Design of a Fast Validated Dot Product Operation'

M. Daumas

Ecole Normale Supérieure de Lyon
Lyon, France 69364

Abstract

The dot product operation is very prevalent in sci-
entific computation and has been incorporated as a
primitive operation in some languages. Implemen-
tation of the dot product operation by a sequence of
IEEFE standard multiplications and additions does not
prevent substantial error accumulation or warn about
catastrophic cancellation.

The design of a double precision dot product opera-
tion 1is presented here where the final rounded result is
validated by raising exception flags if either the result
tncurred catastrophic cancellation or if the result is not
accurate to one unit in the last place (ulp). Our design
allows that in the absence of catastrophic cancellation
one ulp accuracy is guaranteed. The user can thus ob-
tain validated results at marginal extra cost with the
facility to trap to alternative routines in those cases
where the results are suspicious.

Introduction

Dealing with an accumulation such as a dot prod-
uct, the machine should provide enough information
to fully qualify the correctness of the final sum. The
existing systems do not allow such control whereas the
dot product operation is a common tool in scientific
computation [2].

Extending the precision to the quad format (cf. Ta-
ble 1) is not acceptable to compensate for the unmon-
itored cancellation of leading bits set to 0 or the ac-
cumulation of round-off error since this method does
not give any more information on the correction of the
results. Moreover, this race for raw precision is very
expensive in both time and space.

At the machine level, infinitely precise rounding
is often achieved by performing internal computation

tThis material is based upon work supported in part by the
PRC “Architectures de Machines Nouvelles” of the french “Min-
istére de I’Education Nationale”.

1063-6889/93 $03.00 © 1993 IEEE

62

D. W. Matula

Southern Methodist University
Dallas, TX 75275

with more bits than the output format. For exam-
ple, the IEEE standard operations [7] are usually done
with implicit infinite length [4].

Valid assumptions can only be assessed working
with a multiple precision exact representation. But
this precision level is not really cost efficient. Many
propositions have been made to accumulate the partial
sum in a multiple length representation {3, 9, 11, 14].
These different articles propose many different meth-
ods for computing error-free operations rather than
coherently and reliably controlling the error. This ap-
proach is correct when the usual tools are not suffi-
cient but this level of precision should not be used as
a common tool.

Section 1 presents a well defined rounding mecha-
nism (detailed in [5]) for vector arithmetic. Some sug-
gestions are introduced for the analysis and the mon-
itoring of the cancellation phenomenon in Section 2.
The last section describes our self validating dot prod-
uct algorithms.

1 Faithful Rounding

The IEEE standard [7] specifies four rounding
modes: RN — Round to Nearest (even), RU — Round
Up towards +00, RD — Round Down towards —oco
and RZ — Round towards Zero). The result of an
operation must be the exact rounding of the infinitely
precise mathematical operation. Whereas the IEEE
standard rounding is always attainable for the dot
product employing the notion of a long accumulator,

Sign Exponent Mantissa Total
Single 1 8 (1) +23 32
Double 1 11 (1) + 52 64
Quad 1 15 1+ 111 128

Table 1: Floating Point Formats

We present the rounding modes corresponding to the four IEEE standard rounding modes

As a convention, v*, v?, v* denote the successor, the predecessor and the next floating point

RN(Il)
RN — RND | RND([z;,z;]) = { RD(z1)
1
RU(.’El)
RU — RUU | RUU([zy,22]) = { RN(z,)*
€1
RD(Z]_)
RD — RDD | RDD([z1,x2]) = { RN(z,)?
L
{ RZ(:L‘l)
RZ — RZZ | RZZ([z,,z2]) = RN(z;)*
1
value toward 0.

RN(.’Cl) = RN(Ig)
RN(z;) # RN(z2) but RD(z,) = RD(z3)

otherwise

RU(xl) = RU(IQ)
RU(z1) # RU(z2) but RN(z1) = RN(z3)
otherwise

RD(:Cl) = RD(xz)
RD(z1) # RD(z2) but RN(z1) = RN(z2)

otherwise

RZ(z:) = RZ(z,)
RZ(z1) # RZ(z32) but RN(z1) = RN(z2)
otherwise

Figure 1: Faithful and Directed Faithful Rounding

our approach herein is more simply to obtain at least
a faithfully rounded dot product.

The notion of faithful rounding was introduced in
[6] and in [10] as optimal rounding. OQur proposal, in
[5], gives equivalent results on a general mechanism
well suited to be a first extension of the IEEE deter-
ministic rounding. The notation Rxy, where x and y
may be one of the letters N, D, U or Z, is proposed
to extend these conventions to the rounding of inter-
vals. We should eventually propose five “standard”
rounding modes RUU, RDD, RZZ, RND and RNU to
correspond to the existing modes RU, RD, RZ and RN
for standard arithmetic operations (see Fig 1).

Faithful Rounding The RND rounding mode is
active; if the interval cannot be rounded with the
primary rounding mode, Round to Nearest, the sec-
ondary mode is used to round the interval Down to-
wards —oco. An example of RND faithful rounding of
an interval is presented Fig 2.

Definition 1 The interval [z1,z3] Rounds Nearest-
Down (RND) to v if it Rounds to Nearest to v or else
it Rounds Down to v.

On a process that ensures faithful rounding (RND
or RNU), the machine guarantees the IEEE standard

63

| ——
= :
a 3‘ a :
2p ; Result % i
X [ERE— D
Result

Figure 2: Rounding Nearest-Down Mode

rounding of the infinitely precise result in the primary
mode (RN) or the secondary mode (RD or RU). Al-
though the user cannot e priori impose which mode
will be used, a posteriori information on the mode
used is available by just checking the IEEE standard
rounding flag which may be set by the computer. If
the standard rounding flag is active, the primary mode
was used, otherwise, the result was rounded with the
secondary mode.

Directed Faithful Rounding It is first desirable
to extend the notion of faithful rounding by introduc-
ing directed faithful rounding. The directed rounding
modes allow interval arithmetic implementation at the
user level. This is to guarantee that accumulated error
during the rounding process cannot make the user lose
the knowledge that the result is a directed approxima-

H
— S E—
. :
a : a N
a) —_— =) —
o o4 s
Result Result

Figure 3: Rounding Down-Down Mode

Continuous Expression result

Cancellation Safe Round:

Figure 4: Loss of Precision in a Continuous Expression

tion of the infinitely precise result.

Definition 2 The interval [z1,z2] Rounds Up-Up
(RUU) to v if it Rounds Up to v or else it Rounds
to Nearest to ve.

Definition 3 The interval [z;,z5] Rounds Down-
Down (RDD) to v if it Rounds Down to v or else it
Rounds to Nearest to v*.

Fig 3 presents the RDD rounding mode. The RZZ
(Round Zero-Zero) mode may be obtained from the
RDD and the RUU modes.

2 Catastrophic Cancellation

The exact semantic of each separate operation does
not necessarily implies the correctness of a large com-
pound operation. During the evaluation of a continu-
ous expression, accuracy is lost, as presented in Fig 4,
from accumulated round-off error and cancellation.

Some research has been intended to track lost accu-
racy during compound operations: randomized mech-
anisms, including {13], are available to detect irrele-
vant results using redundant systems. This is cur-
rently a good approach to the problem, but it is not
commonly available. The user must have specially
built chips, and the computation must be repeated
from five to ten times to get a good probability of
correctness.

Simple Cancellation Lots of cancellation occur
during a large computation. Detecting every cancel-
lation of a single bit would lead to tag any result as

Double |

Cancellation

Correct

Figure 5: Catastrophic Cancellation as a Reduction of
Precision from Double to Single

Mantissa Catastrophic
length cancellation
Half-Single 11
Single 24 13
Double 53 29
Quad 112 59

Table 2: Number of bits lost on a catastrophic cancel-
lation

suspect. On the other hand, an operation barely can-
cels all the bits of a result, and a mechanism to de-
tect such cases would be useless. The IEEE standard
introduced the notion of hierarchy among the preci-
sion types (single, double, quad...). This hierarchy
gives the trade-off between a too tight definition of the
catastrophic cancellation and one which would never
occur.

Definition 4 A cancellation is considered as a reduc-
tion in the number of significant mantissa bits of the
floating point representation. A catastrophic cancella-
tion has occurred if enough bits have been lost in the
process so that the result’s mantissa is no longer than
a mantissa of the next lower precision.

The notion of catastrophic cancellation and the
problem of rounding are not related. Doing the sub-
traction of two numbers close to each other will usually
lead to a catastrophic cancellation. Although the re-
sult is the standard rounding of the infinitely precise
mathematical operation on the inputs. Catastrophic
cancellation measures the trust one can place on the
physical interpretation of the result.

Cancellation of an Accumulation In order to get
information on the validity and the precision of an ac-
cumulation, we consider an accumulation as an atomic
operation and not as an ordered sequence of partial

sums. Extending the definition of catastrophic can-
cellation to a dot product accumulation is possible:

o The catastrophic cancellation of a single opera-
tion can be defined as a mantissa shift. In double
precision, this condition is equivalent on the ex-
ponent e; and ez, of the inputs z; and z, respec-
tively, and on the exponent e, of the sum to

e; > max(ey, ez) + 29

The condition for a catastrophic cancellation of
the accumulation of n partial product would be

ea > max(e;);Z} + 29

e The notion of cancellation is also related to the
rounding error introduced by the floating point
notation. A catastrophic cancellation is a cancel-
lation that just gives one ulp precision on the next
lower format. For an accumulation, the catas-
trophic cancellation should be equivalent to

eqa > max(e;)i=7 + 30 — [logn)

However, these methods are very expensive because
they require extra storage to compute the value of the
highest exponent. Still, this characterization of the
cancellation is minimal and order independent. Any
process that implements catastrophic cancellation de-
tection should at least detect all the cases that are
described in one of these two methods.

3 Validated Dot Product

To obtain some information about the dot product
we consider it as an order dependent atomic opera-
tion. There are two possibilities to handle such a case
using the common instruction set available on comput-
ers and coprocessors. These two methods conceptually
define the same function

acc : H F* F
neN
o The first method is close to the general purpose
computer architecture. The dot product is ob-

tained by issuing the following stream of opera-
tions.

reset_acc (X);
acc (X, x[1]);

acc (X, x[nl);
t = value_acc (X, n);

65

Input: A vector of floating point values [z;]}
Output: An approximation of ¢ = 37 z;

A bound on the error §

The level of cancellation v

Set the two registers X+ and X~ to 0.0
Repeat until all the vector has been read
Read a new value z
If zx > 0 then Xt := X+t 4z,
else X~ =X~ 4+ 23
Return
The sum X = X+ + X~
The error bound
§ = (n — 1) max (ulp(X*), ulp(X ™))
The level of cancellation
v: number of bit canceled
during the last operation

Figure 6: SSA — Sign Segregated Accumulation

o The second method would be implemented on
some specific application oriented designs only
with extra long instructions.

t = long_acc (x[1:n], 1, n);

3.1 Sign Segregated Accumulation (SSA)
Error control Our approach to attain faithful
rounding involves control of the accumulated error.
A floating point number v is known with an error §
given the active rounding mode Rx, if the real value z
is in the interval

Round to Nearest z€v—16,v+ 16

Round Up towards +o0 z € [v—46]
Round Down towards —oco z € [v,v+ 6]
Round toward Zero z€v—=6v+6

The RZ mode does not work correctly in regard
to this specification and we have used the maximum
interval.

Lemma 1 The error on the sum of two numbers z;
and 3 known with respective error §; < nyulp(z,) and
82 < naulp(za) is bounded by the value

6 = (n1 + na + 1) max(ulp(z1), uip(z2), ulp(z; + 1))

The SSA Algorithm Computing the sum X* of
the positive numbers and the sum X~ of the negative
numbers (see Fig 6) ensures that the whole cancella-
tion occurs on the last operation X = X+ 4+ X~. This
methods also guarantees that the values ulp(X*) and
ulp(X ~) are non decreasing, thus the accumulated er-
ror is bounded relatively to the final values of X+ and
X~.

Theorem 1 The error introduced by the Signed Seg-
regated Accumulation (SSA) process is bounded by the
value

(n — 1) x max (uip(X™1), ulp(X ™))

This method represents the worst case accumula-
tion in regard to catastrophic cancellation. At the
hardware level, the SSA mechanism is interesting be-
cause the selection of the register X+ or X~ can be
done in the early stages of a pipeline, and the right
register would be ready on time.

Extended Type As Kahan proposed in (8], the ac-
cumulation process should take place in a type preci-
sion higher than the working type. The quad precision
format represents a nice trade-off to accumulate dot
product in double precision. Being a standard, this
format will be accepted by manufacturers, moreover
it is integrated into the IEEE philosophy, and any
floating point unit that would give wider data path
than the double precision operations will implement
double extended operations and most certainly quad
addition.

Considering the performances of the machines now
available to the users, and the problem that are run on
those machines, one can argue that one billion terms
(10° = 23%) is a reasonable upper limit on the dot
product operation. Thus the accumulated error can-
not be bigger than 30 bits.

If no catastrophic cancellation has occurred, the
last operation has canceled less than 29 bits, and thus
54 = 112—(28+30) bits at least of the result are avail-
able. This means one ulp precision, thus the result can
be faithfully rounded.

Otherwise, a catastrophic cancellation has oc-
curred. In this case, we strongly ask the user to check
his code.

Interval Results Each function returns one unique
fully specified floating point number. The output of
the SSA process is the infinitely precise rounding of
the sum X% + X~. The knowledge on the accumu-
lated error can only be used to determine the degree of

66

Input: A vector of floating point values [z;]}
Output: An approximation of ¢ = 57 ;

A bound on the error 6

The level of cancellation

Set one sticky accumulator X to 0.0
Repeat until all the vector has been read
Read a new value zj
X=X+
Return
The normalized value of X
The error bound § = (n — 1) x ulp(X)
The level of cancellation of X

Figure 7: SA — Sticky Accumulation

precision and set the exception flags: IEEE standard
rounding, faithful rounding, no guarantee.

If the result is neither the standard rounding, nor
the faithful rounding of the implicit interval, the user
should get the bounds of the interval [m, M] within
which the result is known to lie. Two more functions
are supported to provide m and M when the hardware
signals a possible loss of accuracy. It is the responsi-
bility of the user to trap on non faithful rounding and
to ask the floating point unit for the bounds.

3.2 Sticky Accumulation (SA)

Sticky Accumulator A sticky accumulator X is a
device that forces the useful property of the segregated
accumulation for any floating point value ¢

ulp(X +t) > max(ulp(X), ulp(t))

Here, X represents a word and not its real value;
similarly, X + ¢ represents the word obtained by the
accumulation of ¢ to the sticky accumulator X. A
quad precision floating point register (with the im-
plicit bit made explicit) that is never normalized by
shifting left is a sticky accumulator. In this case, we
allow the mantissa of the accumulator to be smaller
than 1.

During an addition, the only process where the ex-
ponent may decrease is the left normalization, since
it is impossible, the exponent of the result has to be
larger than both the exponent of the two inputs, and

so is the value of an ulp. The functionalities that are
needed on a sticky accumulator are:

e Accumulate a new value.

o Get the level of cancellation (the number of lead-
ing bits set to 0).

o Get the value of an ulp (computed from the ex-
ponent of the accumulator).

o Normalize and lose the information on the sticky
accumulation.

The SA Algorithm The machine computes the
partial sum

in quad precision with a sticky accumulator. The re-
sult is the properly normalized value of X, in dou-
ble format. During the last normalization, the system
has access to the useful data to set the IEEE stan-
dard rounding flag, the faithful rounding flag and the
catastrophic cancellation flag.

Theorem 2 The error introduced by the Sticky Accu-
mulation (SA) process is bounded by the value

(n —1) x ulp(X)

We present Fig 8 to illustrate the case of a decimal
accurmnulation with three significant digits rounded to
nearest. The first case is the exact sum of the inputs.
This result may be produced by a fixed point process.
The second sum is a standard accumulation, it yield 0
because of cancellation. The user does not have either
a rough result or some information on the error. In the
last case, we used sticky accumulation with one extra
digit. As a result, we got better accuracy; moreover,
an error bound is available through the process.

Counting With little extra hardware, the float-
ing point unit is able to compute the IEEE stan-
dard rounding flag and the faithful rounding flag with
higher accuracy. The computer may yield the correct
result of an operation but still tag it as unsafe because
the implicit interval has been over rated. The count-
ing mechanism offers better control over the bound of
the accumulated error.

We include in the floating point unit a counter that
1s connected to the sticky accumulator. This counter
supports two operations : increment by one unit and
shift right by s bits. Whenever X,,, is shifted right by s

67

(Exact

Standard Sticky
sum sum accumulation

(3 digits) (4 digits)
458.0 458.0 458.0 458.0
+ 02 458.2 458.0 458.2
+ 600.0 1058.2 1060.0 1058.0
+ -1060.0 -1.8 0 -0002.0
Error bound 0000.0 m 0001.5

-

Figure 8: Decimal Example of the Three Sum Pro-
cesses

bits to compute Xp,41 (exponent comparison or carry
ripple), the counter is also shifted by s bits. After
each addition, the counter is incremented by one unit.
The value of the counter at the end of the SA process
bounds the error in place of (n — 1) x ulp(X).

Exact flag Another improvement over the standard
SA algorithm is possible that does not require any ex-
tra hardware. The ezact flag specified by the IEEE
standard is active whenever the last operation has re-
turned the exact infinitely precise result (no round-
ing). As long as all the sums {X;};=1..m have been
performed exactly, there is no need to block the nor-
malization of X,,. If a counter was implemented, it is
not incremented before the m** addition. The users
gets in this case more precision and more control over
the final result. At the end of the accumulation is
possible to set the exact flag if no rounding was ever
necessary.

Scalability We have presented this algorithm to im-
plement double precision sum with one quad precision
sticky accumulator. This algorithm can be extended
to any length accumulator. The choice of the size of
the accumulator should be free to the user. To improve
the precision on non faithful result, the user should use
a triple or quadruple length accumulator.

Depending on the knowledge the user has over his
algorithm stability, he may also choose a long (fixed
point) accumulator mechanism. However, a first pass
of the SA dot product will detect the suspect cases,
and the expensive process of the multiple length accu-
mulation will be used only when it is really needed.

Conclusion

More than any other dot product algorithm, we
have presented a reliable and efficient dot product.
This algorithm is associated with an error detection
mechanism, hence it is able to perform at the level of
accuracy desired by the user. With almost no time
penalty compared to the trivial double precision ac-
cumulation which carries no control on the result, one
can efficiently monitor the error and use the relatively
slow full length accumulation only in the case where
the huge amount of information it carries is really nec-
essary. Moreover on double precision operation, the
algorithm guarantees, with at least a quad precision
sticky accumulator, a faithfully rounded result unless
a catastrophic cancellation has occurred.

References

[1] G. Bohlender, “Floating point computation
of functions with maximum accuracy,” IEEE
Transaction on Computer, C26, 1977, pp. 621-
632.

[2] G. Bohlender, “What do we need beyond IEEE
arithmetic 7,” Computer Arithmetic and Self
Validating Numerical Methods, pp. 1-32, Aca-
demic Press, 1990.

[3] P.R. Cappello and W.L. Miranker, “Systolic su-
per summation,” IEEE Transaction on Com-
puter, EC-37 (6), June 1988, pp. 657-677.

[4] J.T. Coonen, “Specification for a proposed stan-
dard for floating point arithmetic,” University of
California, Berkeley, Mem. UC8/ERL M78/72,
1978

[5] — “Rounding of floating point intervals,” Lab-
oratoire de UInformatique du Parallélisme RR
93-06, March 1993

[6] T.J. Dekker, “A Floating Point Technique for
Extending the Available Precision,” Numerische
Mathematik, Vol. 18, 1971, pp. 224-242.

[7}] ANSI/IEEE Std 754-1985, “IEEE standard for
binary floating-point arithmetic,” The Institute
of Electrical Engineering and Electronics Engi-
neers, New York, 1985.

[8] W. Kahan “Further Remarks on Reducing Trun-
cation Errors,” Communication of the ACM Vol.
8, 1965, p. 40

[9] R. Kirchner and U. Kulisch, “Arithmetic for vec-
tor processors,” 8th IEEE Symposium on Com-
puter Arithmetic, 1987, pp. 256-269.

[10] U. Kulisch, “An axiomatic approach to rounded
computations,” Numerische Mathematik, Vol.
19, 1971, pp. 1-17

[11] A. Knofel, “Fast hardware units for the com-
putation of accurate dot products,” 10th IEEE
Symposium on Computer Arithmetic, 1991, pp.
70-74.

[12) U. Kulisch and W.L. Miranker, “Computer
arithmetic in theory and practice,” Academic
press, 1981.

[13] M. La Porte and J. Vignes, “Etude statis-
tique des erreurs dans l’arithmétique des ordi-
nateurs, application au contrdle des résultats
d’algorithmes numériques,” Numerische Math-
ematik, Vol. 19, 1972, pp. 400-406.

[14] M. Miiller, C. Rib and W. Riilling, “Exact accu-
mulation of floating-point numbers,” 10th IEEE
Symposium on Computer Arithmetic, 1991, pp.
64-69.

[15] M. Pichat, “Correction d’une somme en arith-
métique a virgule flottante,” Numerische Math-
emattk, Vol. 19, 1972, pp. 400-406.

Proofs and Examples
A.1 Cancellation

Example The rounding mode is set to Round to
Nearest, and the users is using double precision arith-
metic. The physical ezperiment input values are z;
and z,.

142740
-1 + 2-—60

rp =
T2 =

T1
-1

The best result an accumulation process may pro-
duce is . However getting z as an answer, the user
would assume that all the bits of = are correct in re-
gard to the values from the experiment. The value zq
is the one that would correspond to this assumption.

RN(RN(z1) + RN(z2))
RN(z; + z2)

2—40
2—40 + 2—60

z
Lo

More than the difference =z — zg, the fact that z;
and z, are very close with a relative difference of 2~40

has lead to this cancellation effect. Since rounded to
single precision, the result still pretends more infor-
mation than it really contains, this is a catastrophic
cancellation.

A.2 Sign Segregated Accumulation

Proof of the Lemma 1 We present the proof only
for the Round to Nearest mode. Let ¢; and 5 rep-
resent the true values of the inputs, t = ¢; + t5 the
value of the sum, z, = z; + z, the temporary sum,
and = = RN(z,) the rounded sum.

g1—36 < i < z+i6
z2—36 < t2 < z3+356,
zs — %(61 +e) < t < z,+35(81+e)
z— %ulp(z) < z, < z+ %ulp(z)
However
81 + 62 + ulp(z)
< mulp(z;) + naulp(z2) + ulp(z)
< (ni+n2+ 1)x
max(ulp(z1), ulp(z2), ulp(z; + z3))
Thus

6 = (n1 + nz + 1) max(ulp(z;), ulp(z2), ulp(z; + z3))

and

te 1:_,—-—;-6;:,+-;-6

O

Proof of the Theorem 1 The proof mechanism is
iterative. After m steps, X\ has accumulated k values
and X, the (m — k) other values. We suppose that
the error on this two registers is bounded respectively
by

&t (k- 1) x ulp(X;})

b (m—k-1)xulp(X;)

We can suppose that 2,41 > 0, then X;H is known
with an error bounded by

6:;+1 2k x ma.x(ulp(X,':;),ulp(x,,,),ulp(X;';H)

But X}, > max(zm, X}) thus the uncertainty on
X}, is bounded by

6:-+1 =kx UIP(X;:H)
The iteration implies for m = n, that X;} and X
are known with a maximum error of
I ng (k — 1) x ulp(X;})
o7 (n—k—1)xulp(X7)

o

69

The sum is known with an error at most
(n = 1) x max(ulp(X}}), ulp(X;), ulp(X; + X;;)
but X;¥ and X7 are of opposite sign, thus

|XF + X7 | < max(|X}], X))

A.3 Sticky Accumulation

Proof of the Theorem 2 The proof mechanism
is iterative and very close to the one presented for
the sign segregated accumulation. After m steps, we
suppose that the error on X,, is bounded by

Om = (m —1) x ulp(X,,)
Then X4 is known with an error bounded by
bm+1 2 m x max(ulp(Xm), ulp(zpm), Wlp(Xm+1))
But
ulp(Xm41) > max(ulp(Xpm), ulp(z,,))
Thus the uncertainty on X4 is bounded by
bm41 = m x ulp(Xm41)

The iteration implies for m = n, that X,, is known
with a maximum error of (n — 1) x ulp(X,,).
O

