Faster Numerical Algorithms via Exception Handling

James W. Demmel *

Abstract

An attractive paradigm for building fast numerical
algorithms is the following: (1) iry a fast bul occa-
sionally unstable algorithm, (2) test the accuracy of
the computed answer, and (3) recompute the answer
slowly and accurately in the unlikely event it is neces-
sary. This is especially attractive on parallel machines
where the fastest algorithms may be less stable than the
best serial algorithms. Since unstable algorithms can
overflow or cause other exceptions, exception handling
s needed to implement this paradigm safely. To im-
plement it efficiently, exception handling cannot be too
slow. We illustrate this paradigm with numerical lin-
ear algebra algorithms from the LAPACK library.

1 Introduction

A widely accepted design paradigm for computer
hardware is to execute the most common instructions
as quickly as possible, and replace rarer instructions
by sequences of more common ones. In this paper we
explore the use of this paradigm in the design of nu-
merical algorithms. We exploit the fact that there are
numerical algorithms that run quickly and usually give
the right answer as well as other, slower, algorithms
that are always right. By “right answer” we mean that
the algorithm is stable, or that it computes the exact
answer for a problem that is a slight perturbation of
its input [10]; this is all we can reasonably ask of most
algorithms. To take advantage of the faster but occa-
sionally unstable algorithms, we will use the following
paradigm:

*Computer Science Division and Mathematics Department,
University of California, Berkeley CA 94720. Email: dem-
mel@cs.berkeley.edu. The author was supported by NSF grant
ASC-9005933, DARPA contract DAAL03-91-C-0047 via a sub-
contract from the University of Tennessee (administered by
ARO), and DARPA grant DM28E04120 via a subcontract from
Argonne National Laboratory.

t Computer Science Division, University of California, Berke-
ley CA 94720. Email: xiaoye@cs.berkeley.edu. The author
was supported by the National Science Foundation under award
number ASC-9005933, and by Subcontract ORA4466.02 to the
University of Tennessee (Defense Advanced Research Projects
Administration contract number DAAL03-91-C-0047).

1063-6889/93 $03.00 © 1993 IEEE

234

Xiaoye Li 1

(1) Use the fast algorithm to compute an an-
swer; this will usually be done stably.

(2) Quickly and reliably assess the accuracy
of the computed answer.

(3) In the unlikely event the answer is not
accurate enough, recompute it slowly but ac-
curately.

The success of this approach depends on there being
a large difference in speed between the fast and slow
algorithms, on being able to measure the accuracy of
the answer quickly and reliably, and, most important
for us, on floating point exceptions not causing the
unstable algorithm to abort or run very slowly. This
last requirement means the system must either con-
tinue past exceptions and later permit the program to
determine whether an exception occurred, or else sup-
port user-level trap handling. In this paper we will as-
sume the first response to exceptions is available; this
corresponds to the default behavior of IEEE standard
floating point arithmetic [3, 4].

Our numerical methods will be drawn from the LA-
PACK library of numerical linear algebra routines for
high performance computers [2]. In particular, we will
consider condition estimation (error bounding) for lin-
ear systems. This algorithm needs to solve triangular
systems of linear equations which are possibly very ill-
conditioned. Triangular system solving is one of the
matrix operations found in the Basic Linear Algebra
Subroutines, or BLAS [7, 8, 15]. The BLAS, which
include related operations like dot product, matrix-
vector multiplication, and matrix-matrix multiplica-
tion, occur frequently in scientific computing. This
has led to their standardization and widespread imple-
mentation. In particular, most high performance ma-
chines have highly optimized implementations of the
BLAS, and a good way to write portable high perfor-
mance code is to express one’s algorithm as a sequence
of calls to the BLAS. This has been done systemati-
cally in LAPACK for most of numerical linear algebra
[2].

However, the linear systems arising in condition es-
timation are often ill-conditioned, which means that
overflow is not completely unlikely. Since the first dis-
tribution of LAPACK had to be portable to as many

machines as possible, including those where all excep-
tions are fatal, it could not take advantage of the speed
of the optimized BLAS, instead using tests and scal-
ings in inner loops to avoid computations that might
cause exceptions.

In this paper we present algorithms for condition
estimation that use the optimized BLAS, test flags
to detect when exceptions occur, and recover when
exceptions occur. We report performance results on
a “fast” DECstation 5000 and a “slow” DECstation
5000 (both have a MIPS R3000 chip as CPU [14]), a
Sun 4/260 (which has a SPARC chip as CPU [13]),
a DEC Alpha [9] and a Cray-C90. The “slow” DEC
5000 correctly implements IEEE arithmetic, but does
arithmetic with NaNs about 80 times slower than nor-
mal arithmetic. The “fast” DEC 5000 implements
IEEE arithmetic incorrectly, treating NaNs as infin-
ity symbols, but does so at the same speed as normal
arithmetic. Otherwise, the two DEC 5000 worksta-
tions are equally fast.! The Cray does not have ex-
ception handling, but we can still compare speeds in
the most common case where no exceptions occur to
see what speedup there could be if exception handling
were available.

We measure the speedup as the ratio of the time
spent by the old LAPACK routine to the time spent
by our new routine. The speedups we obtained for
condition estimation in the most common case where
no exceptions occur were as follows. The speedups
ranged from 1.43 to 3.33 on either DEC 5000, from
1.50 to 5.00 on the Sun, from 1.66 to 3.23 on the DEC
Alpha, and from 2.55 to 4.21 on the Cray. These are
quite attractive speedups. They would be even higher
on a machine where the optimized BLAS had been
parallelized but the slower scaling code had not.

In the rare case when exceptions did occur, the
speed depended very strongly on whether the excep-
tion occurred early or late during the triangular solve,
and on the speed of subsequent arithmetic with NaN
(Not-a-Number) arguments. On some examples the
speedup was as high as 5.41 on the fast DEC 5000,
but up to 13 times slower on the slow DEC 5000.

The rest of this paper is organized as follows. Sec-
tion 2 describes our model of exception handling in
more detail. Section 3 describes the algorithms for
solving triangular systems both with and without ex-
ception handling. Section 4 describes the condition es-
timation algorithms both with and without exception
handling, and gives timing results. Section 5 draws

INormally a buggy workstation would be annoying, but in
this case it permitted us to run experiments where only the
speed of exception handling varied.

235

lessons about the value of fast exception handling and
fast arithmetic with NaNs and infinity symbols.

2 Exception Handling

In this section we review how IEEE standard arith-
metic handles exceptions, discuss how the relative
speeds of its exception handling mechanisms affect al-
gorithm design, and state the assumptions we have
made about these speeds in this paper. We also briefly
describe our exception handling interface on the DEC-
station 5000.

The IEEE standard classifies exceptions into five
categories: overflow, underflow, division by zero, in-
valid operation, and inexzact. Associated with each ex-
ception is both a status flag and a trap. Any of the five
exceptions will be signaled when detected. The signal
entails setting a status flag, taking a trap, or possibly
doing both. All the flags are sticky, and can be tested,
saved, restored, or altered explicitly by software. By
“sticky” we mean that, once raised, they remain set
until explicitly cleared. A trap should come under
user control in the sense that the user should be able
to specify a handler for it, although this capability is
seldom implemented on current systems. The default
response to these exceptions is to proceed without a
trap and deliver to the destination an appropriate de-
fault value. The standard provides a clearly-defined
default result for each possible exception. The default
values and the conditions under which they are pro-
duced are summarized in Table 1.

According to the standard, the traps and sticky
flags provide two different exception handling mech-
anisms. Their utility depends on how quickly and
flexibly they permit exceptions to be handled. Since
modern machines are heavily pipelined, it is typically
very expensive or impossible to precisely interrupt an
exceptional operation, branch to execute some other
code, and later resume computation. Even without
pipelining, operating system overhead may make trap
handling very expensive. Even though no branching
is strictly needed, merely testing sticky flags may be
somewhat expensive, since pipelining may require a
synchronization event in order to update them. Thus
it appears fastest to use sticky flags instead of traps,
and to test sticky flags as seldom as possible. On the
other hand, infrequent testing of the sticky flags means
possibly long stretches of arithmetic with +o0o or NaN
as arguments. If default IEEE arithmetic with them
is too slow compared to arithmetic with normalized
floating point numbers, then it is clearly inadvisable
to wait too long between tests of the sticky flags to

Exception raised | Default value Condition
overflow +o00 € > €max
underflow 0,42¢mi» or denormals | € < emin
division by zero | +oo z/0, with finite £ # 0
invalid NaN 00 + (—00), 0 X oo,
0/0, oo/co0, etc.
inezact round(z) true result not representable

Table 1: The IEEE standard exceptions and the default values

decide whether alternate computations should be per-
formed. In summary, the fastest algorithm depends
on the relative speeds of

conventional, unexceptional floating point
arithmetic,

arithmetic with NaNs and +o0o as arguments,

testing sticky flags, and

trap handling

In the extreme case, where everything except con-
ventional, unexceptional floating point arithmetic is
terribly slow, we are forced to test and scale to avoid
all exceptions. This is the unfortunate situation we
were in before the introduction of exception handling,
and it would be an unpleasant irony if exception han-
dling were rendered unattractive by too slow an im-
plementation. In this paper, we will design our algo-
rithms assuming that user-defined trap handlers are
not available, that testing sticky flags is expensive
enough that it should be done infrequently, and that
arithmetic with NaN and oo is reasonably fast. Our
codes will in fact supply a way to measure the benefit
one gets by making NaN and oo arithmetic fast.

Our interface to the sticky flags is via subroutine
calls, without special compiler support. We illustrate
these interfaces briefly for one of our test machines,
the DECstation 5000 with the MIPS R3000 chip as
CPU. On the DECstation 5000, the R3010 Floating-
Point Accelerator (FPA) operates as a coprocessor for
the R3000 Processor chip, and extends the R3000’s in-
struction set to perform floating point arithmetic op-
erations. The FPA contains a 32-bit Control/Status
register, FCR31, that is designed for exception han-
dling and can be read/written by instructions running
in User Mode. The FCR31 contains five Nonsticky Ez-
ception bits (one for exception in Table 1), which are
appropriately set or cleared after every floating point
operation. There are five corresponding TrapEnable
bits used to enable a user level trap when an ex-
ception occurs. There are five corresponding Sticky

236

bits to hold the accrued exception bits required by
the IEEE standard for trap disabled operation. Unlike
the nonsticky exception bits, the sticky bits are never
cleared as a side-effect of any floating point operation;
they can be cleared only by writing a new value into
the Control/Status register. The nonsticky exception
bits might be used in other applications requiring finer
grained exception handling, such as parallel prefix [5).

In the algorithms developed in this paper for con-
dition estimation, we need only manipulate the trap
enable bits (set them to zero to disable software traps)
and the sticky bits. Procedure exceptionreset()
clears the sticky flags associated with overflow, divi-
sion by zero and invalid operations, and suppresses
the exceptions accordingly. Function except() re-
turns true if any or all of the overflow, division by
zero and invalid sticky flags are raised.

3 Triangular System Solving

We discuss two algorithms for solving triangular
systems of equations. The first one is the simpler
and faster of the two, and disregards the possibility
of overflow. The second scales carefully to avoid over-
flow, and is the one currently used in LAPACK for
condition estimation [1].

We will solve Lz = b, where L is a lower triangular
n-by-n matrix. We use the notation L(i : j,k : I) to
indicate the submatrix of L lying in rows i through j
and columns k through I of L. Similarly, L(i, k : 1) is
the same as L(i : 4,k : I). Algorithm 1 accesses L by
columns.

This is such a common operation that it has been
standardized as subroutine STRSV, one of the BLAS
[7, 8, 15]. As stated in the introduction, the BLAS
have been heavily optimized for many high perfor-
mance architectures, and it is our intent to use them as
building blocks for our algorithms wherever possible.

Algorithm 1: Solve lower triangular system Lz = b.

z(l:n)=b(1:n)
fori=1lton
2(i) = 2(i)/L(i,)
zli+1:n)=z(i+1:n)—z() L({E+1:n,i)
endfor

Algorithm 1 can easily overflow even when the ma-
trix L is well-scaled, i.e. all rows and columns are of
equal and moderate length. For example, z = L™1b =

-1

1 0 0 0 0 0 1 1

-1 ¢ 0 0 0 0 0 ¢!

0 -1 ¢ 0 0 0 o| |2

0 0 -1 ¢ 0 O 0| 3|
0 0 0 -1 ¢ O 0 ¢t

0 0 0 0 -1 1 0 ¢4

where ¢ = 10710, overflows in IEEE single precision,
even though each row and column of L has largest
entry 1 in magnitude, and no terribly small entries.
Similarly, let L,(c) be the analogous n-by-n matrix
with 0 < ¢ < 1 in the second through n — 1-st el-
ements along the main diagonal. This means that
(La(e)~1[1,0, ...,0/T = [1,c71,¢72, ..., e2", 27T,

The second algorithm scales carefully to avoid over-
flow in Algorithm 1. The algorithm works by choosing
a scale factor 0 < s < 1 and solving Lz = sb instead
of Lr = b. A value s < 1 is chosen whenever the solu-
tion z would overflow. In case z would overflow even
if s were the smallest positive floating point number,
s is set to zero (for example, consider Ly7(10~%) with
IEEE single precision in the above example). If some
L(i,i) = 0 exactly, so that L is singular, the algo-
rithm will set s = 0 and compute a nonzero vector
satisfying Lz = 0 instead.

Here is a brief outline of the scaling algorithm; see
[1] for details. Coarse bounds on the solution size
are computed as follows. The algorithm begins by
computing ¢; = E?=J'+1 |Lij|, Go = 1/ max; |b|, a
lower bound G; on the values of z, +11 through z;!
after step i of Algorithm 1:

i

1271
Gi = Go [[-zl
' JI__-,I, ILjj| + ¢

and finally a lower bound g on the reciprocal of the
largest intermediate or final values computed any-
where in Algorithm 1:

9= lrgniiéln(GO'Gi“l -min(1, |L(3,4)])) .

237

Lower bounds on a:,-'l are computed instead of upper
bounds on z; to avoid the possibility of overflow in
the upper bounds.

Algorithm 2: Solve lower triangular system
Lz = sb with scale factor 0 < s < 1.

Compute ¢ and ¢y, ..., ¢n—1 as described above
if (¢ > UN) then
call the BLAS routine STRSV
else
s=1
z(1:n)=b(1:n)
Tmax = MaXi<i<n |2(3)]
fori=1lton
if (UN < |L(3,7)] < 1 and |z(3)} > |L(%,9)| - OV)
then
scale = 1/|z(3)|
s = s scale; z(1:n) = z(1 : n) - scale;
Tmax = Zmax * scale
elseif (0 <|L(i,7)| < UN and |z(3)| > |L(3,)|- OV)
then
seale = ((IL(,i)| - OV)/|z(i))/ max(1,)
s = s - scale; (1 : n) = z(1 : n) - scale;
Tmax = Tmax - scale
elseif (L(%,1) = 0) then
/* compute a vector z: Lz =0 */
s=0
2(1:n)=0;2(1)=1; Tmax =0
end if
z(i) = z(9)/L(3,)
if (Jz(?)| > 1 and ¢(i) > (OV — Zmax)/|2(3)])
then
scale = 1/(2 - |z(3)|)
s=s-scale; z(1:n) = z(1 : n) - scale
elseif (|z(¢)] < 1 and |2(3)| - ¢(¢) > (OV — Zmax))
then
scale =1/2
s =s-scale; (1 :n) = z(1 : n) - scale
endif
z(i+l:n)=z(i+1:n)—xz() - L(:+1:n,9)
Zmax = MaXig;j<n [2(5)]
endfor
endif

Let UN = 1/OV be smallest floating point number
that can safely be inverted. If ¢ > UN, this means the
solution can be computed without danger of overflow,
so we can simply call the BLAS. Otherwise, the algo-
rithm makes a complicated series of tests and scalings
as in Algorithm 2.

Now we compare the costs of Algorithms 1 and 2.
Algorithm 1 costs about n? flops (floating point oper-
ations), half additions and half multiplies. There are
also n divisions which are insignificant for large n. In
the first step of Algorithm 2, computing the ¢; costs
n2?/2 4+ O(n) flops, half as much as Algorithm 1. In
some of our applications, we expect to solve several
systems with the same coefficient matrix, and so can
reuse the ¢;; this amortizes the cost over several calls.
In the best case, when ¢ > UN, we then simply call
STRSV. This makes the overall operation count about
1.5n2 (or n? if we amortize). In the worst (and very
rare) case, the inner loop of Algorithm 2 will scale
at each step, increasing the operation count by about
n? again, for a total of 2.5n2 (or 2n? if we amortize).
Updating Tmax costs another n?/2 data accesses and
comparisons, which may or may not be cheaper than
the same number of floating point operations.

More important than these operation counts is
that Algorithm 2 has many data dependent branches,
which makes it harder to optimize on pipelined or par-
allel architectures than the much simpler Algorithm 1.
This will be born out by the results in later sections.

Algorithm 2 is available as LAPACK subroutine
SLATRS. This code handles upper and lower triangu-
lar matrices, permits solving with the input matrix or
its transpose, and handles either general or unit tri-
angular matrices. It is 300 lines long excluding com-
ments. The Fortran implementation of the BLAS rou-
tine STRSV, which handles the same input options, is
159 lines long, excluding comments. For more details
on SLATRS, see [1].

4 Condition Estimation

In this section we discuss how IEEE exception han-
dling can be used to design a faster condition esti-
mation algorithm. We compare first theoretically and
then in practice the old algorithm used in LAPACK
with our new algorithm.

4.1 Algorithms

When solving the n-by-n linear system Az = b, we
wish to compute a bound on the error z.omputed —
Zirue. We will measure the error using either the one-
norm ||z|{y = 37, |zi|, or the infinity norm ||z||o, =
max; |2;|. Then the usual error bound [10] is

”xcomputed_ztruelll < kl(A)’p(n)'f‘p‘”xtrueHI (1)

where p(n) is a slowly growing function of n (usu-
ally about n), € is the machine precision, ki(A) is

238

the condition number of A, and p is the pivot growth
factor. The condition number is defined as k;(A4) =
1Al - 1A= Y1, where ||Bll: = maxigji<n 2o, [bij]-
Since computing A~! costs more than solving Az = b,
we prefer to estimate ||A~!||; inexpensively from A’s
LU factorization; this is called condition estimation.
Since |}Al]; is easy to compute, we focus on estimat-
ing ||A~!||;. The pivot growth may be defined as H%H—I
(other definitions are possible). This is close to unity
except for pathological cases.

In the LAPACK library [2], a set of routines have
been developed to estimate the reciprocal of the con-
dition number k;(A). We estimate the reciprocal of
k1(A), which we call RCOND, to avoid overflow in
k1(A). The inputs to these routines include the factors
L and U from the factorization A = LU and ||A4]||;.
Higham’s modification {12] of Hager’s method [11] is
used to estimate ||A~1||;, which is shown in Algorithm
3. The algorithm is derived from a convex optimiza-
tion approach, and is based on the observation that
the maximal value of the function f(z) = ||Bz||1/||z||:
equals ||B||; and is attained at one of the vectors e;,
for j = 1,---,n, where ¢; is the jth column of the
n-by-n identity matrix.

Algorithm 3 [11]: This algorithm computes a lower
bound 7 for [|A~}|;.

Choose z with ||z|[; = 1 (e.g., z := Q—-l—n—lﬁ)
Repeat
solve Ay = r (by solving Lw =z and Uy = w
using Algorithm 2)
form £ := sign(y)
solve ATz = ¢ (by solving UTw =€ and LTz = w
using Algorithm 2)
if ||2||ec € 27z then

7= lyllx
quit
else z :=ej, for that j where |z;| = ||2||

The algorithm involves repeatedly solving upper
or lower triangular systems until a certain stopping
criterion is met. Due to the possibilities of overflow,
division by zero, and invalid exceptions caused by the
ill-conditioning or bad scaling of the linear systems,
the LAPACK routine SGECON uses Algorithm 2 instead
of Algorithm 1 to solve triangular systems like Lw =
z, as discussed in Section 3.

Our goal is to avoid the slower Algorithm 2 by using
exception handling to deal with these ill-conditioned
or badly scaled matrices. Our algorithm only calls

the BLAS routine STRSV, and has the property that
overflow occurs only if the matrix is extremely ill-
conditioned. In this case, which we detect using the
sticky exception flags, we can immediately terminate
with a well-deserved estimate RCOND=0. Algorithm
4 elaborates our new approach. Comments indicate
the guaranteed lower bound on k;(A) if an exception
leads to early termination.

Algorithm 4: This algorithm estimates the recip-
rocal of k3 (A4) = ||Alh]]A~Y)1-

Let o = ||A]|]1
RCOND is the estimated reciprocal of ki(A)
Call exceptionreset()
Choose z with ||z|[1 =1 (e.g., z := Q%K)
Repeat
solve Lw = z by calling STRSV
if (except()) then RCOND := 0; quit
/* kr(A) 2 0V/p*/
if (a > 1) then go to (1)
else wi=w-a
solve Uy = w by calling STRSV
if (except()) then RCOND := 0; quit
/* k1(A) 2 OV ¥/
else go to (3)
if (||w]leo > OV/a) then go to (2)
else w:=w-a
solve Uy = w by calling STRSV
if (except()) then RCOND := 0; quit
/* k1(4) > OV */
else go to (3)
solve Uy = w by calling STRSV
if (except()) then RCOND := 0; quit
/* kx(4) > OV */
elsey:=y-a
if (except()) then RCOND := 0; quit
/* k1(4) > OV */
(3): form £ := sign(y)
yi=y-a
solve UTw = y by calling STRSV
if (except()) then RCOND := 0; quit
/* k1(A) > OV/n *]
else solve LT z = w by calling STRSV
if (except()) then RCOND := 0; quit
/* ki (A) 2 OV */
if [|2]]oo < 2Tz then
RCOND := 1/[lyllx
quit
else z := ej, where |z;| = ||2{loo

(1):

()

The behavior of Algorithm 4 is described by the
following:

239

Lemma 1. If Algorithm 4§ stops early because of an
ezception, then the “true rounded” reciprocal of the
condition number satisfies RCOND < max(n, p)/OV,
where p is the pivot growth factor.

For a proof see [6]. In practice, any RCOND <
¢ signals a system so ill-conditioned as to make the
error bound in (1) as large as the solution itself or
larger; this means the computed solution has no digits
guaranteed correct. Since max(n, p)/OV < ¢ unless
either n or p is enormous (both of which also mean
the error bound in (1) is enormous), there is no loss
of information in stopping early with RCOND = 0.

Algorithm 4 and Lemma 1 are applicable to any
linear systems for which we do partial or complete piv-
oting during Gaussian elimination, for example, LA-
PACK routines SGECON, SGBCON and STRCON (see Sec-
tion 4.2 for the descriptions of these routines), and
their complex counterparts.

For symmetric positive definite matrices, where no
pivoting is necessary, the algorithm (e.g., SPOCON) and
its analysis are given in Algorithm 5 and Lemma 2,
respectively. We write the Cholesky factorization A =
LLT or A=UTU.

Lemma 2. If Algorithm 5 stops early because of an
exception, then the “lrue rounded” reciprocal of the

condition number satisfies RCOND < 1/+/OV.

For a proof see [6]. In practice, RCOND < 1/v/OV
merely indicates that the condition number is enor-
mous, beyond 1/e. There is again no loss of informa-
tion in stopping early with RCOND = 0.

Algorithm 5: This algorithm estimates the recip-
rocal of ||A||1|]A~!||1, where A is symmetric positive
definite.

Let a = ||A]]1
RCOND is the estimated reciprocal of k1(A)
Call exceptionreset()
Choose z with ||z|]i =1 (e.g., z := KL"’I-LT)
Repeat
solve Lw = z - a by calling STRSV
if (except()) then RCOND := 0; quit
/* k3(4) > VOV */
else solve LTy = w by calling STRSV
if (except()) then RCOND := 0; quit
/* k1(A) > OV */
if [|2]jeo < 2Tz then
RCOND := 1/|lylx
quit
else z := ej, where |2;| = |}zl

4.2 Numerical Results

To compare the efficiencies of Algorithms 3 and
4, we rewrote several condition estimation routines
in LAPACK using Algorithm 4, including SGECON for
general dense matrices, SPOCON for dense symmetric
positive definite matrices, SGBCON for general band
matrices, and STRCON for triangular matrices, all in
IEEE single precision. To compare the speed and the
robustness of algorithms 3 and 4, we generated various
input matrices yielding unexceptional executions with
or without invocation of the scalings inside Algorithm
2, as well as exceptional executions. The unexcep-
tional inputs tell us the speedup in the most common
case, and on machines like the CRAY measure the
performance lost for lack of any exception handling.

First, we ran Algorithms 3 and 4 on a suite of well-
conditioned random matrices where no exceptions oc-
cur, and no scaling is necessary in the triangular solve
Algorithm 2. This is by far the most common case
in practice. The experiments were carried out on a
DECstation 5000, a SUN 4/260, a DEC Alpha, and
a single processor CRAY-C90. The performance re-
sults are presented in Table 2. The numbers in the
table are the ratios of the time spent by the old LA-
PACK routines using Algorithm 3 to the time spent
by the new routines using Algorithm 4. These ratios
measure the speedups attained via exception handling.
The estimated condition numbers output by the two
algorithms are always the same.

Second, we compared Algorithms 3 and 4 on several
intentionally ill-scaled linear systems for which some of
the scalings inside Algorithm 2 have to be invoked, but
whose condition numbers are still finite. For SGECON
alone with matrices of sizes 100 to 500, we obtained
speedups from 1.62 to 3.33 on the DECstation 5000,
and from 1.89 to 2.67 on the DEC Alpha.

Third, to study the behavior and performance of
the two algorithms when exceptions do occur, we gen-
erated a suite of ill-conditioned matrices that cause all
possible exceptional paths in Algorithm 4 to be exe-
cuted. Both Algorithms 3 and 4 consistently deliver
zero as the reciprocal condition number. For Algo-
rithm 4, inside the triangular solve, the computation
involves such numbers as NaN and +oo. Indeed, af-
ter an overflow produces +o0, the most common sit-
uation is to subtract two infinities shortly thereafter,
resulting in a NaN which then propagates through all
succeeding operations. In other words, if there is one
exceptional operation, the most common situation is
to have a long succession of operations with NaNs. We
compared the performance of the “fast” and “slow”
DECstation 5000 on a set of such problems, of dimen-

100 | 200 | 300 | 400 | 500
DEC SGBCON | 1.57 | 1.46 | 1.55 | 1.56 | 1.67
5000 SGECON | 2.00 [1.52 | 1.46 { 1.44 | 1.43
SPOCON | 2.83 | 1.92 | 1.71 | 1.55 | 1.52
STRCON | 3.33 | 1.78 | 1.60 [1.54 | 1.52
Sun SGBCON | 2.00 | 2.20 | 2.11 [2.77 | 2.71
4/260 | SGECON | 3.02 | 2.14 [1.88 [1.63 | 1.62
SPOCON | 5.00 | 2.56 | 2.27 | 2.22 | 2.17
STRCON | 1.50 [2.00 | 2.30 | 2.17 | 2.18
DEC SGBCON | 2.67 | 2.63 { 2.78 | 2.89 | 3.23

Alpha | SGECON | 2.66 | 2.01 | 1.85 [1.78 | 1.66
SPOCON | 2.25 | 246 | 252 [2.42] 2.35
STRCON | 3.00 | 2.33 | 2.28 | 2.18 | 2.07
CRAY | SGECON | 4.21 | 3.48 | 3.05 | 2.76 | 2.55
C90

Table 2: Speedups on DEC 5000/Sun 4-260/DEC
Alpha/CRAY-C90 with matrices of sizes 100 to 500.
No exceptions nor scaling occur.

sion n = 500. Recall that the fast DECstation does
NaN arithmetic (incorrectly) at the same speed as
with conventional arguments, whereas the slow DEC-
station computes correctly but 80 times slower. The
following table gives the speeds for both DECstations
on three examples:

1 2 3
“fast” DEC 5000 speedup 2.15 2.32 | 2.00
“slow” DEC 5000 slowdown | 11.67 | 13.49 | 9.00

In other words, the slow DEC 5000 goes 18 to 30
times slower than the fast DEC 5000.

On some examples, where only infinities but no
NaNs occurred, the speedups ranged from 3.5 to 6
on both machines.

5 Lessons for System Architects

The most important lesson is that well-designed
exception handling permits the most common cases,
where no exceptions occur, to be implemented much
more quickly. This alone makes exception handling
worth implementing well.

A trickier question is how fast exception handling
must be implemented. There are three speeds at issue:
the speed of NaN and infinity arithmetic, the speed
of testing sticky flags, and the speed of trap handling.
In principle, there is no reason NaN and infinity arith-
metic should not be as fast as conventional arithmetic.
The examples in section 4.2 showed that a slowdown
in NaN arithmetic by a factor of 80 from conventional

arithmetic slows down condition estimation by a fac-
tor of 18 to 30.

Since exceptions are reasonably rare, these slow-
downs generally affect only the worst case behavior
of the algorithm. Depending on the application, this
may or may not be important. If the worst case is im-
portant, it is important that system designers provide
some method of fast exception handling, either NaN
and infinity arithmetic, testing the sticky flags, or trap
handling. Making all three very slow will force users
to code to avoid all exceptions in the first place, the
original unpleasant situation exception handling was
designed to avoid.

Our final comment concerns the tradeoff between
the speed of NaN and infinity arithmetic and the gran-
ularity of testing for exceptions. Our current approach
uses a very large granularity, since we test for excep-
tions only after a complete call to STRSV. For this ap-
proach to be fast, NaN and infinity arithmetic must be
fast. On the other hand, a very small grained approach
would test for exceptions inside the inner loop, and so
avoid doing useless NaN and infinity arithmetic. How-
ever, such frequent testing is clearly too expensive.
A compromise would be to test for exceptions after
one or several complete iterations of the inner loop
in STRSV. This would require re-implementing STRSV.
This medium grained approach is less sensitive to the
speed of NaN and infinity arithmetic. The effect of
granularity on performance is worth exploration in the
future.

The software described in this paper is available
from the authors.

6 Acknowledgements

The authors wish to thank W. Kahan for his de-
tailed criticism and comments.

References

[1] E. Anderson. Robust triangular solves for use
in condition estimation. Computer Science Dept.
Technical Report CS-91-142, University of Ten-
nessee, Knoxville, 1991. (LAPACK Working Note
#36).

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users’ Guide, Release 1.0.
SIAM, Philadelphia, 1992. 235 pages.

241

[3] ANSI/IEEE, New York. IEEE Standard for Bi-
nary Floating Point Arithmetic, Std 754-1985 edi-
tion, 1985.

[4] ANSI/IEEE, New York. IEEE Standard for
Radiz Independent Floating Point Arithmetic,
Std 854-1987 edition, 1987.

[5] J. Demmel. Specifications for robust parallel pre-
fix operations. Technical report, Thinking Ma-
chines Corp., 1992.

[6] J. Demmel and X. Li. Faster numerical algo-
rithms via exception handling. Technical Report
c8d-93-728, Computer Science Division, Univer-
sity of California at Berkeley, February 1993.

[7] J. Dongarra, J. Du Croz, I. Duff, and S. Ham-
marling. A set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Soft., 16(1):1-
17, March 1990.

[8] 3. Dongarra, J. Du Croz, S. Hammarling, and
Richard J. Hanson. An extended set of fortran ba-
sic linear algebra subroutines. ACM Trans. Math.
Soft., 14(1):1-17, March 1988.

[9] Richard L. Sites (editor). Alpha Architecture Ref-
erence Manual Digital Press, 1992.

[10] G. Golub and C. Van Loan. Matriz Computa-
tions. Johns Hopkins University Press, Balti-
more, MD, 2nd edition, 1989.

[11] W. W. Hager. Condition estimators. SIAM J.
Sci. Stat. Comput., 5:311-316, 1984.

[12] N. J. Higham. Algorithm 674: FORTRAN codes
for estimating the one-norm of a real or complex
matrix, with applications to condition estimation.
ACM Trans. Math. Soft., 14:381-396, 1988.

{13] SPARC International Inc. The SPARC Architec-
ture Manual: Version 8. Prentice Hall, Engle-
wood Cliffs, New Jersey 07632, 1992.

[14] Gerry Kane. MIPS Risc Architecture. Prentice
Hall, Englewood Cliffs, NJ 07632, 1989.

[15] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh.
Basic Linear Algebra Subprograms for Fortran
usage. ACM Trans. Math. Soft., 5:308-323, 1979.

