda, "Some Schemes for Parallel
Multipliers," Alta Frequenza, Vol. 34, pp. 349-356, 1965.

[FB 91] W. E. Ferguson and T. Brightman, "Accurate and
Monotone Approximations of Some Transcendental
Functions,” Proc. 10th Sym. on Comp. Arith., pp. 237-244,
1991.

[IE 85] "IEEE Standard for Binary Floating-Point
Arithmetic", ANSI/IEEE754-1985, IEEE, New York, 1985.

[Ju9lj S. Juffa, "What you Always Wanted to Know

About Math Coprocessors,” Karlsruhe, 1991, private
communication.

[Ma 76] D. W. Matula, "Radix Arithmeitc: Digital
Algorithms for Computer Architecture,” in Applied

Computation Theory: Analysis, Design, Modeling, R.T.
Yeh ed., Prentice-Hall, Eng'ewood Cliffs, 1976, pp. 374-
448.

[Ma 93] D. W. Matula, "Short Reciprocal Division," in
preparation.

[SH 89] M. R. Santoro and M. A. Horowitz, "SPIM: A
Pipelined 64 x 64-bit Iterative Multiplier," IEEE Journal of
Solid-State Circuits, Vol. 24, pp. 487-493. 1989.

[TY 85] N. Takagi, H. Yasuura and S. Yajima: "High-
speed VLSI Multiplication Algorithm with a Redundant
Binary Addition Tree," IEEETC, Vol. C-34, pp. 789-796, .
1985.

Root Function Using a Rectangular Aspect Ratio [Wa 64] C. S. Wallace, " A Suggestion for a Fast
Multiplier,” U.S. Patent No. 5,060,182, 1991. Multiplier,” IEEE Transactions on Electronic Computers,
Vol. EC-13, pp. 14-17. 1964.
CYRIX 83D&7 INTEL 387DX ULST 83CR7 1T 3C87 CYRIX | ULSI T INTHL
8387 83C87 3C87 387DX
% Not Max % Not Max | % Not Max | % Not Max
Funct, lnterval__| RN uLe | wN uLP | RN ute | RN uLP | | EMUL [QWord) 46 42 48 41
| SIN 0. pitd 1554 1 28873 2 | 35530 2} 18650 1| |EDIV [QWord] 57 72 72 79
COS _0.pi/4 0.925 1 27.121 2 | 4398 2 7.700 1| LESQRT (L2T) 36 87 57 102
TAN 0, pifd 4.147 1 10711 1] 48539 3 | 20073 2 | | FSIN@2D 121 472 217 452
ATAN 01 0656 1 7.088 2 | 20858 1| 19.280 1| | FCos a.2m) 156 467 222 507
2XM1 0,05 2.628 1 32.024 1| 21257 1| 25660 1 FPTAN (L2T) 136 517 306 297
-\Exm 0.sqn(2)-1 | 3242 1 22611 1| 27.893 2 | 45830 3 FPATAN(L2T) 141 362 422 373
YL2X 0.1,10 0931 1 13.020 1 J 13603 1 | 10888 3 FYL2X(L2T) 11 437 357 393
Table 2: Execution time in clock cycles plus or minus one cycle
Table 1: Accuracy of the transcendental functions on four 387 class coprocessors [Ju 91]. for the indicated instruction on the indicated coprocessor according to

170

Juffa {Ju 91], where QWord denotes a 64 bit argument and L2T denotes
the particular constant log, 10.

