Floating Point Cordic*

Gerben J. Hekstra

Department of Electrical Engineering
Delft University of Technology
2826 CD Delft, The Netherlands

Abstract

In this paper, we present a full precision floating-point
Cordic algorithm, suitable for the implementation of a
word-serial Cordic architecture.

The extension to existing block floating-point Cordic
algorithms is in a floating-point representation for the an-
gle. The angle is represented as a combination of ex-
ponent, micro-rotation bits and two bits to indicate pre-
rotations over /2 and = radians. Representing floating-
point angles in this fashion maintains the accuracy that is
present in the input data, which makes it ideally suited
for implementing a floating-point Givens operator.

1 Introduction

The Cordic (COordinate Rotation DIgital Computer)
algorithm was presented by Voider[8] as an elegant and
cost-effective method to perform rotations on vectors in
the 2-D plane. Walther extended the algorithm in {9}
to rotations in circular, linear and hyperbolic coordinate
systems. Since then, many implementations of the Cordic
have been made, both for fixed-point {4, 7] and floating-
point [2, 9] with respect to the input.

The main drawback in the computations on floating-
point data with the classic Cordic algorithm lies in the
inherent fixed-point resolution of the angle. The accuracy
becomes unacceptable when calculating angles close to or
smaller than the angle resolution.

In this paper we propose a full precision floating-point
angle extension to the classic Cordic algorithm to over-
come this problem. The floating-point angle representa-
tion that we use is such that it fully preserves the accuracy
present in the input data. This accuracy would be lost if
the angle were to be converted to radians.

The algorithm forms the basis to an IEEE 754 std.
32-bit single precision floating-point Cordic architecture

*This work has been supported by the Dutch National Science Foun-
dation STW, under project STW DEL00.2331

1063-6889/93 $03.00 © 1993 IEEE

130

Ed F.A. Deprettere

Department of Electrical Engineering
Delft University of Technology
2826 CD Delft, The Netherlands

for Givens rotations over true floating-point angles. A
similar scheme for floating-point on-line computation of
Givens rotations has been presented in [3], but not using
Cordic arithmetic. The algorithm presented here has the
advantage that it can easily be extended for full precision
floating-point computations of transcendental functions.

The results presented in this paper are for circular rota-
tions only, but the same techniques can be applied to de-
rive floating-point algorithms for the hyperbolic and linear
coordinate systems.

2 Cordic background

The Cordic algorithm was first introduced by Volder
in [8], as an efficient method to perform plane rotations.
This algorithm was later generalised by Walther in [9] for
rotations in circular, linear and hyperbolic systems.

The algorithm knows two modes of operation, namely
vectoring and rotation which are equivalent to the so-
called backward and forward Givens rotations.

In the vectoring mode, the vector (x, y)in, is rotated to
(z,9)ouw = ((z& +32)1,0) and thereby computing the
angle of inclination « yy.

In the rotation mode, the vector (z, y)i, is rotated over
a given angle aiy 0 (2, Y)ou-

The basic idea behind the Cordic algorithm is that a
rotation is decomposed into a sequence of n so-called un-
normalized micro-rotations over the base angles «;, with
1€{0,...,n—1}and 0 < o; < %. These base angles
are chosen in such a way that the micro-rotations are easy
to execute (implement) in hardware.

The general recursion for the micro-rotations is given
by:

Tiy1 = T + (Uz' taﬂai)yi (1)
Yigl = —(0’,' tan oz,-)zi + Yi
with the in- and output to the recursion:
o = T Towt = Kgl *Tn
and 2
Y = U vou = K-'oyn @

The use of unnormalized micro-rotations in the recur-
sion (1) causes that the vector is lengthened or scaled by
a factor (cos a;)~! with every step. Hence the need for a
division by K in equation (2), where K is the accumula-
tive scaling factor given by:

n—1

1
K=
E) COS

3)

The o; in the recursion (1) indicate the direction of
the micro-rotations. These “sigma-bits” o; can be either
1 or —1, signifying clockwise resp. counterclockwise ro-
tations. The relationship between the angle of rotation
o and the sequence of sigma-bits {o;} is given by the
summation:

n—1
@ = — E gy

1=0

@

In order to converge for any angle within a given do-
main of convergence, the sequence of base angles must
form a basis and hence satisfy the conditions:

% < Y okt om &)
E>i
;> Qg (6)

We will refer to the sequence of base angles {a;} as the
angular basis. The domain of convergence r is given by
the sum of the base angles:

n—1
r= E o; + Omin
i=0

For any angle o within the domain of convergence, with
la] < r, the Cordic algorithm will converge with the
resolution determined by the smallest angle, amin = on 3.
For proofs and a more detailed discussion of this, the
reader is referred to the paper by Walther [9].

For the actual implementation of the micro-rotations,
we introduce

@)

a; = tan «; 8
and require that the multiplication by a; is of low com-
plexity when implemented in hardware. We opt for the
approach presented by Bu et al. [1], where

a; =2"5 4+ 7 - 2-5

Using this scheme, the micro-rotation in recursion (1) is
either a pair on one (; = 0) or two (n; = —1, 1) shift-
and add operations.

131

3 Floating-Point Representation of Num-
bers

Since we are dealing with a floating-point Cordic, let
us first take a look at the representation of floating-point
numbers. A floating-point number z is represented by a
tuple (sz, ez, mg) with:

sign A sign bit s, indicating the sign of the number
and taking values from {—1,1}.

exponent An N,.-bit exponent e;. The number of
bits N. determine the dynamic range of the repre-
sentation.

mantissa An N,,-bit, unsigned, mantissa m,. The
number of bits N,, determine the precision of the
representation. Assuming correct rounding, the man-
tissa m, has an inherent accuracy of i%lsb, where
Isb = 2-Nm+l ig the weight of the least signifi-
cant bit. In certain cases we will allow the use of a
signed, 2’s complement representation for the man-
tissa, eliminating the need for a separate sign bit.

The corresponding value of z is given by
(10)

For the sake of discussion, we will assume that the
input of the floating-point Cordic is normalized. This
means that the mantissa lies within the range given by:

1.00...00, <my, < Ll1l...11 a1
1 <m,< 2-1Isb

The IEEE 754 Standard for Binary Floating-Point
Arithmetic [6] has, in addition, representations for de-
normalized numbers, zero, infinity and “Not a Number”
(NaN). It has to be mentioned here that all of these too
can be elegantly handled by the fioating-point Cordic im-
plementation presented in [5]. To deal with this in detail,
however, is beyond the scope of this paper.

Before explaining the details of the floating-point
Cordic we will first make the following observation. The
floating-point Cordic works on 2-D floating-point vectors
(z,y). All the possible values for the vector (z,y) lie
in the 2-D floating-point domain, as is visualised in fig-
ure 1. The boxed areas represent regions in the domain
in which the = and y exponents are constant. The points
within such a region represent all possible values for the
floating-point numbers with normalized mantissa. In the
example shown in figure 1, we have taken N,, = 4, giv-
ing 1.000; < mg,my < 1.1115. The large box in the
top-right corner of the figure represents the region with
ez = 2,ey = 2. The figure only shows only the first
quadrant, for positive vectors. It should be extended by
mirroring in the z- and y-axes.

T = spmg2°

Figure 1: Part of the 2-D floating-point domain spanned
by the values of (z, y)

4 The Floating-point Cordic Algorithm

In this section we derive the floating-point Cordic algo-
rithm that can rotate a floating-point vector (z,y) over a
floating-point angle o. First, we will define the floating-
point Cordic and how the angle « is represented in an
internal floating-point format. Next, we will explain how
the two basic operations, rotation and vectoring, work for
this floating-point Cordic.

4.1 Definition of the Floating-point Cordic

In the floating-point Cordic, a floating-point vector
(=, y)ia is rotated to (z, y)ow Over the floating-point angle
of rotation «. How this angle « is derived depends on
whether the mode of operation is vectoring or rotation.

The floating-point Cordic consists of three distinctive
operations. They are:

1. Accuracy preserving pre-rotations over —=/2 and
— radians.

2. The computation of the angle exponent ¢ and the
selection of the working Cordic Ce.

3. The actual micro-rotations using a modified Cordic
recursion for block floating-point computations.

The combined results of each of these operations form the
representation of the floating-point angle.

4.1.1 Pre-rotations

The input data, (z, y)is, is rotated to the region of conver-
gence using accuracy-preserving pre-rotations over —/2

132

and —m radians. These pre-rotations take effect in chang-
ing the signs and exchanging the exponents and mantissas
between z and y and therefore do not affect the precision
of in the data. The algorithm is shown below.

if (ey,n > €z,in) then
/* rotate over —w/2 */
O =1
(3::; €z, mz)r/Z = (39’ €y, m!l)i-“
(sy,ey,my),.-/z i= (—8z, €z, Ma)in
else
/* no rotation */
2 =0
(31: €z, m-")ﬂ/Z :
(8y, €y, My)rms2 :
end if
if (8;x/2=—1) then
/* rotate over m */
oxr =1
(82, €2, Mz)pre := (—S$z, €2, Ms)rj2
(sys ey, My)pee 1= (—sy, ey, My)n/2

(311 €z, m:c)i.u
(3!11 €y, my)in

else
/* no rotation */
or:=0
(sa:, €z, mz)pre = (31’ €z, mz)ﬂ/Z
(sys €y, My)pe = (Sy, €y, My)ns2
end if

Algorithm 1: Pre-rotations over —m/2 and —n radians

The first pre-rotation over —/2 is performed if ey i, >
€z,in, Otherwise no rotation is performed. The result of this
pre-rotation is an intermediate vector (x,y) /2.

The second pre-rotation, over = radians this time, is
performed if the resulting z ./, is negative. The combi-
nation of these rotations bring the input data to the half-
plane z > 0. The effect of the pre-rotations is visualised
in figure 2.

The following properties now hold for the resulting
(x, y)pre data:

v

(12)
(13)

€y, pre
+1

€z pre

Sz,pre

The pre-rotations serve two purposes. Firstly, they
make it possible to accurately represent angles which are
close to the = and y-axes, rather than just angles close to
the positive z-axis. Secondly, the formulae and the cal-
culations in the datapath can be greatly simplified due to
the prior knowledge of condition (12).

a) b

Figure 2: Pre-rotations of the data over a) —m/2 and b)
—m radians. The shaded areas indicate the region in in
which the vectors reside after rotation.

4.1.2 Angle exponent

The next step in the derivation of the floating-point Cordic
algorithm requires the definition of an angle exponent.
Looking at the floating-point domain in figure 1, we see
that when two regions have the same difference in expo-
nents ey — e they share the same domain of convergence
and accuracy in angles. This is due to the equivalence:
my - 2°

) = tan~} (T . gev—e=)

tan~!(
me

T (14)
We will use this exponent difference in the vectoring

mode to form the angle exponent .

(15)

6 = ey,pre - e.r,pre

Combining this with the property (12) placed upon the
exponents of the rotated data, we have that:

Emin £SO (16)

where £min = —(2V¢ — 1) is the smallest value that the
angle exponent can attain in equation (15).

This angle exponent, in turn, selects the proper
Cordic C¢, from a set of block floating-point Cordics,
{Co,C—1,...,Cem, }- Each of these is specifically designed
to operate on angles with given domain of convergence
and accuracy as determined by the regions of the floating-
point domain. Each C; has:

1. an angular basis {c;}¢, consisting of n¢ angles num-
bered Qo8 XL ¢,y -

<y One—1¢,
2. aresulting domain of convergence, r¢,
3. a scaling factor K,

4. a given accuracy as determined by the minimum an-
gle ®min¢ = QMne—1,¢-

133

For the moment, we will assume that these are all
given. The actual computation of these values and re-
lated implementation details concerning the floating-point
Cordic are deferred to section 5. Also, we shall see that
the set of Cordics is limited in number: below a certain
limit, when £ < Lge, we can revert to one generic Cordic,
which functions as a template for the set {CL,,, . - ., Ctma }-

4.1.3 Modified Floating-point Cordic recursion

For a given Cordic C¢, selected by the angle exponent
¢, the angular basis is {o;};. What we need now is
some scheme, capable of computing the micro-rotations
for these angles.

We are placing the constraint on whatever scheme that
the micro-rotations are performed in a fixed-precision,
block floating-point datapath. This means that exponent
remains fixed throughout the calculation and the mantissa
is not re-normalized between consecutive additions. This
is to prevent the use of expensive floating-point additions
for the micro-rotations.

We name this datapath the core, and hence define the
floating-point vectors (,y)core a0d (Z, Y)corer t0 be the
respective in- and output to the core.

In this section we will adhere to the simple micro-
rotation model, with a; ¢ satisfying.

tana; ¢ = a; ¢ = 2755¢ 17

No generality is lost here. The choice is made to keep
formulae simple and there is an easy generalisation for
the more complex micro-rotations as in formula (9).

If we write out the recursion formula (1) in full, substi-
tuting the iteration variables «;, y; by their floating-point
counterparts; !

Ly
Yi

mg (1] - 2=

m, [i] - 2° (1

and re-write the formulae in terms of operations on man-
tissas, we arrive at the modified Cordic recursion for the
mantissas:

mg[i + 1]
my[i +1]

mg{i] + 032 5=lm, [4]

my[i] — 0:2=5sIm, [4] (19)

and hereby introducing S, [z}, Sy[7] as the local shifts for
the z, y datapaths.
Sal]
Syli]

Sie — (ey —€g)
Sie+ (ey —ezr)

(20)

! Note well that the exponents are not indexed by the iteration variable
+ and remain constant through the micro-rotations. This is due to the
condition placed on the datapath that computations are done in block
floating-point arithmetic. Note also that the core’s iteration variables
mz[i], my[i] contain an implicit sign.

The initial input to the recursion is given by:

Mg [0]
my (0]

-1
Sg,core * Mg core * Kf

_ @n

-1
Sy,core * My core * K&-

Note that the initial values of the mantissas are prescaled
by K;'. In the implementation we will force the scaling
factor to be simple to compute, such as a power of two
or a difference of two powers of two.

The result of the n¢ micro-rotations is m [n¢], my[ne].
This is converted back into sign and mantissa and rejoined
with the exponents to form the floating-point counterpart
(l') y)core’ .

Speoret = sign{mg[ng])
€x,core’ = €g core (22)
Mg core! — |mT [n’f]l

and similarly for yeores-

4.14 Floating-point Angle representation

The floating-point angle, as produced by the vectoring
operation, is a tuple

(01/2: ‘7'1”57 {Ui})

of which the elements are:

(23)

1. the pre-rotation sigma bits, 0 x/2, 0r,
2. the angle exponent, &,

3. the sigma bit string, {o;} produced by the micro-
rotations of the Cordic Ce.

The relationship between the floating-point angle of
rotation « and its representation as given by formula (23)
is given by:

- ng—1
Tr)2" 5 +or-m+ Z 050 ¢
i=0

a=—

(24)

These elements have their analogues in the conven-
tional floating-point number representation as given in
section 3. The pre-rotation sigma bits, indicating in which
“quadrant” the angle is located are similar in function to
the sign bit. The angle exponent has its analogue in the
conventional exponent. And finally, the sigma bit string,
{:}, has its analogue in the conventional mantissa.>

2The full representation of a floating-point angle also has flags indi-
cating whether the angle is zero or “Not an Angle”(NaA). An infinite
angle cannot occur.

134

4.2 Vectoring mode of the Floating-point Cordic

42.1 In- and Output of Vectoring

The input to the vectoring Cordic operation is the floating-
point vector (z, y)i,. The output is again a floating-point
vector (z, ¥)ow, and a floating point angle oy in the for-
mat as given by formula (23).

4.2.2 Execution

The first step is the pre-rotation of the input vector as
described in algorithm 1 of the previous subsection. The
sigma bits, o2, o', produced form part of the angle.

Next, the angle exponent £ is computed from the dif-
ference of the exponents of the pre-rotated input vector
(Z, Ypre:

(25)

£ = €y,pre — e.r,prc

This angle exponent is also part of the angle repre-
sentation and selects the proper Cordic C¢ to continue
vectoring (Z, ¥)pre.

This vectoring takes place in the core, with the mod-
ified Cordic recursion (19). The input to the core is the
pre-rotated data, so (z,y)core = (&, Y)pre. The vectoring
is steered by the sigma bits produced by the vectoring
equation (26).

-]

To be consistent to the input/output conventions, the
result of the core recursions must be normalized such that
Mg, ou and My o satisfy the normalization condition (11).

+1
-1

if my[]>0

if myli] <0 (26)

normalize (s, €, Mz)core)
normalize ((sy, ey, My)core’)

(52, €z, Mz)ou
(8y, ey, My Jou

We will not go into the details of how the normalisation
takes place as this is a well known and well documented
operation.

The sigma bit string {05}, produced by the vectoring
equation (26), makes up the final part of the output angle

Qoyt-

(28)

Qout = (Uw/Zy a"l’va {0’,‘})
4.3 Rotation mode of the Floating-point Cordic

4.3.1 In- and Output of Rotation

The input to the rotation Cordic operation is the floating-
point vector (z, y)in and a floating-point angle a, as pro-
duced by a previous vectoring operation. The output is a
floating-point vector (z, y) ou.

27

4.3.2 Execution

The first step is again the pre-rotation of the input vec-
tor (2,y)in to (¢,y)pre. This produces the pre-rotation
bits (0x/2,0x)pre. Instead of directly applying the pre-
rotation bits (o'r/2, 0'x)ia Of the input angle, the two pairs
are combined and the result is used in a post-rotation later
on.

The angle exponent produced by a previous vectoring
operation is used to select the working Cordic C;. We
will rotate in the same “angle domain” as in which the
vectoring took place. This is logical as the sigma bit string
{0} is only meaningful to this Cordic.

We do have to take precautions against the possible
overflow of the y-mantissa datapath. This could occur
when the angle exponent of the angle used for rotation
is larger than that of the data. To prevent this we must
align the mantissa and change its exponent accordingly.
To assure that the overflow is no more than two bits [5]
we must have that:

(29
The alignment algorithm that satisfies the above inequality
is given in algorithm 2. Due to the pre-rotations we know

that ey pre < €z pre, and so only the y mantissa ever needs
to be aligned.

€y,core — €, core > f

/* adjust the y mantissa if £€>¢—e; */
ps :=max(0, ey,pre — €x,pre — &)

(82 €2, Mz)core := (82, €z, Mz)pre

(8y, €y, My)core 1= (3y, €y + P35, My - 27P%) 50

Algorithm 2: Alignment of the y mantissa to prevent over-
flow of the fixed-point datapath

Next, the sigma bit string {¢; }i, of the angle of rotation
iy, is applied in the modified recursion of equation (19).

Similar to vectoring, the result of the core iterations
must be normalized in order to comply with the in- and
output conditions, viz. equation (27).

Either before or after this normalization step, the data
must be brought back to the correct “quadrant” by post-
rotations. These rotations are executed in an identical
fashion to the pre-rotations. The angle that (z, y) core must
be rotated over to produce (z, y)ou is given by:

ﬂ'
(oﬂ/l,pre - 0'7r/2,'m) . 'i + (ar,pre - Uvr,in) -7 (30)

5 Implementation

In order to arrive at a practical implementation of the
floating-point Cordic algorithm, some analysis must be

135

done on the implementation parameters. These are re-
quirements on the domain of convergence, the accuracy
of the angles, and the scaling factor. Due to space limi-
tations, we cannot include all the proofs involved in the
derivations of these parameters. We direct the reader to a
more detailed treatment of the matter in [5].

Once these parameters are known, the angular bases
can be computed for the set of Cordics C¢. For this
purpose, a heuristic search program, Bangles has been
written.

Furthermore, we have built a simulation model to val-
idate the correct working of the algorithm.

5.1 Domain of convergence

The largest angle within a region with fixed exponents
(ez, ey)pre OCCUrS When:

{ z
)
Since this angle determines the domain of convergence, a

suitable bound r¢, for a Cordic C¢ with £ = ey pre — €5 pre»
is

(1.00...00); - 26z

(L.11...11) - 28w (31

re > tan~1(26+1) 32)

5.2 Angle accuracy

The resolution in the computation of an angle is de-
termined by the smallest angle amix in the angular basis.
There are a number of criteria to determine a bound for the
necessary accuracy in the angle. We will adopt one which
takes into account the given accuracy of the input data,
making sure that the error induced by the Cordic compu-
tation is less than the error which can be accounted to the
Np,-bit accuracy of the mantissa representation. A bound
for the minimum angle ami, ¢ is derived in [5]. From this
bound, and the requirement that a; is easy to implement,
say a power of two, a suitable oy, is given by

Oming = tan~!(2¢-Nm=)
Uming = 26-Nm-l (33)
miné§ = —£+Nm+l

5.3 Scaling factor

We would like to force the scaling factor K ¢ to be
such that the multiplication with the inverse K~ in the
prescaling of formula (21) is cheap in hardware. In [1] the
scaling factor is forced to 2, using complex or additional
micro-rotations. However, this approach will not work for
the floating-point Cordic. If we force K¢ — 2 for every
Cordic C¢, then the resulting domain of convergence r¢

and the number of base angles n will be unnecessary
large. This is especially so for Cordics with a small angle
exponent €.

In [5] we derive a suitable value for the scaling factor,
that is optimal in the sense of combining an easy mul-
tiplication of the inverse scaling factor with a minimal
number of micro-rotations. For a Cordic C¢, with domain
of convergence satisfying condition (32), the ideal scaling
factor turns out to be:

Ke =~ (1 —2%-1)~! (34)
The multiplication with the inverse scaling factor then
degenerates to a shift and subtract operation, similar to a
Cordic micro-rotation.

5.4 The generic Cordic

As we can see from equation (34), the scaling fac-
tor quickly approaches 1 as the angle exponent £ gets
smaller. Hence, after a certain limit, we can revert to a
generic Cordic which has a scaling factor of K¢ = 1 to
the required precision and its angular basis defined by the
template: :

S; = £+
o = 26 G€{0,1,..., Nn}(35)
a; = tan~1(2¢-9)

It can be proven that this set of angles spans the required
domain of convergence r¢ as set in equation (32) and
satisfies the required angle accuracy.

It remains to determine the limiting value of ¢ at which
the scaling factor of the Cordic, with the angular basis
given by equations (35), becomes 1 to enough precision.
We call this the generic Cordic limit Lgen. In [5] we
derive this limit to be:

—Np —1
Lo = [TJ

In practice this means that for, say, a 12-bit floating-
point Cordic with Ly, = —7, the 7 Cordics Cp...C_¢
must be implemented.

(36)

5.5 Computing the Cordic angle bases

With the requirements on the domain of convergence
T¢, aCCUracy amin¢ and scaling factor K¢ known, the set
of angles that make up the angular basis {a;}¢ can be
computed.

For this purpose, we have written a heuristic search
program Bangles that finds an optimal set of angles
under the given constraints of domain of convergence,
accuracy and scaling factor.

136

The result for a 12-bit floating-point Cordic is pre-
sented in table 1. Similar tables have been calculated for
a 24-bit mantissa, as required by the IEEE 754 std for
single precision floating-point numbers.

[Cmﬁc" Co]C—lTC—zlc—slcqlc—le—s] Ce¢]
ol ool [[<]

kpcale -1 3| -s! -1 -9| -1} - —
3 EEEEERE IR T
Cordic

iteration (Si Si e Sie
T 0D [AO[GAN]|@SH|GCTH[CE[6| —€ 40
2 A3 1) |BCTN A () 6T | =€ +1
3 A) |G| EsHIECTNIE)[E—) | @) | ~¢+2
4 QT=-D]|@) @)D [ED[TO) | —¢+3
s G |G| E || A0 &+ 4
6 @) @[6|0 |E O ~€£+5
7) |61 |0 |(10)f12)| —£+6
8 6E—) |6 E)]OE) WO I YA - +7
9 ao a6 aolarofazjae | —¢ +5
10) @ |aola|azfmfas | ¢+
1 o) [eo|molazo|as o[]as | -¢ +10
12 {l aeo Jaoo|az 9w a4 |asofar o -e+ 1
B || et Jar]as olas ofas olasojas o —¢ 412
1 (| a2 ja2)| a4 9| as o |as o lar dlas | —
15 a3) a3 olas H{as a1 o |ag) — -
16 — (14)| — — — — — —

Table 1: The series of floating-point Cordics C¢

5.6 Validation of the Algorithm

A simulation model of the floating-point Cordic was
built. This model is based on the assumption that cal-
culations are performed in fixed-precision, block-floating-
point datapath. Extensive simulations on all modes and
input combinations have validated the correctness of the
algorithm.

As an example we show the relative error in both the
angle- and the z-components after vectoring of the input
vector (Mmax, Mmax - 2"’), for the worst-case mantissa
Mmax = 1.11...115. We take the 2log of the relative
error to give an indication of the precision in bits.

Log(2, rel. error]
-12
-14

-16

" {lu“

Figure 3: relative error in the approximation of the angle
and the bound set by the precision of the input

The bottom curve in figure 3 shows the relative error in
the approximation of the angle if it were to be converted
back to radians in unlimited precision. The top curve
is the maximum relative error which can be accounted
to the 12-bit precision of the input mantissas. This sets
a bound on the maximum allowable error of the angle
approximation.

Log(2, rel. error]

13

-14

-15

Figure 4: relative error in the z-component and the bound
set by the precision of the input

Figure 4 shows the relative error in the = component.
Again, the top curve represents the maximum allowable
error level set by the precision of the data. The typical
sandcastle curve of the relative error is caused by the
differing precision for each Cordic in which the scaling
factor is approximated. You can clearly see the generic
Cordicsetinat —£ = p > 7.

6 Conclusions

We have presented a floating-point Cordic algorithm
that calculates angles to full floating-point precision. We
introduce a new floating-point angle representation that
preserves the accuracy that is present in the input data.
This representation is inherently more accurate than a
fixed-precision floating-point representation in radians.

This algorithm serves as the basis to a word-serial
Cordic architecture, which is presented in [5]. For the
implementation, we have computed the angular bases that
make up the series of Cordics C¢ for both 12- and 24-bit
mantissas.

We have validated the algorithm, architecture and im-
plementation decisions by simulation of a model of the
floating-point Cordic.

Currently, we are working on the implementation of the
architecture for an IEEE 754 std. single precision Cordic

137

functional unit for use in massively parallel DSP applica-
tions.

Our experience has been that for less “regular” binary
arithmetic algorithms, such as the floating-point Cordic,
the interplay between algorithm and architecture is quite
strong. We will soon report on a derived floating-point
Cordic algorithm which is suitable for high throughput
pipelined computations.

References

{1] Jichun Bu, Ed F. A. Deprettere, and Fons de Lange.
On the optimization of a pipelined silicon Cordic al-
gorithm. In L.T. Young et al., editor, Signal Process-
ing II: Theories and Applications, pages 1227-1230,
1986.

[2] A.AJ. de Lange, AJ. van der Hoeven, E.F. Depret-
tere, and J. Bu. An optimal floating-point pipeline
CMOS Cordic processor. In IEEE International Sym-

posium on Circuits and Systems., 1988.

{3

—_—

Milo$ Ercegovac and Tomis Lang. On-line scheme
for computing rotation factors. Journal of Parallel
and distributed computing, 5:209-227, 1988. Year
and volume unknown.

[4] Gene L. Haviland and Al A. Tuszynski. A CORDIC
arithmetic processor chip. IEEE journal of solid-state

circuits, SC-15(1):4-14, February 1980.

[5] Gerben J. Hekstra and Ed F.A. Deprettere. Floating-
point Cordic: Algorithm and architecture for a word-
serial implementation. Technical report, Technical

University of Delft, 1992.

[6] The Institute of Electrical and Electronics Engineers,
Inc., 345 East 47th Street, New York, New York
10017. IEEE Standard for Binary Floating-Point

Arithmetic, ANSI/IEEE Std. 754-1985, July 1985.

[71 R. Kiinemund, H. Scldner, S. Wohlleben, and T. Noll.
Cordic processor with carry-save architecture. In 16%
European Solid-state Circuit Conference, pages 193—

196, September 1990.

(8] Jack. E. Volder. The CORDIC trigonometric comput-
ing technique. IRE Transactions on electronic com-

puters, pages 330-334, September 1959.

[9] J.S Walther. A unified algorithm for elementary func-
tions. proceedings of the AFIPS Spring Joint Com-

puter Conference, pages 379-385, 1971.

