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Abstract

The paper presents a new scheme for convolver design,
called multi-parallel convolver: it is based on concurrent
processing of p adjacent samples that are input
simultaneously to the p-parallel convolver. The scheme is
composed by p units; each of them receives the input
samples and produces one convolution every p samples
(we call them p-phase sub-convolvers). The detailed
design of the p-phase sub-convolvers and of the whole p-
parallel convolver is presented and discussed. The
scheme can be used both for the bit-parallel input
presentation of each sample and for the bit-serial one.

The input sample's rate of the p-parallel convolver is p
times the sample's rate of a standard (1-parallel)
convolver implemented by using the same integration
technology. The number of components required by a p-
parallel convolver is approximately p times the number of
components required by a standard convolver.

1: Introduction

Convolution and spectral transforms (e.g., the Fourier
transform) are basic digital signal processing (DSP)
operations. They are used in a wide range of applications
with different computational constraints, in particular
concerning the sampling frequency.

Software convolution and transforms are suited in
applications requiring low sampling rates (e.g., in
acoustics), while hardware convolvers and transformers
become mandatory in telecommunication (e.g., for
filtering) and in radars (e.g., for SARs - synthetic
aperture radars).

The recent advances in integration technologies allow
to implement these operations very efficiently by using
dedicated units. In particular, VLSI and WSI
technologies have greatly expanded the application fields
which can benefit from DSP, since they achieve both
higher speed and complexity (e.g., the number of
convolution terms or transform points).
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In literature, serial-input and  parallel-input
architectures have been proposed and used [1,2, 3, 4, 5,
6] to deal with different sampling rates and sample
lengths. Speed of several MSPS (Mega Samples Per
Second) have been achieved by adopting parallel input
schemes [6, 9].

Since even higher MSPS are increasingly necessary for
advanced applications (e.g., for SARs), we need to
consider and develop faster technologies (e.g., GaAs
technologies) and highly-parallel architectures. As
massive-computing structures, systolic arrays were widely
appreciated and used [3]; in particular, their success grew
with the advances in WSI technologies and in defect/fault
tolerance.

The complete exploitation of high architectural
parallelisms requires the definition of suitable parallel
algorithms. A Fast Fourier Transform algorithm is
intrinsecally highly parallel, since it operates on
subsequent time windows containing quite a large
number of samples (usually at least few tens). In
practical applications, such a parallelism is never fully
exploited: some samples serialization is always
considered (e.g., 4-samples groups in pipelined radix-4
FFT schemes).

The convolution algorithm is inherently parallel. It
operates on time windows: while the Fourier transform
considers non-overlapped windows (overlapping is
adopted for secondary reasons), two subsequent outputs of
a N-samples convolution are generated from windows
which are overlapped by N-1 terms.

This high parallelism allows to achieve a sampling
rate which is equal to the time required to perform the
complete convolution (or one step of the convolution
algorithm if a pipelined scheme is adopted). On the other
hand, the maximum sampling rate is constrained by the
system clock rate: in particular, it is equal to the clock
rate if the samples are input in the parallel form. The
clock rate is then constrained by the adopted
implementation technology and by the convolver
architecture. The optimal architecture, as far as the



sampling rate is concerned, is a pipelined structure where
cach convolution step is performed in one clock period.
This time is the time required by the basic operation
performed in each stage of the pipeline; in the fastest
schemes, it is given by the computational delay of the
full-adder plus the commutation time of a flip-flop.

To increase the sampling rate beyond these
technological and architectural constraints, it is necessary
to devise architectures which accept two or more samples
in parallel, instead of the single sample.

This approach could appear greatly in contrast with
the facts that the input samples are naturally in time
sequence and that the convolution is a time-sequential
operation performed on the input stream, sample by
sample. However, at first we must remark that also the
spectral transform is sequential by windows and parallel
within each window (even if, within each window, it can
be sequentially performed by sub-windows).

Then, we observe that convolution can be obtained by
using a well-known parallel computational scheme on the
input samples: at first we apply the Fourier transform to
the sequence of input samples, the Fourier spectrum is
multiplied by the vector of convolution weights and the
result is restored in the sequential form by applying the
inverse Fourier transform.

Finally, we point out that this paper deals with an
algorithmic approach to process more than one input
sample at a time and to produce more than one
convolution at a time: the convolutions which are
processed in the same group are delivered
simultaneously, even if it is possible (through suitable
delay circuits) to restore their correct timed sequence.

Although this approach has been developed to
overcome the technological and the architectural
constraints on the sampling rate in bit-parallel circuits, it
can be used also to increase the low sample rate of the
bit-serial structures.

In general, for a given technology, the circuits of the
convolver handling p samples in parallel occupy an area
which is approximately p times the area of the standard
convolver: this is often reasonable if no better solutions
are available to decrease the computational time.

In this paper, we do not assume any specific mode for
data presentation at the convolver inputs and for result
delivery at the convolver outputs. Parallel presentation is
considered at samples' level (i.e., among the samples),
regardless of the bit-serial or bit-parallel presentation of
each sample.

This assumption implies that suitable conversions of
the data presentations must be adopted to guarantee the
connectivity of the convolver to the other components of
the computing system in which the convolver itself is
included. For example, if the bit-parallel input samples
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are available sequentially one after the other, they must
be stored in a bank of p registers (p at a time), so that
they can be processed in parallel when all of them
arrived. If the bit-serial input samples arrive one after the
other and we adopt a bit-serial architecture for the
convolver, the samples must be stored in a bank of p shift
registers; data loading is performed serially by
considering the shift registers as a single cascaded shift
register, while retrieval is executed by extracting serially
every sample from each shift register synchronously.

Similar conversions are required to regenerate the
proper output presentation. However, since in the
following we concentrate our attention on the core of the
p-parallel convolver, we do not further consider this
conversion problem.

The paper introduces the design methodology at first
by considering the simple case of 2-parallel convolvers.
The architecture is derived from the analysis of the
sequences of the basic convolution operations and, then,
it is algebraically formalized. In section 3, the
architecture and the method are extended to deal with 3-
parallel and p-parallel convolvers. Additional remarks
concerning the architectural implementation and the
fault-tolerance characteristics are discussed in section 4.

2: An Architecture for the 2-Parallel
Convolver

A standard convolver is fed by a sequence of samples
Xj (for i = 0, 1, ...) and delivers, for each X, the

N-1
convolution Y; =Zj_ 0 Win_j, where Wj are the

coefficients (or weights) of the convolution. The simplest
case of the p-parallel convolvers is the 2-parallel one. In
this convolver, a sequence of samples' pairs

(X3¢, Xp¢41), fort=0, 1, ...) is fed into the circuit, and

two N-samples convolutions (Y,, and Y,.,) are

generated for each pair of input samples. The convolver
has therefore two input ports and two output ports.

The sequence of the Y5, convolutions can be viewed

as the output of a 2-phase convolver [10]. A phase of a p-
phase convolver is the circuit which computes one

convolution every p samples. Similarly for Ys;,1- The
general architecture of the 2-parallel convolver can be
obtained by using two 2-phase convolvers (see fig. 1a):
these convolvers work in parallel and are fed by the
sequence of samples' pairs. In [10], design of p-phase
convolvers with a single input samples' sequence is
discussed. In this section we derive the design of a 2-
phase 2-parallel-input convolver.
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Figure 1 - The general architecture of p-parallel
convolvers: the 2-parallel convolver as a 2-phase
2-input convolver (a), the 3-parallel convolver
as a 3-phase 3-input convolver (b).

The operation of a 2-parallel convolver is described in
Table A. For simplicity sake, we consider the case in
which N is multiple of p, so that all the convolvers have
to manage the same number of samples (i.e., have the
same size); in our example we assume N=6.

Table A has been obtained as follows. The N=6
weights (Ws, Wy, W3, Wy, Wy, W) are grouped in
N/p=3 groups of p=2 weights: wy=[Wy, W], woy=[W3,
W3], w3=[Wsg, Wyl. In the first N/p=3 rows (the time
section t = 0), we place these groups in the first p=2
columns, which are characterized by the odd (h mod 2 =
1) and the even (h mod 2 = 0) values of the index h. For
simplicity sake, only the indexes of the weights are
written in the table.

Then, the first samples’ pair (p-tuple) xg=[X¢, X1l is
written in the next p=2 columns, characterized by even (k
mod 2 = 0) and odd (k mod 2 = 1) values of the index k,
respectively.

In the first row of the following 2 columns, we put the
result of the vector product wy* xg= [Wy, Wgl* [Xg,
X;1=[W1Xg, WoX1]. The columns are characterized by
b,k mod 2, i.c., the residue modulo 2 of the index pair
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(h,k). In the adjacent 2 columns of the first row, we put
the result of the vector product wy®xy' = [Wy,
Wol* [X1, Xg] = [WX3, WgXpl. The other 2 rows of
the time section t = 0 can be written by applying the same
rules.

Similarly, we operate for the subsequent time section t
= 1 in which the sample pair x;= [X», X3] is fed, and so
on for all the other time sections.
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Table A - The operation of a 2-parallel convolver.
The terms Wy, X, are shown in the initial steps of a 6-
samples convolution; the weights Wy, are given in the
two leftmost columns (ordered by decreasing values of

h), the samples Xy, are shown in the adjacent two

columns (ordered by increasing values of k), and the
products Wy, Xy, are listed in the four rightmost
columns (identified by the index pair hk).



In the first time section t = 0, the index pairs are
written by using different character heights. Small
characters are adopted for those pairs whose index sum is
smaller that 5 since they represent products which do not
belong to any convolution. The first convolution is in fact

Ys = 2i=owkxs—k’ since N=6. The product pairs
belonging to Yg (i.e., those having sum equal to 5) lay in
the columns h,k mod 2 = 1,0 and h,k mod 2 = 1,0, and
are circled. Similarly, the products belonging to the
convolution Y are circled in the two rightmost columns.

Consider the "mask" defined by the circles and the
dashed links in the four rightmost columns of Table A: it
points out the pairs of terms for Yg and Yy, respectively.
Note that the corresponding terms for the convolutions
Y7 and Yg can be identified by shifting such mask down
by one time section, and so. on for all the other
convolution's pairs.

The convolver architecture can be directly derived
from table A: different solutions may be considered. In a
first solution, we observe that, at each time step, two
products for each convolution are generated on Y11
(requiring N/2 time steps for each convolution): it is
possible and it could be advantageous to design two
“merged” multipliers which produce the sum of the
products' pairs [1]. A different approach is required for
Y, : the terms of the first product pairs (namely, 45 and
51) are produced in different time steps, and the same
case occurs for all the subsequent pairs. Therefore, 4 time
steps are required to generate Y,, .

In a second solution, we can add separately the
convolution terms on each column and, then, the two
resulting sums may be added to generate the convolution.
This implies that, in the column h,k mod 2 = 1,0, we
convolve the even-indexed samples X,, with the odd-
indexed weights Wg, W3 and Wy; while, in the column
hk mod 2 = 0,1, the odd-indexed samples X¢41 are
convolved with the even-indexed weights W4, Wy and
Wp. The corresponding units are called sub-convolvers.

Their outputs are then added to generate the Y,
convolutions (see the circuit on the top of fig.2).

For Y,,, we note that the terms in the column h,k
mod 2 = 1,1 of Table A can be paired with the
corresponding terms in the column h,k mod 2 = 0,0 by
delaying them by one time step (see the delay unit at the
input of the third sub-convolver of fig. 2). The circuit
producing Y5, is shown on the bottom of fig.2. With this
circuit (see Table A), Y is output in the same time step

(t = 3) of Y7; the proper synchronization of Y¢ with Yg
can be obtained by means of a delay at the output of

Y2‘+1 (see ﬁg.2)
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Figure 2 - The 2-parallel convolver composed
by I-input sub-convolvers.

The above analysis can be formalized by restructuring
the mathematical definition of the convolution operation.
First of all, we consider the odd convolution results (i.e.,
the outputs at the odd time steps in the standard

architecture); they are identified by Yy, (fort=0, 1, 2,
...). They can be rewritten as:

N-1
Yo141 = Zj=0 WiXoeh1-j
We can separate the products containing the odd indexed
X's from those containing the even indexed X's.

N/2-1
Yo =, 0 WaXopios+
=0

N/2-1 o .
+Zs=0 Wosi1Xae1-2s+1) = Youu1 + Yaru1

N/2-1
the sub-convolution th“ =Zs=0 W Xoti1-25

we obtain a convolution on N/2 samples by variable
substitutions and by renumbering the subsequence of odd-
indexed samples and the related weights:

N/2-1 ¢ o
7(1;10 = Zr:l) OrXm-r
where Yy 4 is replaced by ¥p;, 2s by r, W, by @f,
]
and X3¢41-25 bY Xm-r-

From renumbering samples and weights and from the
previous assumptions, we derive the relationship between



m and t. The first sample Xg in the re-written
subsequence X?n is identified by m = 0; the second one

xtl) by m = 1; and, in general, the (m+1)-th sample xgl
is identified by m. The first odd-indexed sample X is
identified in the input sequence X; by t = 0; the second
one X3 by t = 1; and, in general, the (m+1)-th odd-

indexed sample X, is identified by t = m, since, by
our assumptions, the sample X,.,; corresponds to the
sample X?n . Therefore, it ism = t.

N/2-1
€ —
Yi1= Dy WasiXati-(ass):

obtain similarly a convolution on N/2 samples:
N/2-1
Yoo = Doy DX

where Y31 is replaced by Yor, 2s+1 by r, W, by

For we

€
m-r

0 — e . .
@, and X2t+l—(2$+l) = X2t_25 by Xm—r- Also in this
case, we can show that itism = t.

Since Yp_y and Y, are available at the same time,
the computation of the two sub-convolutions proceeds
synchronously. Therefore, the original convolution
(having odd index) can by computed by adding directly
these sub-convolutions.

Consider now the convolution outputs Y,, (for t = 0,

1, 2, ..) at the even time steps in the standard
architecture. They can be rewritten as:

N-1
Yoo = 3o Wiae|
We separate the even-indexed samples from the odd-
indexed ones:

N/2-1 N/2-1
Yo=Y 0 WaXp g+ o WasaXoeasey = Yo + Y3,
From the expression of the sub-convolution

0 N/2-1 ‘
Y2t=zs=0 Wis1Xa6-(2541), We obtain by

variable substitution and by renumbering the subsequence
of the odd-indexed samples and the related weights:

N/2-1
Yo =D DX

where Yy; is replaced by Yy, 2s+1 by r, W, bya?,

0
m-r

and Xy (241) by Xm_r; from the previous
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assumptions and from renumbering samples and weights,
it is m = t-1. The previous relationship is a convolution
on N/2 samples (the odd-indexed samples of the original
one).

From the of the

expression sub-convolution

N/2-1 . .
Y, =z.= szxz,_zj, we obtain by variable
j=0

substitutions and by renumbering:

. Ni2-1 o e
Ynen = Zrzo OrXm-r
where Y3, is replaced by Yz, 25 by r, Wy, by @, and

X125 by Xe_p: from renumbering and from the

previous assumptions, it is m = t. Again, the above
relationship defines a standard convolution on N/2
samples (the even-indexed samples of the original
convolution).

Since m is equal to t-1 in the first sub-convolution

and by t in the second one, Y5y is generated when the (t-
1)-th pair of samples has been input, while yf: is
produced only after the t-th pair arrived. This implies
that yf,f’ is available one time step after Yf:. To generate
the original convolution (having even index), we must

properly synchronize the sub-convolutions and, then, add
them. Synchronization can be achieved either by

introducing a delay at the output of Y5y before addition

or by delaying the inputs of yf,‘,’ (see in fig. 2).

To evaluate the realizability and the effectiveness of a
2-parallel convolver, it is necessary to compare the circuit
complexity of this convolver to the complexity of a
standard convolver (in which the samples are presented
one at a time).

Consider the architecture given in fig.2: in the case of
N even, the number of basic convolver cells is twice the
number cells for a standard scheme, since four sub-
convolvers are required and each of them contains N/2
cells. We must consider also the two final adders and the
two delay circuits.

The /atency time for each convolution is about one half
of latency time of the standard architecture. The small
increase with respect to one half of the standard latency is
due the computational time of the adder at the output of
the sub-convolvers and to the delay circuits.

The throughput of the architecture is doubled with
respect to the standard one.



3: The Convolvers for Three or More
Parallel Samples

The design methodology for p-convolvers with p>2 is
similar to the one discussed in the previous section for the
case of p=2. The case of p=3 is considered in detail, then
the results will be extended to the general case.

Table B lists all the relevant terms in the first
convolution steps with N=9 samples (N is assumed to be
multiple of p=3). Table B is obtained as for Table A, with
the following additional remarks. The N=9 weights Wg,
... W are partitioned in N/p groups containing p=3
weights each: wy=[W,, W1, W], wa=[W35, Wy, W3],
w3=[Wg, W7, W¢l. Samples are presented in subsequent
triplets xg=[Xg, X1, Xal, x1=[X3, X4, X5}, x2=[X¢, X7,
Xgl, ..., at the time steps t = 0, 1, 2, and so on. We place
these groups and triplets in the leftmost 2 columns (W
and X parts) of the first p adjacent rows (section t = 0).

B b | Xe k WnXi:

t |w 2z Wz, wyzg
z|7]ofo 1]z |20[rr]|o.2[21]r.2]0.0]22]1.0]0.1
wai | mod | wad | s | madt | s v | mact | macs | md? | S | | mads | madt | st

wl2|717|0}0| 1|2 |2)|1|02)2|12|00]|22]|10] o0t

O|uwsl s 4 3 S0| 4142 51| 42)80)|52| 40} &1

wilag|7|6 BO1CDIED| @12 €0 [E2)f 70 | &1
2|10 83| 4|5 |28|re|osf24)2503]|25]|13]04

1 s|4|3 @ @@‘@\‘u @\4: 3
a|7|s 83|74 |85 | a4 |76\E€3)]| a5 G3EI)|
2| 1|06 7| e |@31(P109]|@DHED)|0s | EB)\s€ |07

2| |s|4]|a 56| 47| 38| 67| 48\ &6} 58| @@
a8|7|s 86|77 |6a|a7|7a [\ss|aal\76 | 67
2|1|ofa|n|n|20]1m]|on]|zn| 14|32 |GiER)

3 5§14 3 5940|381 | Sw|4n | 39|51 49|30
a|7e 89| 70|61 |8n| 74 |68 |8n | 70 |60

® ® &
®
Yots2 Yot Yater

Table B - The operation of a 3-parallel convolver.
The terms Wp X}, are shown in the initial steps
of a 3-parallel convolver with N=9.

In the 9 columns of the WX part, we place the index
pairs hk of the products WpX| according to the
following rule. In the first p columns of the first row in
the part WX, we place the components of the vector
product wyq * xg (20, 11, 02). We perform then a circular
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permutation on xg, obtaining xg'=[Xj, Xj, Xgl; we
multiply this new vector by wq and we place the result in
the adjacent three columns of the first row in the part
WX. We operate again a circular permutation on xg',
obtaining xg"=[Xy, Xg, Xy]; we multiply it by wy and
we place the results in the rightmost three columns of the
first row in the WX part. We repeat these operations also
for the second and for the third rows of section t = 0.

Section t = 1 of Table B is obtained from the section t
= 0 by replacing the 3-tuple (Xg, Xy, Xj) with the
subsequent input 3-tuple (X3, X4, Xs) and by applying
the same algorithm for generating the various products.
The same algorithm is applied to the subsequent time
sections.

Since a convolution Y;j is composed by N products
characterized by a sum of index factors equal to i, we can
find the terms composing such convolution in Table B by
selecting all the products WXy for which h+k=i. The
first convolution for the case N=9 is Yg: its terms have
been circled in Table B. Note that all of them belong to
the comlumns x¢ which generate the convolutions Yg,

Y11, Y14, - ice., the convolution sequence Y345 (for t
=0,1,2,..).

By using the terms belonging to the columns x;' we
can compute the convolutions Yo, Y19, Y15, ..., i.€., the
convolution sequence Y3, (for t =0, 1, 2, ...). Similarly,
the columns x;" generate the convolution sequence

Y3t+l (for t= 0, l, 2, )

Each convolution sequence contains one convolution
of the standard sequence every three. The units
generating such sequences have been called phases [10]
of a three-phase convolver (see fig. 1b. Design of a 3-
phase, 3-parallel-input convolver can be performed on
Table B by extending the method used in the previous
section for the 2-phase, 2-parallel-input convolver.

One phase of the 3-phase, 3-parallel-input convolver
can be composed by three standard (1-input) sub-
convolvers (fig. 3), characterized by the weights given in
columns hmod 3 =2, hmod 3 =1, and h mod 3 = 0 of
Table B, respectively. The sub-convolvers' outputs are

added together to generate Y3, Y37 and Y3, 5.

As Yz, is concerned, for each triplet X3¢, X3¢41,
X3¢42. the corresponding products belong to the same
row. The three sub-convolvers are fed directly by the

input triplets. For Y3;, X3, and X35 (e, the
inputs of sub-convolutions [W7, W4, W] and [Wg, Ws,

WS>, respectively) must be delayed by one time step to
guarantee the proper synchronization of input samples.

For Y3¢,1, X342 must be delayed by one time step.
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Figure 3 - The 3-parallel convolver composed
with 1-input sub-convolvers.

The procedure and the formal analysis can be
generalized for an arbitrary value of p. We note here that
the p2 columns in the part WX are partitioned into p
groups wg, Wi, .., Wp.1, of p columns each. The
corresponding products are found by vector multiplication
of w;j and x;, which can be determined in the same way
discussed for p=3. The input variables, that must be
delayed to guarantee a proper synchronization of the sub-
convolution outputs, are those that occur on the right of
X in each permutation x;.

The formal analysis can be performed by partitioning
the definition of the convolution into p sub-convolutions:
each sub-convolutions is characterized by a unique value
of the residue modulo p of the index for the considered
samples.

The evaluation of our design methodology may be
performed by considering the general case of p-parallel

convolvers. The area A occupied by the circuits of the
standard architecture (i.e., the 1-parallel one) is basically

given by A; =NA , where A_ is the area of each cell
of the convolver. The circuit complexity (i.e., the area) of
a p-parallel convolver is computed as

Ap =pNA_ +pA, +pAy, where A, is the area of

each adder at the output of the sub-convolvers, and A j is
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the area of each delay circuit. Since A, and Ay are
usually small with respect to the area of the convolver's
cells, the area of the p-parallel convolver increases
proportionally to p with respect to the area of the original

convolver, i.e., Ap = pA;.

The throughput of the p-parallel convolver is p times
the throughput of the standard convolver.

Let L be the latency time of the standard convolver,
the latency time of the p-parallel convolver (for N

multiple of p) is given by L, = L /p+t, + ty, where
t, is the delay of each adder at the output of the sub-
convolvers, and ty is the delay introduced by the delay
circuit (i.e., by definition, it is tq = L/ N). Also in this

case, t, and ty are usually small with respect to L /p:
the latency therefore is approximately proportional to 1/p
with respect to the latency of the standard convolver, i.e.,

L,=Lg/p.

4: Additional Design Considerations

In the previous sections, we assumed that N is multiple
of p. If this is not true, the design methodology must be
modified as follows.

The number of weights' group is |—N/ p_]; for N=8

and p=3, it is |-N / p] =3, i.e., there are three groups wy
as in the preceding example. The weights are partitioned
in groups of p elements starting from Wg. The last group
(containing Wp_1) contains less then p weights. The
empty places in the last group are filled with zeros. The
procedure continues as in the previous sections.

The circuit can be obtained by observing that, in each
phase-convolver, the last sub-convolver contains only 2
stages, W7 and Wg, with an additional delay at the
sample input (or a third stage filled with zero weights).

In our design methodology, we can deal also with fault
tolerance. Two levels of this problem can be considered.
Fault tolerance may be taken into account at the sub-
convolver level, i.e., within each sub-convolver. To such
purpose, a number of approaches have been presented in
literature [7, 8], according to the specific sub-convolver
architecture and to data presentation.

A second architectural level of fault tolerance can be
envisioned in our approach, as it is shown in fig. 4 for a
2-parallel convolver. One spare sub-convolver is
introduced in the basic p-parallel architecture to deal
with one faulty sub-convolver; a set of switches allows to



confine the faulty sub-convolver and to replace it by using
the spare one (sce fig. 4b). In general, weight
redistribution is required to guarantee the proper
execution of the convolution operations.

In this architecture, we have some circuits which
constitute the hard core for the fault tolerance of the
system: namely, the switches, the output adders, and the
delay circuits. However, we must point out that this hard
core is usually small with respect to the whole convolver.
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Figure 4 - A fault-tolerant scheme
Jor the 2-parallel convolver.

A generalization of the scheme presented in fig. 4 can
be envisioned to deal with more than one faulty sub-
convolver. To such purpose, a switched bus architecture
[12] can be adopted both for input distribution and for
output collection: p input buses and p output buses are
introduced. One position of the input switches allows to
deliver the proper input data to the corresponding sub-
convolver (i.e., to connect the proper input bus to the sub-
convolver). One position of the output switches for each
sub-convolver allows to collect the proper sub-
convolution for the final addition. Reconfiguration can be
performed by completely excluding one or more sub-
convolvers from the output connections.

These techniques can be adopted also to introduce
defect-tolerance capabilities, e.g., through laser cutting.

5: Conclusions

A new methodology for convolver design has been
presented to increase the effective sampling rate beyond
the technological and the architectural constraints. Our
approach builds an enhanced convolver by using the
available convolver schemes and the current
technologies: the innovative idea is the partitioning of the
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computation onto a number of cooperating convolvers.
Groups of p (>1) samples are handled in parallel by p
sub-convolvers. The general procedure has been
presented to design the p-parallel convolvers, for given
values of the sample-parallelism degree p and the number
N of convolution terms.

By considering the same implementation technology,
the number of basic components for a p-convolver is
slightly greater than p times the number of components
for a standard convolver. Conversely, the throughput is
greatly improved since it becomes p times the throughput
of the standard convolver.

The computational time required to generate one
convolution (latency) is the ratio between the
computational time of the standard convolution and the
parallelism degree p.
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