Very High Radix Division with Selection by Rounding and
Prescaling

Milos D. Ercegovac!

Tomas Lang*

Paolo Montuscht*

1 Computer Science Department,

University of California, Los Angeles

1 Department of Electrical and Computer Engineering

University of California at Irvine

* Dipartimento di Automatica e Informatica,

Politecnico di Torino

Abstract

A division algorithm in which the quotient-digit se-
lection is performed by rounding the shifted residual in
carry-save form is presented. To allow the use of this
simple function, the divisor (and dividend) is prescaled
to a range close to one. The implementation presented
results in a fast iteration because of the use of carry-
save forms and suitable recodings. The execution time
is calculated and several convenient values of the radix
are selected. Comparison with other high radix di-
viders is performed using the same assumptions.

1 Introduction

Often used division algorithms are based on recur-
rences producing one quotient-digit per iteration [6, 9].
To reduce the number of iterations, it is advantageous
to use the highest possible radix for the quotient-
digit representation. However, the complexity of the
quotient-digit selection increases for higher radices,
eliminating the advantage of the reduction in num-
ber of iterations [6]. To reduce the complexity of the
quotient-digit selection it is possible to prescale the
divisor (and the dividend, to preserve the value of the
quotient) to a range close to unity [14, 5, 6, 10]. Using
this approach, we develop a scheme that has a fast
division step due to the following features:

o The quotient-digit selection is performed by
rounding an estimate of the shifted residual.

e The calculation of the scaling factor is done us-
ing a linear interpolation approach, whose delay
matches the delay of the recurrence.

1063-6889/93 $03.00 © 1993 IEEE

112

o All operations (except the scaling of the divisor)
are performed using a carry-save representation,
thus avoiding time-consuming assimilations.

1.1 Related work

We mention division algorithms that are character-
ized by features similar to our approach. Svoboda [14]
developed a radix-10 division scheme with scaling of
divisor (and dividend) so that the quotient-digit is
obtained as the most-significant digit of the partial
remainder. A standard non-restoring division recur-
rence with carry-propagate adder is used. Tung [16]
extended the scheme to an arbitrary radix and used a
signed-digit adder. Krishnamurthy [10] summarizes
generalizations of the range transformation techniques
for division in conventional and signed-digit number
systems thus allowing the use of redundant adders.
Ercegovac [1] proposes a division algorithm with a sim-
plified quotient-digit selection by solving y = ay + b
where y is in redundant digit-serial form, processed
most-significant digit first, and the coefficients a and
b are in digit-parallel form. Each output digit is ob-
tained by rounding the shifted residual to the integer
part. Scaling is required to transform the divisor into
a range around 1. A radix-16 division algorithm us-
ing a continued-product method is presented in [3].
A higher radix division with range operands transfor-
mation, a quotient digit selection function with pre-
diction, and a carry-save adder for computing partial
residuals is discussed in [2]. A radix-4 implementation
is described in [5].

Waser and Flynn [17] describe a version of Newton-
Raphson iterative algorithm called byte division. It
uses a byte multiplier (8 x 56) and an (8 x 8) multiplier

to produce one radix-256 quotient digit per iteration.
The algorithm uses an 8-bit reciprocal approximation
(for scaling) and a carry-propagate adder for the it-
eration. Several other related schemes are described
in Section 6 and compared with the scheme proposed
here.

2 Quotient selection and divisor range

We now present the quotient-digit selection func-
tion by rounding and determine the required scaled-
divisor range to achieve convergence.

To compute @ = z/d, with 1/2 < z < d < 1, we
use the recurrence
with

wlj +1] = rwfj] — gj412 wl0] = (1)

where w[j] is the residual after the j-th iteration, r =
2% is the radix, ¢;j+1 is the new quotient digit, z is the
scaled divisor and M is the scaling factor. That is,

(2)

To have a fast iteration we use a carry-save adder,
although a similar development could be done for
other redundant representations. We use a maximally
redundant quotient-digit set, that is |¢;| < r — 1. For
this case, the convergence of the algorithm requires
that the residual be bounded so that

z=Md with 1-a<2<1+8

lwli]l < = ©)
We define
A =rufj] - gj41 ()
so that (1) is transformed into

We now determine the range of A when the follow-
ing quotient-digit selection by rounding is done:

(6)

where § is an estimate of rw[j] obtained by truncating
the carry-save representation up to ¢ fractional bits.
Then, from (4) and (6),

¢i+1 = round (y)

-1/25A<1/2+27" ™)

We now use this range of A to determine the range
of z that keeps w[j + 1] inside the required bound.
First, from (5) and (7) we get

—1/2=(r = D1 -2)| <wlj+1]
<1/2427°+ (r=1)|(1 - 2)|

)

113

Now applying the convergence requirement (3) we
get (because of the term 2~* in (8) the upper bound
is the most critical):

1

24 ©)
In addition, it is necessary to constrain w[j+1] so that
a valid quotient digit (< r —1) is obtained when using
the rounding selection function of (6). For the upper
bound this results in

rw[j+l]<r—-% (10)

(r-DIA-2)<z

Combining both requirements results in

% +27 4 (r = 1|(1 - 2)| < min (z, 1- %) (11)

To obtain bounds on z, we divide its range in three
regions, as follows:
a) z > 1. Then, from (11) we get

1
1/2+2't+(r—1)(z—1)<1—2r

resulting in

l<rcttt-2 (12)
= 2r r-—1
b) 1-1/(2r) < z < 1. From (11) we get
/2427 4 (r= 1A= 2) <15
so) o-t
1- o + —7 <z< 1 (13)
¢) z<1-1/(2r). From (11) we have
/2427 +(r—=1)(1-2) < 2
so
1 1 2t
z> o + -
which is contradictory with the hypothesis.
Combining expressions (12) and (13) we get
1 2t 1 27t
—_—— 14
1 T <i<ltg -7 (14)

The smallest possible value of ¢ in (14) is 2. A larger
t increases the acceptable range of z, simplifying the
scaling. However, since the variation of the range is
small, it seems best to choose the smallest value of ¢.
So we get

r—2 <z<l+yg
arr—1) 7 (

Observe that (15) is valid for radices r > 2.

t=2 = 1-)(15)

3 Scaling

A scaling factor M is computed such that

z=Md (16)

and z is in the range specified by (15). In addition,
the scaled divisor and dividend are produced (i.e., Md
and Mz). The scaling factor M can be viewed also as
an approximation of the reciprocal of d.

Several techniques can be employed to implement
the calculation of M as developed in [13]. In this paper
we consider a linear interpolation approach (the L-
approach) since, it provides the best results for the
number of bits of interest [13]. In this approach, the
scaling coefficient M is produced as follows:

1. Obtain the pair of coefficients ¥; and ¥ as a func-
tion of d,, the divisor truncated to its 7 —th frac-
tional bit.

2. Compute M = —91dp + 2 (truncated to m bits),
where dj is the divisor truncated to its h — th
fractional bit.

The bit-lengths of the 7 coefficients and the trun-
cated versions of the divisor (d;, d) and of M are
indicated in Fig. 1. More details are given in [7]. Md
is computed in carry-assimilated form, whereas Mz is
kept in carry-save form. These multiplications require
a recoding to radix-4 of the carry-save representation
of M (as described in the next section.) Moreover, the
product Md requires a final assimilation of the result.
Since Md belongs to the range specified by (15), it
requires 1 integer plus n + b + 4 fractional bits. The
same number of bits are required for M.

Scaling Unit. The hardware requirements for the
scaling unit are (Fig. 1):
o Module for providing 4i,%2 in 2’s complement rep-
resentation. This has [b/2] + 1 inputs and 2b + 11
outputs.

e One carry-save multiplier (the result is kept in carry-
save form) to compute —71 x dr. The operands have
(b + 6) and (b + 6) bits and it produces a result of
2b + 12 bits. The multiplier incorporates a carry-save
adder for computing M = {(—71dn) + 72} trunc—to—m-

e The hardware for recoding to radix-4 the carry-save
representation of M.

o One carry-save multiplier of (b+ 6) x (n) bits, with a
result of (n + b + 5) bits, to compute the carry-save
representations of Md and Ms; as indicated in the
next section, for this operation we share the multiplier
of (3+6) x (n+ b+ 5) bits required for the iterations.

e One adder of (n + b + 5) bits for computing the as-
similation of Md coming out from the multiplier.

114

4 Overall Implementation

Besides the scaling unit, the overall scheme (Fig. 1)
contains modules to execute the recurrence and on-
the-fly conversion/rounding.

d,

A
A1

|4}, 5
b+ i

£ n+b+S

MULTIPLIER--ACCUMULATOR
Md; Mx; w-qz

S xxxxx.ab

C xxxxx.cd
round 1 csa
Xxrxx. EEEARY
xXxxxe.
f L X e f
e=a+c
f=bd(aXOR ¢)

Figure 2: Rounding of the residual

The recurrence is implemented by the following
modules (Fig. 1):

e Quotient-digit selection by rounding of the shifted
residual (in carry-save form) truncated to the 2nd
fractional bit. This is accomplished by a short carry-
save adder and some additional logic (Fig. 2). The
resulting quotient digit is in carry-save form with an
additional bit in the least-significant position.

o Recoding the quotient digit to radix-4 representation
(to be used as multiplier for the multiplication gj412)
is done in two steps:

1. Recode to signed-digit radix-4 with digit set (—2 to
+3). This is possible since all groups of two bits of the
digit ¢;41 have values 0 to 6 (except least significant);

2. Recode this representation to signed digit radix-4
with digit set (—2 to +2).

For the first step, Fig. 3 shows the bits that are examined
to obtain digit i of the recoded representation and the
expression for the calculation of the radix-4 digit. For the
second step it is sufficient to transform the values +3 and
<42 into 4 — 1 and 4 — 2, respectively. An implementation
that combines both steps is shown in Fig. 4.

e Multiplication of —g;41 by z and subtraction from
rw[j]. For this, a multiplication of (b + 1) x (n +
b+ 6) bits is needed, with the inclusion of two terms
to the adder array of the multiplier. This complete
operation can be performed with the multiplier of (b+
6) x (n + b + 5) bits that is required for the scaling.

e On-the-fly conversion of the signed-digit quotient into
a conventional representation, using the scheme pre-
sented in [4].

The post-correction for negative last residual and
for rounding requires a sign detection of the last resid-
ual and the updating of the quotient. This updating is
done as part of the on-the-fly conversion, as discussed
in [4].

weight i i-1
N ab e|x
C cd |x

g=(aORc) h=(e ORf) k=(a XOR¢)
radix4 digit = 2(a+c)+b+d+h-4g= b+d+ h-2k

Figure 3: First step of recoding

5 Execution time

We now give an expression for the execution time
of the division operation using the implementation of
Fig. 1. We first determine the number of cycles and
then the cycle time.

Number of cycles:

¢ One or more cycles for the computation of the
scale factor M (we see in the next section that
one cycle will suffice). The delay of this operation
is denoted by tps.

115

Lous L] radix-4 digit {-2,-1,0,1}
XOR (2’s complement)
<)/
1 tin

AND| |[xor| |xor

recoded radix-4 digit
{-2,-1,0,1,2}
(2's complement)

Figure 4: Implementation of recoding

e One cycle for the multiplication of d by M, pro-
ducing the result in carry-save form. We denote
this delay by tas4.

e One cycle for the multiplication of z by M and (in
parallel) for the assimilation of Md. The delay is
denoted by t4s5imz-

e [n/b] cycles for the iterations. The corresponding
delay is denoted #;;e,.

e One cycle for the postcorrection and the round-
ing, with delay denoted by tpostcorr—round-

Consequently, assuming that one cycle is sufficient for
the calculation of M, the number of cycles is
n
b
where, as defined in Section 2, r = 2? is the radix.
Cycle time. The cycle time is determined by the
maximum delay of the cycles described above. Since
tma < titeration,

Neyetes = [3] +4 (17)

Tcycle = mar(tM,tasaimz;t:’ter,tpoucorr—round) (18)

Moreover,
tM = ly+tMA,CSb46b+6,1F treg
tassimz = tADD,n+b+5 + treg
titer = tg—ser+tmpx,21 + trecod

+iMA,CSb+6,n4b45,0 + treg

tpastcorr—round tADD,n+b+5 + tre_q
where

e ., is the delay to compute 47 and 93;

® tMA,CS,5,y,, 15 the delay of an z x y carry-save
multiplication with accumulation of z terms;

e tApD o is the delay of an addition of z bits;

o t,_se is the delay of the quotient-digit selection
by rounding;

e tppx,2, is the delay of a 2-to-1 multiplexer;

® trecoq is the delay of recoding the carry-save rep-
resentation of the quotient digit;

o ,cq is the delay to load a register.

o Finally, the delay for tpostcorr—round corresponds
to the time to detect the sign of the last resid-
ual, since the actual correction and rounding are
performed as part of the on-the fly conversion
[4]. Therefore, the delay can be approximated

by tADD,n+b+5-
5.1 Execution time in full-adder delays

To determine the dependence of the execution time
on the radix and to compare with other schemes, we
define the execution time in terms of full-adder delays
(tra). This unit is chosen because many of the com-
ponents are formed of full adders and because it is
relatively simple to express the delay of other compo-
nents using this unit. Although this makes the eval-
uation and comparisons relatively independent of the
technology, the results are rough because they depend
on the accuracy of the assumptions made.

To determine the delay of the components, assump-
tions have to be made about their implementation;
we have used assumptions that seem reasonable, but
some alternatives would also be possible. In the cases
in which there is no direct correspondence with the
delay of a full adder, we have used the correspondence
for a particular technology. Specifically, we utilized
the family of standard cells from the ES2-ECPDI10
library [8]. For instance, because of this we have es-
timated the delay of loading a register to be 1.5 tp4.
The delays of the components measured in this unit
are as follows (more details in [7]):

o Adder assimilating two z-bit values

tapp,: = [loga(z)] - tra (19)

o Carry-save multiplier of z by y bits with accumu-
lation of z operands

min(z,
tMa,CSzy,: =2 [1092 (# + z) - 1] tra

(20)

116

Table 1: Time and area for best ¥ modules

[b Mo [14] 18 |
Delay (tra) || 2 2 4 4
Area (Ara) || 80 | 180 | 800 | 4400

Table 2: Time and area for proposed implementation

%

T e [T11] 14 [18]

Cycle time (tra) 10 | 12 12 12
No. cycles 10 9 8 7
Exec. time (tra) 100 | 108 96 84
MULT (Ara) 570 | 700 | 900 | 1200
v (Ara) 80 180 | 800 | 4400
MULT + v (Ara) || 650 | 880 | 1700 | 5600

The delay of a carry-save multiplier without ac-
cumulation is derived from (20) by making z = 0,
whereas the delay of a multiplier with assimila-
tion of the result is obtained by combining (19)
and (20).

o Recoding (Fig. 4) is about 2 tra.

e Quotient-digit selection by rounding is 1 tpa
(Fig. 2).

¢ Register loading is assumed to be 1.5¢p4.

The only component whose delay cannot be readily
described in tp4’s is the module to determine 47 and
42. We have explored several alternatives and have
determined their delay and area using the family of
standard cells from the ES2-ECPD10 library as dis-
cussed in [7]. In terms of the delay of a full adder
(tra) and of its area (AF4) the best alternatives for
different values of b are summarized in Table 1.

5.1.1 Cycle time, execution time, and area

Using the delay of the components in terms of tp4 we
now determine the cycle time, as expressed by (18).
It can be computed that in all cases, the critical time
corresponds to the iteration time. In Table 2 we show
the cycle time and also the execution time for n = 54
and the corresponding area of the multipliers (only
adders) and of the y-module.

6 Other Related Implementations

For comparison purposes, we now make a rough

evaluation of the execution time of other implementa-
tions for very-high radix dividers. As a reference, we
also include the frequently used radix-16 divider with
overlapped radix-4 stages. To make uniform evalua-
tions, we use as a unit the delay of a full adder, as
done in Section 5. The evaluations are rough since
data routing delays are not included nor do we per-
form some technology-dependent optimizations. As
done in Section 5, for the very-high radix schemes we
also give the area, in full-adder units, of the multipli-
ers and the corresponding ¥ modules. We consider the
following schemes:
Radix-16 unit with overlapped radix-4 stages.
A unit of this type was introduced in [15] and a recent
implementation presented by Williams and Horowitz
in [19]. We compare with the latter. Although the
implementation reported is self timed, we evaluate a
synchronous variation, to be able to compare similar
design styles. We use the implementation with radix-4
stages since our calculations indicate that it is signif-
icantly faster than the radix-2 one. As indicated in
[19], the delay per iteration can be approximated by

twg =1/2(P+Q+R+S5) (21)

where P = tcsa + tapp,7, @ = tmMpx,s,1 + tQsEL,
R=1tcsa,and S =tariver +tmpPx,5,1-

To estimate the delay of the radix-4 quotient selec-
tion we have implemented the module using the ES2-
ECPDI10 family of standard cells and obtained a delay
equivalent to 2.5¢p 4. Introducing the other values ac-
cording to the assumptions made in Section 5, we get

twhy ~ 5tpa
For a 54-bit mantissa, the execution time is

Twn = 2Ttwm + tpostcar & round = 140tF 4 (22)

where tpostcor & round = 6tF4, that is, the delay of one
addition of two 54-bit values (for the sign detection,
because we have assumed before that the actual cor-
rection and rounding is done as part of the on-the-fly
conversion).

Divider in Weitek W4164 and W4364. In [18]
no detail is given concerning the algorithm. However,
since a 64 x 64 multiplier is used, it should be of the
successive-approximation type [9]. The data sheet in-
dicates that the double-precision division takes seven
cycles, which include the initial approximation of the
reciprocal, the successive approximations, and the fi-
nal rounding. The cycle time is probably determined

117

by a multiplication-accumulation (including recoding
and register loading), so that we estimate the cycle
delay to be

trecod + tMA,CA,64,64,l + treg (23)
1417+ 1.5=19.5tp4

tweitek

Il

where t,..04 18 the recoding of non-redundant multi-
plier (for this we assume a delay of 1¢p4). Therefore,
the duration of the whole computation is

TWEITEK =7-195=~ 135tFA (24)

The basic hardware requirements of this architecture
are

e one carry-assimilated multiplier/accumulator of 64 by
64 bits;

o the module required for the initial approximation.

Matula’s scheme. In [11] and [12] a radix-2'7 di-
vision unit is described, which is based on multiply-
ing the residual by a short reciprocal of the divisor so
that digit selection can be done by truncation. The
unit uses a 18 x 69 rectangular multiplier with an ad-
ditional adder port. This multiplier serves also as a
19 x 69 bit multiplier to perform the multiplication of
the residual by the short reciprocal.

To compare with the method we are proposing, we
determine the execution time for a radix-2° 54-bit di-
vider. Moreover, we utilize the same method for ob-
taining the short reciprocal (equivalent to the scaling
factor in the method we propose).

The number of cycles is determined as follows:

e One cycle to determine the short reciprocal.

e Two cycles per iteration: one to multiply the
residual by the short reciprocal and one to multi-
ply the divisor by the quotient digit and accumu-
late the new residual.

e One cycle for postcorrection and rounding.
Consequently, for 54-bit result the number of cycles is

54
Ncyclec =242 [T]

(25)
The cycle time is determined by the multiplication
(including the multiplexer for selecting the multiplier
and the multiplier recoding) and the register loading.
That is,

Tcycle (26)

+iMA,C5046,0,0 +FEADD ntb4+6 + lreg

tMPX,2,1 + tariver + trecod

Table 3: Time and area for Matula’s scheme

b Cycle Number | Execution Area
time (tr4) | of cycles | time (tpa) | (Ara)
9 15 14 210 550
11 17 12 200 750
14 17 10 170 1500
18 17 8 135 5400

With the assumptions of Section 5 we get the exe-
cution times and areas (for the multiplier plus the ¥
module) shown in Table 3. The basic hardware re-
quirements are

e One v module.

e One carry-assimilated multiplier of (b + 6) by (b + 6)
(to calculate the short reciprocal).

e One carry-assimilated multiplier/accumulator of (b4
6) by 54 bits.

Wong and Flynn scheme. In [20] two division al-
gorithms are presented, namely a basic and an ad-
vanced method, which differ only in the way the short
reciprocal (for scaling) is evaluated. To make consis-
tent comparisons with the proposed scheme, we utilize
the same method for computing the scaling factor.
The authors present three different choices of radix;
moreover, they also study the possibility of perform-
ing carry-save multiplications. The number of cycles
is determined as follows (in this description we use the
notation given in [20]):

e One cycle to determine the short reciprocal 1/Ys. At

the same time perform X x Y.

e One cycle to calculate Y x 1/Yyx. At the same time
the first iteration is performed.

e [n/b— 1] cycles for the iterations (we use here b in-
stead of the m of [20](b = m — 2)).

e One cycle to assimilate the quotient (because of the
overlapping of the quotient segments produced by
consecutive iterations, on-the-fly conversion is not
practical).

e One cycle for postcorrection and rounding.

The cycle time is determined by the multiplication
with assimilation required in cycle 1. That is

tMPX,Z,l + tdn'ver + trecod

Tcycle
+IMA,CS,046,n0,0FTADD nyb45 +treg
This results in the values given in Table 4. The main
modules required are:

e One v module and one multiplier with assimilation of
(b+6) by (b+ 6) bits.

118

Table 4: Time and area for Wong & Flynn’s scheme

b Cycle Number | Execution Area

time (tra) | of cycles | time (tra) | (AFa)
9 15 9 135 1150
11 17 8 135 1450
14 17 7 120 2450
18 17 6 100 6600

Table 5: Summary of time/area characteristics

W& H 140/ -
Weitek 135/ -

[9 [T 11 [14 | 18 |
Matula [210/550 | 200/750 [170/1500 | 135/5400
W & F |[135/1150 | 135/1450 | 120/2450 | 100/6600

Our 100/650 | 110/880 [95/1700 | 85/5600

o One multiplier with assimilation of (b + 6) by n bits,
to compute X5 times Y and 1/Y, times Y.

e One carry-assimilated adder of (b+4) bits to compute
Xh.

¢ One carry-save multiplier of (b+6) by (n+b+5) bits
with single accumulation, to perform the iterations.

¢ One carry-save multiplier of (b+ 4) by (b + 6) bits to
compute the quotient segments.

o One 4-2 carry-save adder to accumulate the quotient.

¢ One carry-assimilated adder of (56 +b) bits for assim-
ilation of the quotient and one 54-bit sign detection
network.
Table 5 summarizes the characteristics of the
schemes we have compared.

7 Conclusion

We described a very-high-radix division unit based
on the standard division recurrence. We scale the di-
visor (and the dividend) to a range close to one so
that the quotient-digit selection can be performed by
rounding a truncated residual.

To determine a good choice for the radix, we per-
formed an evaluation of the execution time. This re-
quired the modeling of the delays of the components.
We determined a range of possible execution times and
of area requirements. The conclusions obtained de-
pend on the assumptions made about the implementa-
tion of the components; however, expressions are given
to allow the evaluation using other assumptions.

We have used the same modeling assumptions to
perform a rough evaluation of the delay of other very-
high radix implementations and of a radix-16 imple-
mentation with overlapped radix-4 stages. We found
that the fastest divider is about 2.5 times faster than
the slowest and that the implementation presented
here is the fastest by about 20%. The implementa-
tion presented here with b = 9 seems to be a good
tradeoff between speed and area.

The divider is considered here as one unit. How-
ever, it consists of two separate components: the com-
putation of the scaling factor and the rest. Since the
former depends only on the divisor, if the divisor is
available before the dividend, it is possible to perform
this scaling factor calculation in advance, resulting in
a reduction of the division time. An additional re-
duction can be achieved if several divisions use the
same divisor value, because the whole divisor scaling
does not have to be repeated. Finally, the unit can be
pipelined with two stages, increasing in this way the
throughput.

Acknowledgment. Part of this work was performed
while Tomas Lang was with UPC, Barcelona, Spain. We
thank Jordi Cortadella for providing information that
helped us in the evaluation.

References

[1] M. D. Ercegovac, “A General Hardware-Oriented
Method for Evaluation of Functions and Computa-
tions in a Digital Computer,” Dept. of Computer Sci-
ence, TR-750, U. of Illinois at Urbana-Champaign,
1975.

M. D. Ercegovac and T. Lang, “A Division Algorithm
with Prediction of Quotient Digits,” Proc. 7th IEEE
Symp. on Comp. Arithmetic, 1985, pp.51-56.

M. D. Ercegovac, “Radix-16 Evaluation of Certain El-
ementary Functions,” IEEE Trans. Comput., Vol.C-
22, No.6, June 1973, pp.561-566.

M. D. Ercegovac and T. Lang, “On-the-Fly Round-
ing,” IEEE Trans. Comput., Vol. 41, No.12, Dec.
1992, pp. 1497-1503.

M. D. Ercegovac and T. Lang, “Simple Radix-4 Divi-
sion with Operands Scaling”, IEEE Trans. Comput.,
Vol. C-39, No.9, Sept. 1990, pp. 1204-1207.

M. D. Ercegovac and T. Lang, Digit- Recurrence Algo-
rithms and Implementations for Division and Square
Root, to be published, Kluwer Academic Publishers,
1993.

M. D. Ercegovac, T. Lang, and P. Montuschi,
“Very-High Radix Division with Selection by Round-

(2]

3]

[4]

5]

(6]

(7]

119

ing and Prescaling,” Tech. Report, Elect. and Comp.
Eng. Dept., University of California at Irvine, 1993.

European Silicon Structures, ES2 ECPD10 Library
Databook, April 1991.

K. Hwang, Computer Arithmetic: Principles, Archi-
tecture and Design, John Wiley and Sons, New York,
1978.

E. V. Krishnamurthy, “On Range-Transformation
Techniques for Division,” IEEE Trans. Comput.,
Vol.C-19, No.2, Feb. 1970, pp.157-160.

D.W. Matula, “Design of a Highly Parallel IEEE
Floating Point Arithmetic Unit,” Symp. on Combina-
torial Optimization Science and Technology (COST),
at RUTCOR/DIMACS, April 1991.

D.W. Matula, “Short Reciprocal Division,” submitted
for publication, 1992.

[13] P. Montuschi, T. Lang, and M. D. Ercegovac,
“Prescaling Algorithms for Very-High Radix Divi-
sion” L.LR. DAI/ARC 6-92

[14] A. Svoboda, “An Algorithm for Division,” Informa-
tion Proc. Machines, 1963, No.9, pp.25-34.

[15] G. S. Taylor, “Radix 16 SRT Dividers with Over-
lapped Quotient Selection Stages,” Proc. Tth Symp.
on Comp. Arithmetic, pp. 64-71, June 1985.

[16] C. Tung, “A Division Algorithm for Signed-Digit
Arithmetic,” IEEE Trans. Comput., Vol.C-17, 1970,
pp.887-889.

[17] S. Waser and M. J. Flynn, “Introduction to Arith-
metic for Digital Systems Designers,” Holt, Rinehart,
and Winston, New York, 1982.

[18] Weitek, W4164 and W4364 Floating Point Processors,
Technical Overview, Oct. 1990.

[19] T.E. Williams and M.A. Horowitz, “A 160ns 54-bit
CMOS Division Implementation Using Self-Timing
and Symmetrically Overlapped SRT Stages,” Proc.
10th Symp. on Comp. Arithmetic, 1991, pp. 210-217.
D. C. Wong and M. J. Flynn, “Fast Division Us-
ing Accurate Quotient Approximations to Reduce the
Number of Iterations,” IEEE Trans. Comput., Vol.
41, Aug. 1992, pp.981-995.

(8]
(]

(10}

(11]

(12]

(20]

